首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Estimates of beryllium-7 (7Be) enrichment in soil particle size fractions are important for correction in existing soil redistribution models. Little attention has been given to documenting methods of estimating 7Be enrichment and assessing differences in enrichment between soil types in the context of soil redistribution modelling. Here, we detail a method for estimating 7Be enrichment and correcting soil redistribution estimates.

Materials and methods

Beryllium from a solution of BeCl2 was adsorbed to two soils with contrasting texture using a batch procedure. Soil fractions were separated by settling according to Stokes’ Law, and samples of bulk and settled fractions were digested and analysed for Be concentration and for specific surface area.

Results and discussion

Both soils demonstrated increasing enrichment of Be with increasing specific surface area. There was a marked difference in enrichment between the soil types with the coarse soil showing greater enrichment in the finer fractions. Calculated enrichment ratios for the coarse soil more than doubled between subfractions of the <63 μm class. Failure to account for the selective transport of fractions during soil redistribution studies could incur substantial errors in soil erosion estimates.

Conclusions

Stable Be provides a practical means of estimating 7Be enrichment in soil and subsequent corrections can be incorporated into the conversion model where it is proposed that corrections should be applied to the inventory deficit at each eroding point. The marked difference in enrichment between soil types in these experiments suggested that characterising enrichment and associated correction factors should be done on a site-specific basis. Implementation of the particle size correction procedures requires additional field and laboratory data to standard application of the established soil erosion conversion model.  相似文献   

2.

Purpose

Phosphorus (P) is a limiting nutrient for most US Midwestern aquatic systems and, therefore, increases of P, through point or non-point sources (NPS) of pollution such as agriculture, causes eutrophication. Identifying specific NPS contributions (e.g., upland vs. stream channels) for sediments and P is difficult due to the distributed nature of the pollution. Therefore, studies which link the spatial and temporal aspects of sediment and P transport in these systems can help better characterize the extent of NPS pollution.

Materials and methods

Our study used fingerprinting techniques to determine sources of sediments in an agricultural watershed (the North Fork of the Pheasant Branch watershed; 12.4 km2 area) in Wisconsin, USA, during the spring, summer, and fall seasons of 2009. The primary sources considered were uplands (cultivated fields), stream bank, and streambed. The model used fallout radionuclides, 137Cs, and 210Pbxs, along with total P to determine primary sediment sources. A shorter-lived fallout radioisotope, 7Be, was used to determine the sediment age and percent new sediments in streambed and suspended sediment samples (via the 7Be/210Pbxs ratio).

Results and discussion

Upland areas were the primary source of suspended sediments in the stream channels followed by stream banks. The sediment age and percent new sediment for the streambed and suspended sediments showed that the channel contained and transported newer (or more recently tagged with 7Be) sediments in the spring season (9–131 days sediment age), while relatively old sediments (165–318 days) were moving through the channel system during the fall season.

Conclusions

Upland areas are the major contributors to in-stream suspended sediments in this watershed. Sediment resuspension in stream channels could play an important role during the later part of the year. Best management practices should be targeted in the upland areas to reduce the export of sediments and sediment-bound P from agricultural watersheds.  相似文献   

3.

Purpose

Approximately 74 % of agricultural soils in Tunisia are affected by water erosion, leading to the siltation of numerous human-made reservoirs and therefore a loss of water storage capacity. The objective of this study was to propose a methodology for estimating the relative contributions of gully/channel bank erosion and surface topsoil erosion to the sediment accumulated in small reservoirs.

Materials and methods

We tested an approach based on the sediment fingerprinting technique for sediments collected from a reservoir (which has been in operation since 1994) at the outlet of a catchment (Kamech, 2.63 km2). Sampling concentrated on the soil surface (in both cropland and grassland), gullies and channel banks. A total of 17 sediment cores were collected along a longitudinal transect of the Kamech reservoir to investigate the origin of the sediment throughout the reservoir. Radionuclides (particularly caesium-137, 137Cs) and nutrients (total phosphorus, total nitrogen and total organic carbon (TOC)) were analysed as potential tracers.

