首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
肥料对稻米品质的影响   总被引:9,自引:0,他引:9  
稻米品质的形成是品种遗传特性、环境生态条件、栽培技术及加工条件综合作用的结果,在诸多因子中,肥料的影响较大。本文综述了肥料对稻米品质的影响,主要包括碾米品质的评价指标及大量元素肥料、中微量元素肥料和看机肥料对碾米品质的影响,肥料对稻米形状、垩白度、透明度等外观品质和直链淀粉含量、胶稠度等蒸煮及食昧品质的影响,并扼要分析了肥料对稻米蛋白质含量的影响。  相似文献   

2.
川南冬水田杂交中稻品种与气候互作对稻米品质的影响   总被引:1,自引:0,他引:1  
为了改善大面积生产的水稻稻米品质,2015年和2016年以杂交中稻优质稻品种‘旌优127’、高产品种‘Ⅱ优602’为材料,通过分期播种并设置高氮低密与低氮高密两种栽培方式,研究了杂交中稻品种、气候及栽培方式互作对稻米品质的影响。结果表明,随着播种期推迟,整精米率、长宽比呈升高趋势,垩白度、胶稠度呈下降趋势,垩白粒率则呈"V"字型变化;高氮低密与低氮高密两个栽培方式间稻米品质差异不显著,栽培方式与年度、品种、播种期对稻米品质的互作效应均不显著;整精米率、垩白度、垩白粒率、长宽比同时受年度、播种期和品种的互作效应显著,胶稠度在年度和品种间互作效应显著,直链淀粉含量在播种期和品种间互作效应显著。对稻米品质影响程度的降序排列是品种、气候、栽培方式。有利于提高稻米品质的气象条件为:播种—移栽相对湿度小、日平均气温高,移栽—拔节期日平均气温低、日照时数少,拔节—齐穗期日最高气温低、日最低气温高、日均相对湿度低,齐穗—成熟期日照时数少。水稻抽穗前的气象因子通过改变穗粒结构而间接影响米质,抽穗后温度升高引起籽粒灌浆速度加快致稻米品质下降。  相似文献   

3.
氮素穗肥对不同品种稻米品质性状的影响   总被引:6,自引:3,他引:6  
以4种不同类型的稻米为材料,采用4个不同的氮素穗肥处理,利用黏度分析仪和XRD技术测定其淀粉特性,探索氮素穗肥对稻米品质及淀粉特性的影响。试验结果表明,氮素穗肥对稻米蛋白质、直链淀粉含量、支/直比和胶稠度的影响,品种间存在差异。各品种稻米的黏滞谱曲线随着氮肥的增加均呈整体下降趋势;相对粳稻而言,杂交籼稻和糯稻黏滞谱曲线在不同的氮肥处理下降幅度较小。各品种稻米淀粉的相对结晶度均表现为随氮肥施用量的增加而减小,17和18的两个衍射峰的分离状态逐渐减小。氮素穗肥施用量与稻米品质和淀粉特性关系密切,可通过调控氮素穗肥水平来改善稻米品质。  相似文献   

4.
灌浆期不同光强对水稻不同粒位籽粒品质的影响   总被引:4,自引:0,他引:4  
为探讨灌浆期光照强度对水稻籽粒品质的影响及在不同品种类型和粒间差异,揭示弱光下水稻籽粒充实不良和米质变劣的生理机制,本文以代表性的超级稻品种"扬两优6号"和"武运粳23"为材料,以穗中部不同粒位籽粒为研究对象,以自然光强为对照,设置3种弱光处理(光强分别为对照的71%、55%和40%),研究了灌浆期不同光照强度对稻米品质的影响。结果表明:1)灌浆期光照强度对稻米品质影响较大,光强减弱稻米品质变劣,光照对米质形成的影响因光照强度大小、品种类型和籽粒着生位置不同而存在差异,同枝梗上迟开花籽粒稳定性较差,早开花籽粒稳定性较好。2)随光照强度降低,整精米率和直链淀粉含量降低,垩白度增加,不同光强下一次枝梗籽粒变化幅度大于二次枝梗籽粒;光强越弱,崩解值越低,消减值和粗蛋白含量越高,稻米蒸煮食味品质变差。3)生产上应因品种类型合理安排播期,通过栽培措施改善稻株受光条件,减轻光照不足对稻米品质形成的影响。  相似文献   

5.
不同生态条件下氮肥优化管理对杂交中稻稻米品质的影响   总被引:2,自引:0,他引:2  
在四川省温江和射洪试验点,采用单因素随机区组试验设计,以‘F优498’水稻品种为试验材料,研究了不同氮肥处理[普通尿素优化施肥、减氮15%优化施肥、增氮15%优化施肥,PASP(聚天门冬氨酸)尿素1次施肥、2次施和优化施肥]对稻米品质的影响。结果显示,温江的碾米品质、外观品质和籽粒粗蛋白含量较优;射洪的峰值黏度和崩解值较高,消减值较低,蒸煮食味品质较好,同时直链淀粉含量较高。随着氮肥的施用,稻米碾米品质、直链淀粉含量和籽粒粗蛋白含量显著提高,崩解值显著降低;同时导致射洪生态点的峰值黏度增加,消减值减少;温江生态点的稻米外观品质变优,峰值黏度减小,消减值增加。较农民经验性施肥处理,普通尿素优化处理和PASP尿素处理提高了直链淀粉含量和籽粒粗蛋白含量,降低了温江垩白粒率和垩白度,改善了外观品质;氮肥优化处理降低了峰值黏度和崩解值,提高了消减值,使稻米蒸煮食味品质变差,同时提高了射洪精米率和温江整精米率。较优化施肥处理,PASP尿素处理降低了两试验点的精米率、整精米率和温江垩白粒率,增加了射洪的垩白粒率和垩白度,使外观品质变差;同时PASP尿素1次施肥和2次施肥处理降低了直链淀粉含量和籽粒粗蛋白含量;PASP尿素优化施肥处理降低了两试验点的峰值黏度、崩解值和温江直链淀粉含量,提高了两试验点的籽粒粗蛋白含量和射洪直链淀粉含量。较优化施肥处理,减氮15%和增氮15%优化施肥处理降低了两试验点的直链淀粉含量、整精米率及温江垩白粒率,增加了射洪垩白粒率和垩白度。与PASP尿素1次和2次施肥相比,PASP尿素优化施肥显著降低了垩白度、峰值黏度和崩解值,增加了消减值和籽粒粗蛋白含量;同时导致射洪生态点的整精米率降低,垩白粒率和直链淀粉含量增加;温江生态点的垩白粒率降低,整精米率增加。综合稻米碾米品质、外观品质、淀粉RVA、直链淀粉含量和籽粒粗蛋白含量的关系,射洪PASP尿素2次施肥处理稻米综合品质较好,温江优化施肥处理稻米综合品质较好。  相似文献   

6.
以钟山县公安镇荷塘村某水稻种植田为研究对象,从产量因素、群体动态、群体质量、农艺性状四个方面,对不同配方施肥对水稻产量的影响进行分析,从碾米品质、稻米外观、蛋白质含量三个方面,对不同配方施肥对稻米品质的影响进行探讨,希望对提升不同配方施肥效果有所裨益。  相似文献   

7.
气象生态因子对稻米品质影响的研究进展   总被引:53,自引:0,他引:53  
从稻米的碾米品质、外观品质、蒸煮食味品质和营养品质4个方面,论述了气象生态因子对其影响的生态生理特征的研究进展,并对目前有关研究中存在的不足做了简要评述。  相似文献   

8.
浙薯系列鲜食及食品加工型甘薯品种系谱和品质性状分析   总被引:1,自引:0,他引:1  
为全面评价不同类型甘薯品种品质育种指标以及提高育种效率,以2005-2016年育成的13个浙薯系列鲜食及食品加工型甘薯品种为材料,分析亲本系谱,统计品种特征特性,并依据品种用途、干率等对其主要品质性状进行分组比较。结果表明,浙薯系列甘薯品种系谱来源主要是胜利百号和南瑞苕衍生品种栗子香血缘。浙薯81及其衍生品种浙薯13在作为骨干亲本时表现出理想的育种效果。从品种的特征特性来看,鲜食型品种(包括迷你型鲜食品种)具有相对较高的干率(>30%)和淀粉率(>20%);不同类型品种生薯、熟薯的糖分(可溶性糖、还原糖)含量因品种而异;不同加工用途品种类型对胡萝卜素含量指标要求不同。不同类型品种的品质育种指标应进行综合评价,鲜食型甘薯主要以食用品质指标为主,干率是重要的品质指标之一;食品加工型甘薯主要以加工适应性目标为主,需注重中高干率、中高胡萝卜素含量、糖化快等材料的筛选与利用。本研究结果为优质鲜食及加工型甘薯新品种选育的种质创新和应用提供了理论参考。  相似文献   