Results and discussion

The applications of a mixing model with 137Cs alone or 137Cs and TOC provided very similar results: The dominant source of sediment was surface erosion, which was responsible for 80 % of the total erosion within the Kamech catchment. Additionally, we showed that the analysis of a single composite core provided information on the sediment origin that was consistent with the analysis of all sediment layers in the core. We demonstrated the importance of the core sampling location within the reservoir for obtaining reliable information regarding sediment sources and the dominant erosion processes.

Conclusions

The dominance of surface erosion processes indicates that conservation farming practices are required to mitigate erosion in the agricultural Kamech catchment. Based on the results from 17 sediment cores, guidelines regarding the number and location of sampling cores to be collected for sediment fingerprinting are proposed. We showed that the collection of two cores limited the sediment source apportionment uncertainty due to the core sampling scheme to <10 %.  相似文献   

4.

Purpose

Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (100–104 km2).

Materials and methods

Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed.

Results and discussion

Rainfall erosivity in the study area was moderate (4600 MJ mm ha?1 h?1 year?1), whereas runoff depths (16–60 mm year?1), and therefore the sediment transport capacity, were low. Consequently, ~60 % of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km2 per reservoir) also limits sediment propagation, retaining up to 47 % of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 % of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km2 basin, the SDR was reduced to 1 % downstream of a large reservoir (1940-hm3 capacity).

Conclusions

Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.  相似文献   

5.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   

6.

Purpose

The temporal variabilities of both soil erosion by water and sediment redistribution in watersheds are directly related to rainfall characteristics. The purpose of this work was to assess the temporal pattern of rainfall in a semiarid watershed in Brazil and explain how this feature controls soil erosion and sediment yield.

Materials and methods

Daily and 5-min rainfall records were used to assess the temporal pattern down to the sub-hourly scale. To study the effect of the rainfall on sediment processes, erosivity and sediment yield at the Aiuaba (12 km2) and Benguê (933 km2) watersheds, Brazil were determined. Erosivity was calculated based on the rainfall kinetic energy method, while sediment yield was estimated from sediment rating curves and daily water discharge measurements.

Results and discussion

A large portion of annual rainfall is restricted to a few rain events and strong concentration in the sub-daily scale occurs, producing high erosivity. The temporal concentration of erosivity is greater than that of rainfall; the 10th percentile of the highest magnitude events encompasses 51% of the precipitation, but 80% of the erosivity. The temporal concentration of sediment yield is more pronounced; 88 and 98% of the sediment yield for the Aiuaba and Benguê watersheds, respectively, are within the 10th percentile of events.

Conclusions

The strong temporal concentration of precipitation causes events with high intensity and erosivity, thus allowing for soil detachment. Nonetheless, the low runoff rates limit downstream sediment transport. Such behavior produces a much higher temporal concentration of sediment yield, which reaches its maximal after a sequence of rainy days, when hydrological connectivity is enhanced and the sediments are propagated throughout the entire transport-limited system.  相似文献   

7.

Purpose

Closed erosion plots have been used extensively to investigate soil loss and its spatial variation within a watershed. However, erosion rates measured on closed plots at various locations within a watershed may not reflect the “real world” conditions due to plot boundary problems. The purpose of this study was to identify runoff and sediment sources in a semi-arid, complex terrain catchment by using the data collected from open plots, nested catchments, and tunnel systems.

Materials and methods

The study catchment, in the Loess Plateau of China, was partitioned into various-level geomorphic units. Runoff and sediment discharges were measured from 55 storm events between 1963 and 1968 on open plots and nested catchments. Storm flows were also monitored in 14 rainfall events from the tunnel systems between 1989 and 1990. This study combined the data collected from the two periods to investigate runoff and sediment sources from the different geomorphic units of the catchment.