9.
为明确不同生态条件下施氮量和移栽密度对杂交稻产量形成和稻米品质的影响,以旌优127为试验材料,研究了2种施氮量(中等施氮量MN,120 kg·hm-2;高等施氮量HN,180 kg·hm-2)和3个移栽密度(12.0、16.5、22.5穴·m-2,记作D1、D2、D3)下,德阳、泸州生态点杂交稻产量、产量构成、干物质生产、稻米品质的变化。结果表明,德阳点土壤全氮、碱解氮含量高于泸州点,德阳点播种至齐穗平均太阳辐射、最高温度、最低温度均高于泸州点,但其齐穗至成熟平均太阳辐射、最高温度、最低温度低于泸州点。与泸州点相比,德阳点杂交稻产量、糙米率和精米率分别增加了14.3%~24.3%、0.9%~1.9%和0.7%~5.3%,其增产优势主要表现在有效穗、每穗粒数、生物产量和收获指数上。不同生态条件下施氮量和移栽密度对杂交稻产量形成和稻米品质的影响不同。德阳点杂交稻产量随施氮量增加而减少,相同施氮量水平下杂交稻产量随移栽密度的增加而增加,以MND3产量最高,为10.87~11.72 t·hm-2,且该密肥组合下碾米的品质、外观、食味相对较好。泸州点杂交稻产量随施氮量和移栽密度的增加而增加,以HND3产量最高,达到9.25~9.85 t·hm-2,碾米的品质、食味相对较好。德阳点的最佳密肥组合为120 kg·hm-2和22.5穴·m-2;泸州点的密肥组合为180 kg·hm-2和22.5穴·m-2。由此可见,合理的施氮量和适宜的移栽密度有助于提高杂交稻产量和稻米品质。本研究结果为不同生态稻区肥料优化管理和合理密植提供了理论依据。  相似文献   

10.
2012 — 2014年,对宁夏干旱区豌豆地方老品种资源进行了收集、保存,同时对农艺性状、产量性状及抗逆性进行了鉴定评价。结果表明,鉴定品种均属中早熟品种、蔓生性、无限结荚、白色圆粒为主,均属多荚,以3粒荚较多;来自盐池县的材料以小粒型品种为主、其它各县以中粒型品种为主。产量以彭阳县最高,为3 334.50 kg/hm2;其次是同心县、原州区,分别为3 166.05、3 106.65 kg/hm2;海原县最低,为2 430.90 kg/hm2。聚类分析认为,总体上可以分为两大类型,第一类型为盐池县和海原县,表现特征是籽粒百粒重较小,产量较低,以小粒型品种为主;第二类型为同心县、彭阳县、原州区、西吉县、隆德县,表现特征是百粒重较高,产量较高,以中粒型品种为主。  相似文献   

11.
The effects of degree of milling on pasting properties of medium‐grain (cv. Bengal and Orion) and long‐grain rice (cv. Cypress and Kaybonnet) were quantified using a Brabender ViscoAmylograph and a Rapid Visco Analyser. For all the cultivars tested, surface and total lipid contents decreased as the degree of milling increased. The peak viscosities for all rice increased with the degree of milling and the rates of increase were higher for medium‐grain than long‐grain cultivars. Degree of milling did not have a consistent effect on final viscosity for all the cultivars tested.  相似文献   

12.
Growing interest in sustainable agriculture has prompted this study aiming to evaluate nutritional content of rice grain produced from an organic production system. Here, we grew nine quality rice cultivars under organic methods in the wet and dry seasons, and the nutritional values, grain quality, and physiological parameters were compared with respective cultivars grown under the standard cultivation method (SCM). Obtained results revealed that the yield and plant height were lower, but tillering capacity was higher, in the organic field compared with the standard one. The organic crop showed significantly lower contents of protein and phytate compared with reference values under the SCM. Antioxidative capacity and its responsible phytochemicals such as phenolics, flavonoids, and γ‐oryzanol were also significantly higher under organic cultivation than under the SCM. Among physicochemical characteristics, apparent amylose content, gel consistency, and area and perimeter of grain were also higher in the organic crops, but hulling quality, milling quality, head rice recovery, and all other cooking qualities were at par. Higher crude oil and lower total protein content of rice bran were observed in the organic crop, but ash, fiber, and moisture contents did not vary significantly in these two cultivation systems.  相似文献   