Results and discussion

On the four open plots (S1, S2, S3, and S4) of the hill slope, total runoff depths of 128.5 mm (S1), 84.3 mm (S2), 101.92 mm (S3), and 141.73 mm (S4) were recorded from all the events over the first period, which correspondingly produced total sediment yields of 3.056 kg m?2 (S1), 9.058 kg m?2 (S1), 42.848 kg m?2 (S3), and 97.256 kg m?2 (S4). The number of runoff events also varied due to a non-uniformity in runoff generation among the different geomorphic units of the catchment. Tunnel flows generally had higher mean sediment concentrations than catchment outflows. Three nested catchments located from the headwaters (C1) to the mouth of the catchment (C3) generated total runoff depths of 120.02 mm (C1), 143.92 mm (C2), and 149.43 mm (C3), and correspondingly produced sediments yields of 62.01 kg m?2 (C1), 144.02 kg m?2 (C2), and 123.92 kg m?2 (C3) for the first period.

Conclusions

Significant variations in runoff and erosion existed within the catchment. The spatial variation of runoff generation on the hill slopes resulted from the variation of soil infiltration. Sediment produced from the lower hill slope zone was disproportionally higher than that from the upper hill slope zone. Nevertheless, a significant portion of the sediment eroded on the lower slope zone was caused by runoff generated from the upper slope zone. Tunnel erosion also played a significant role in sediment production.  相似文献   

8.

Purpose

The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment.

Materials and methods

The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario.

Results and discussion

Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha?1 year?1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha?1 year?1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions.

Conclusions

This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.  相似文献   

9.

Purpose

The impact of agriculture on water resources has long been a problem associated with the formation of runoff, the siltation of lakes and reservoirs, and overall depletion of water quality. In Brazil, these problems are mainly related to soil degradation by water erosion. However, studies of catchment-scale erosion are still rare particularly in grain-producing regions which have adopted conservative tillage systems for soil protection. In order to contribute to a better understanding of the impact of conservation agriculture on water resources, this study determined the runoff coefficient and sediment yield for two agricultural catchments.

Materials and methods

Hydrological and sedimentological monitoring was conducted in two catchments: the Conceicao catchment is characterized by grain production in weathered soils and a gently sloping landscape, while the Guapore catchment is characterized by heterogeneous soils and topography. Both catchments have problems associated with water erosion.

Results and discussion

The magnitudes of annual runoff coefficients and sediment yield were high, even if compared to similar agricultural regions, including a catchment with widespread adoption of no-tillage. The sediment yield was 140 t km?2 year?1, and the runoff coefficient was 14 % for the Conceicao catchment, while the sediment yield was 270 t km?2 year?1, and the runoff coefficient was 31 % for the Guapore catchment. The results indicate that problems such as gullies, soil compaction, runoff, floods, siltation, and water quality depletion associated with the misuse of agricultural areas in terms of soil conservation and water use are still evident and important even in regions with widespread adoption of no-tillage systems.

Conclusions

The magnitudes of both runoff and sediment yield clearly indicate the need to adopt complementary practices of soil conservation measures, such as mechanical runoff control.  相似文献   

10.

Purpose

The science of sediment fingerprinting has been evolving rapidly over the past decade and is well poised to improve our understanding, not only of sediment sources, but also the routing of sediment through watersheds. Here, we discuss channel–floodplain processes that may convolute or modify the sediment fingerprinting signature of alluvial bank/floodplain sources and explore the use of nonconservative tracers for differentiating sediment derived from surface soil erosion from that of near-channel fluvial erosion.

Materials and methods

We use a mathematical model to demonstrate the theoretical effects of channel–floodplain exchange on conservative and nonconservative tracers. Then, we present flow, sediment gauging data, and geochemical measurements of long- (meteoric beryllium-10, 10Be) and short-lived (excess lead-210 and cesium-137, 210Pbex and 137Cs, respectively) radionuclide tracers from two study locations: one above, and the other below, a rapidly incising knick zone within the Maple River watershed, southern Minnesota.

Results and discussion

We demonstrate that measurements of 10Be, 210Pbex, and 137Cs associated with suspended sediment can be used to distinguish between the three primary sediment sources (agricultural uplands, bluffs, and banks) and estimate channel–floodplain exchange. We observe how the sediment sources systematically vary by location and change over the course of a single storm hydrograph. While sediment dynamics for any given event are not necessarily indicative of longer-term trends, the results are consistent with our geomorphic understanding of the system and longer-term observations of sediment dynamics. We advocate for future sediment fingerprinting studies to develop a geomorphic rationale to explain the distribution of the fingerprinting properties for any given study area, with the intent of developing a more generalizable, process-based fingerprinting approach.

Conclusions

We show that measurements of conservative and nonconservative tracers (e.g., long- and short-lived radionuclides) can provide spatially integrated, yet temporally discrete, insights to constrain sediment sources and channel–floodplain exchange at the river network-scale. Fingerprinting that utilizes nonconservative tracers requires that the nonconservative behavior is predictable and verifiable.  相似文献   

11.

Purpose

Hydrosedimentological modeling is a tool that can be used to understand better important processes occurring at the catchment scale, such as runoff and sediment yield. The aim of this study was to use the Limburg Soil Erosion Model (LISEM) to describe the runoff and sediment yield during rainfall–runoff events in a small rural catchment in southern Brazil.

Materials and methods

The study was conducted in the Lajeado Ferreira Creek catchment (drainage area of 1.19 km2) where intense land use has caused a negative impact on water resources. Thirteen rainfall–runoff events that occurred in 2010 and 2011, including high-magnitude events, were used to model hydrosedimentological processes.

Results and discussion

Results

from the calibration and validation stages indicate that the model had a good performance when representing the hydrograph, including events with greater complexity. The use of a second soil layer in the model increased its efficiency, which is in accordance with the importance of subsurface flow in this catchment and its sensitivity to the physical properties of the soil, which are essential for controlling hydrosedimentological processes at the catchment scale. The simulation of sediment yield was overestimated by the model, constrained by the lack of sensitivity of the model to soil cohesion and the stability of soil aggregates. During the model calibration stage, these parameters had values different from those measured in the field.

Conclusions

The LISEM model performed well in representing runoff for events of different magnitudes. The discretization of the physical–hydrologic properties in the soil profile enabled the evaluation of the effect of subsurface impediment layers on water infiltration and runoff. The simulation was less accurate for suspended sediment concentration than for runoff. This indicates the need for further studies to either identify other factors controlling erosion and sediment yield that have not been identified by the model, or identify if the representation of the physical parameters is inadequate, especially the values of soil cohesion and aggregate stability.  相似文献   

12.

Purpose

The heavy metal lead (Pb) is toxic to living organisms. Forest soils are important sinks for heavy metals generated by human activities. The forest at Dinghushan of southern China has experienced long-term exposure to atmospheric pollutants from the Pearl River Delta (PRD). The objectives of this research were (a) to determine the vertical and temporal distribution of Pb in the forest soil at Dinghushan, (b) to determine whether dilute acid extraction could be used to identify anthropogenic sources of Pb in forest soil, and (c) to determine the main anthropogenic contributors to soil Pb.

Materials and methods

Lead concentrations and isotopes were measured in two sets of forest soil samples. One set consisted of archived samples from 0 to 20 cm depth collected annually from 1997 to 2010. The other set was collected throughout three profiles sampled at 5-cm intervals to the bedrock (85 cm depth) in 2011. The soil samples were air-dried, ground, and passed through a 100-mesh polyethylene sieve. Lead in the samples was digested with concentrated acid (HNO3?+?HClO4, 4:1?v/v) or extracted with dilute acid (1 M HCl with a soil/solution ratio of 1:10) and was measured with an inductively coupled plasma mass spectrometer.

Results and discussion

Concentrations of Pb obtained both by total digestion and dilute acid extraction decreased with soil depth in the profile samples and increased over time in the archived ones. Soils at 0–20 cm depth had Pb concentrations of more than twice of the local soil background value. In all soil samples, the 206/207Pb ratios was lower and the 206/204Pb, 207/204Pb, and 208/204Pb ratios were higher with the dilute acid extraction than with the strong-acid digestion, indicating that dilute acid extraction could be used to distinguish between anthropogenic and geogenic Pb. Comparison of the Pb isotope ratios in the samples with those in the main pollutants from the PRD indicated that coal combustion and industrial emission were the main contributors to the forest soil Pb at Dinghushan.

Conclusions

The forest soil (0–20 cm depth) at Dinghushan was contaminated by Pb. Dilute acid extraction could be used to identify anthropogenic Pb sources. From 1997 to 2010, the main contributors of anthropogenic Pb to the forest soil at Dinghushan were coal combustion and industrial emission. Measures that control Pb emission from coal combustion and industrial activity, changes in coal consumption, and re-adjustments of industry development in the PRD should reduce Pb contamination of forest soil.  相似文献   

13.

Purpose

It is critical to understand the effect of manure application on the availability of phosphorus (P) and the potential environmental contamination by runoff and leaching. However, previous studies generally focused on cultivated soil layer in single cropping systems. The aim of this study was to evaluate the effect of manure application on soil P forms and quantities to the 200 cm depth in a Chinese alkaline Cambisol in different cropping systems and the potential environmental implications.

Materials and methods

The sampling site, Shunyi District, is located in the peri-urban area of Beijing in the North China Plain, where large quantities of manure generated from intensive animal operations have been applied to agricultural fields. A field survey was carried out before sampling to identify soil sampling sites with long-term manure application and an adjacent area receiving no manure used for the same crop production. Soil samples from three cropping systems (vegetables, cereals, and trees) were vertically collected to a depth of 200 cm with the following depth increments: 0–20, 20–60, 60–90, 90–120, 120–160 and 160–200 cm. Soil samples were analyzed for plant-available P (Olsen P) and various P fractions by sequential P fractionation. Degree of P saturation (DPS) was also determined.

Results and discussion

Soil calcium bound P was the most abundant P fraction, followed by the residual P. Organic P only accounted for less than 5 % of total P in most of the soils. Manure application increased the levels of inorganic P (Pi), with higher proportions of Pi in labile forms than stable forms. After manure application for 8–15 year, available P (Olsen P) and DPS values of the 0–20 cm layer in all sites exceeded the threshold for Olsen P (60 mg?kg?1) and DPS (30 %) and the risk of P loss by runoff is expected to significantly increase. The DPS values were generally lower than 30 % below 20 cm, indicating a minimal risk of P loss via leaching from deeper soil.

Conclusions

The results indicated that in typical peri-urban areas of the North China Plain, the on-going practice of manure application not only increased the size of each of the labile and non-labile P pools, but also caused a shift in the relative sizes of the different pools, regardless of the cropping systems. However, contrary to what was expected, soil P loss through surface runoff would be a greater concern than leaching following long-term manure amendment.  相似文献   

14.

Purpose

In this study, we quantified soil organic carbon (SOC) stocks and analyzed their relationship with biophysical factors and soil properties.

Materials and methods

The study region was Veracruz State, located in the eastern part of Mexico, covering an area of 72,410 km2. A soil database that contains physicochemical analyses of soil horizons such as carbon concentration data was the source of information used in this study. The database consisted of 163 soil profiles representing 464 genetic horizons. Statistical analysis was used to investigate the effect of each factor (climate, altitude, slope) on SOC stock to 0.50 m depth and to assess differences in the distribution of SOC stock in terms of soil depth (0.0–0.20, 0.20–0.40, 0.40–0.60, 0.60–0.80, 0.80–1.0 m) and land use. In order to compute the spatial distribution of SOC stock to 0.50 m depth based on the soil sampling location, the kriging method was used.

Results and discussion

Results indicated that SOC stock (0.50 m depth) ranged between 0.44 and 41.2 kg C m?2. Regression analysis showed that SOC stocks (0.50 m depth) are negatively correlated with temperature (r?=??0.38; P?<?0.001) and positively correlated with altitude (r?=?0.40; P?<?0.001) and slope (r?=?0.40; P?<?0.001). In addition, by multiple regression, temperature combined with precipitation explained more SOC stock variations (r?=?0.43; P?<?0.001) than the regression model with precipitation (r?=?0.13; P?=?0.16) alone. Also, slope combined with temperature and precipitation explained more SOC stock variations (r?=?0.46; P?<?0.001) than the regression model with slope alone. Forest lands, grasslands, and croplands have higher SOC stocks in the 0.0–0.20-m soil layer than in deeper layers. On average, forest lands, grasslands, croplands, and other lands (wetland and dunes) had a SOC stock of 13.6, 14.6, 15.1, and 8.5 kg C m?2 at 1 m depth, respectively. Soil color correlated (?0.25 ≤ r ≤ ?0.89) with SOC content.

Conclusions

Overall, these results indicate the influence of major interactions between biophysical factors and SOC stocks. This research indicated that SOC stock decreased with soil depth, but with slight variations depending on land use. Thus, there remains a need for more SOC data that include an improved distribution of soil sampling points in order to entirely understand the contributions of biophysical factors to SOC stocks in Veracruz State.  相似文献   

15.

Purpose

Soil depth generally varies in peak-cluster depression regions in rather complex ways. Because conventional soil survey methods in these regions require a considerable amount of time, effort, and consequently relatively large budget, new methods are required in karst regions.

Materials and methods

This study explored the relationship between soil depth and terrain attributes abstracted from digital elevation models (DEMs) at different spatial resolutions in the Guohua Karst Ecological Experimental Area, a representative region of peak-cluster depression in Southwest China. A uniform 140 m?×?140 m grid combined with representative hillslope methodology was used to select 171 sampling points where soil depth was measured. Nine primary and secondary terrain attributes, such as elevation, slope, aspect, especial catchment area, wetness index, length-slope factor, stream power index, relief degree of land surface, and distance from ridge of mountains, were computed from DEMs at different spatial resolutions. The optimal DEM spatial resolution was determined by Grey relational analysis (GRA) to reflect the correlations between soil depth and terrain attributes.

Results and discussion

GRA revealed that the 10-m spatial resolution DEM can best reflect the relationship between soil depth and terrain attributes; therefore, the terrain attributes at this resolution were used for multiple linear stepwise regression (MLSR) analysis. The result of MLSR indicated that slope, TWI, and elevation could explain about 61.4 % of the total variability in soil depth in the study area.

Conclusions

The terrain attributes of slope, WTI and elevation can be used to evaluate soil depth in this region very well. This proposed approach may be applicable to other peak-cluster depression regions in the karst areas at a larger scale.  相似文献   

16.

Purpose

The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change.

Materials and methods

The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm.

Results and discussion

SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g?kg?1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g?kg?1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg?Cm?3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses.

Conclusions

Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.  相似文献   

17.

Purpose

Coal-fuelled power plants can discharge hazardous materials, particularly heavy metals such as lead (Pb). An alternative way of reducing Pb concentration from contaminated sediments is through phytoremediation. Presently, there are few research findings on the phytoremediation potential of mangroves on metals like Pb. The study was conducted to survey and identify mangroves that thrive near the coal-fired power plant and to assess the phytoremediation potential of mangroves on Pb in sediment.

Materials and methods

The study sites were located in the mangrove ecosystems of Sitio Oyon and Sitio Asinan in Masinloc, Zambales, Philippines. The first stage of our study was to survey and identify the mangrove species. The second stage was to assess the levels of Pb in the sediments, water, and tissues of mangrove trees. The diversity assessment of the mangrove species was done through the use of 10?×?12 m quadrat technique. Water and sediment samples from each mangrove ecosystem were collected using composite sampling methods.

Results and discussion

Three mangrove species were identified in the study sites: Avicennia marina, Rhizophora stylosa, and Sonneratia alba. The order of importance of the mangrove trees in the two sampling locations, based on an importance value index (IVI), were as follows: SA (IVI?=?171.20)?>?AM (77.79)?>?RS (51.01). The total uptake of Pb from sediments near the power plants varied significantly (p?≤?0.001) among the three mangrove species. S. alba had the highest Pb uptake of 48.4 kg ha?1 followed by A. marina (23.1 kg ha?1), and R. stylosa (2.4 kg ha?1). These three mangrove species have the potential to phytoremediate Pb in the sediment.

Conclusions

The three mangrove species present in the coastal ecosystem near the electric power plant—A. marina, R. stylosa, and S. alba—were potential phytoremediators of sediment Pb. The present study indicated that the mangroves possess beneficial characteristics that remove Pb from contaminated sediments in areas directly affected by coal-fired power plants, and thus have potential phytoremediation properties.  相似文献   

18.

Purpose

Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as “fingerprints” to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (>60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events.

Materials and methods

Sediment samples from the following three different origins were collected in the Isábena catchment (445 km2) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions.

Results and discussion

We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location—and thus the effect of individual tributaries or subcatchments—seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (<10 %), and other sources (not further determinable) contributed up to 40 %. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed.

Conclusions

Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.  相似文献   

19.

Purpose

Information on the effects of eucalyptus forests on hydrosedimentological processes is scarce, particularly at the catchment scale. Monitoring and mathematical modeling are efficient scientific tools used to address the lack of information for natural resource management and the representation and prediction of those processes. This study evaluates the effects of eucalyptus cultivation on hydrosedimentological processes in watersheds and to use the Limburg soil erosion model (LISEM) to represent and predict hydrological processes.

Material and methods

The study was conducted in two forested watersheds: the main watershed (94.46 ha) and a nested sub-watershed (38.86 ha), both cultivated with eucalyptus and residual riparian native forest, located in southern Brazil. Hydrosedimentalogical monitoring was conducted from 16th February 2011 to 31st December 2012, and LISEM model calibrations were performed on the bases of six storms events.

Results and discussion

The sediment yield for 2011 was 41.6 Mg km?2 and 38.5 Mg km?2 for the watershed and sub-watershed, respectively. An extreme event in 2012 provided greater sediment yield for the sub-watershed (99.8 Mg km?2) than that for the watershed (51.7 Mg km?2). Rainfall events with a greater maximum intensity generated rapid discharge and suspended sediment concentration responses in the sub-watershed due to the smaller drainage area and steeper landscape. In the main watershed, the accumulation of flood waves occurred for most events, with less steep hydrographs, and a later occurrence of the discharge peak after that of the sub-watershed. The LISEM adequately reproduced the peak discharge and runoff for the calibrated events; however, the peak time and the shape of the hydrograph were not adequately represented.

Conclusions

The hydrosedimentological patterns of the watershed and sub-watershed, both cultivated with eucalyptus, was characterized by sedimentographs preceding hydrographs during rainfall–runoff events where scale effects occur, with maximum discharge and specific sediment yield greater in the watershed than that in the sub-watershed. Empirical models based on hydrologic variables may be used for estimating the suspended sediment concentration and sediment yield. Therefore, LISEM may be used for the prediction of hydrological variables in these forested watersheds.  相似文献   

20.

Purpose

This study investigated desorption of potassium (K) and phosphorus (P) from soil and river suspended sediments sampled during a storm event in a Brazilian watershed traditionally used for tobacco plantations.

Material and methods

Suspended sediment samples were collected automatically at the outlet of the watershed and were grouped into three phases: beginning (phase a), middle (phase b) and final stages (phase c) of the storm event. Granulometric and mineralogical characterisation of soils (0 to 0.20 m depth) and suspended sediments was determined, and K and P extractions were performed using a cation and anion exchange resin (CAER) membrane. A kinetic modelling approach was used to estimate the amount of K and P desorbed.

Results and discussion

Clay-sized (<2 μm) content of the soils were all <21 %. Kaolinite, smectite (partially with hydroxy-Al interlayer) and a small amount of illite were found in the clay fraction of the different soils. The clay-sized fractions in sediments of phases a, b and c of the storm event were 49, 52 and 72 %, respectively. Smectite (>90 %) and kaolinite (<10 %) were the dominant clay minerals in the suspended sediments. The values of labile P and potentially available P of suspended sediments were higher than those for soils. In sediments, the highest values of labile P (325 mg kg?1) and labile K (4,458 mg kg?1) were found in phase c and in phase a, respectively.

Conclusions

Particle size distribution and clay mineralogy of soils differed from those of suspended sediments collected during the storm event. By comparison with the watershed soils, suspended sediments collected during the storm event were enriched in fine particles composed mainly of smectite, and this may explain their P and K desorption behaviour. This suggests particle size and clay species selectivity processes during the transfer of sediment particles from soils to aquatic systems. The amounts of P and K desorbed from the suspended sediments in the three phases of the storm event were much larger than those desorbed from soils. This indicates that rainfall promoted the transfer of these nutrients to the watercourses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号