13.
With the increasing scarcity of rural labor, the rice transplanting pattern is encountering a shift from artificial transplanting (AT) to mechanical transplanting (MT) in numerous rice‐growing districts of China. The shift of transplanting patterns combined with altered growing environment during the grain‐filling stage in different years presumably affects rice quality. Nevertheless, related information is currently limited. This study investigated the effects of cultivars, transplanting patterns, environment, and their interactions on appearance, milling, eating, and nutritional qualities of four japonica rice varieties. The significant interactive effects of cultivars, environment, and transplanting patterns on almost all rice quality parameters (except Thr, Met, and Ile) were observed. Cultivars and environment were the main factors influencing rice appearance and milling and eating qualities. Cultivar was the primary factor affecting rice nutritional quality. Among all treatments, environment showed the strongest effect on percentage of chalky kernel, milled rice yield, peak viscosity, breakdown, setback, consistence, amylose, Glu, Tyr, and Met contents. However, Leu and Phe contents were unaffected by environment but only by cultivars and transplanting patterns. In addition to amylose and protein, Glu and Met contents were also involved in determining rice eating quality. Amino acid contents (except Cys, Tyr, and Met) were significantly negatively correlated with head rice yield, showing the function of amino acids in controlling rice milling quality. Percentage of chalky kernel as well as protein and almost all amino acid contents were significantly negatively correlated with the difference of maximum and minimum temperature (DMMT) and positively correlated with relative humidity (RH), whereas head rice yield did it reversely. Amylose content and setback were significantly negatively related to daily maximum temperature (DMAT), daily minimum temperature (DMIT), daily average temperature (DAT), and effective temperature accumulation (ETA). However, peak viscosity, breakdown, and consistence had contrary performances. According to these results, we can infer that DMMT and RH are important environmental factors affecting rice appearance, milling qualities, and nutritional qualities and that DMAT, DMIT, DAT, and ETA are key environmental factors influencing rice eating quality.  相似文献   

14.
This study evaluated the physicochemical properties of high‐temperature, single‐pass dried rough rice. Pureline cultivars Wells (long grain) and Jupiter (medium grain) and hybrid cultivar CL XL729 (long grain), at initial moisture contents of 17.9–18.1% were dried in a single pass to approximately 12.5% moisture content with drying air temperatures of 60, 70, and 80°C and relative humidities of 13–83%. Immediately after drying, the samples were tempered for 1 h at the drying air temperatures in sealed plastic bags. Color, degree of milling, pasting viscosity, and thermal properties of the milled rice were evaluated. Results showed that color, degree of milling, and thermal properties were not affected by drying treatments. However, peak and final viscosities increased with increasing drying air temperatures in all three cultivars.  相似文献   

15.
《Cereal Chemistry》2017,94(3):539-545
Fissuring caused by rapid moisture adsorption generates broken kernels upon milling; brokens are often ground to flour. The recent increase in demand for rice flour has promoted interest in brokens. This study investigated the physical and functional characteristics of brokens resulting from milling lots with various levels of moisture adsorption‐induced fissuring. Two long‐grain (LG) cultivars and one medium‐grain (MG) cultivar were conditioned to five initial moisture contents (IMCs), rewetted, and then reconditioned to 12% moisture content. Brown rice fissure enumeration and milling analyses as well as size distribution and functionality analyses of brokens were conducted. As IMC decreased, the percentage of fissured kernels increased and, consequently, the amount of brokens generated increased. Although the number of fissures/kernel also increased with decreasing IMC, the mass distribution of the resultant brokens was not affected by IMC. Across all IMC levels, the mass percentage of the medium‐sized brokens was greatest for the LG cultivars, whereas that of the large‐sized brokens was greatest for the MG cultivar. Regardless of IMC, peak, setback, and final viscosities were greatest for head rice and decreased significantly with decreasing size of brokens. Thus, brokens of different sizes have different functional properties and, hence, may be fractionated for different end‐use applications.  相似文献   

16.
The addition of zeolite (Z) to soils is increasingly being recognised as a way to enhance agricultural production and decrease fertilisation requirements and, hence, environmental costs. Meanwhile, the alternate wetting and drying irrigation (AWD) has become widely applied to reduce the water requirements of rice cultivation. However, limited information is available on their impacts on rice’s physicochemical properties. This study investigated an integrated irrigation, nitrogen (N) and Z rice production system and assessed its effects on the milling, appearance, nutrition, taste and cooking qualities of the rice grain produced. Compared with conventional flooding irrigation (CF), AWD-grown rice had slightly decreased milling and appearance qualities. Addition of Z increased rice protein content and slightly decreased eating quality without affecting milling, appearance and cooking qualities. The highest yields achieved under AWD (9.8 t ha?1) and CF (8.9 t ha?1) were achieved using 105 kg N and 10 t Z ha?1, and 105 kg N and 5 t Z ha?1, respectively. Compared with the flooding untreated control (using 157.5 kg N ha?1 and no Z), these two treatment regimens required 27.8% and 8.1% less water, 33.3% less N fertiliser and increased yields by 10.6% and 0.6%, respectively, without measurably affecting rice grain quality.  相似文献   

17.
Rice bran contains high amounts of beneficial antioxidants including tocopherols, tocotrienols, and oryzanols. Current rice milling technology produces rice bran from different layers of the kernel caryopsis. Under current practices, these layers are combined and then steam‐extruded to form a stabilized rice bran pellet that is storage‐safe prior to oil extraction. Each of these rice bran intermediates can vary in antioxidant content. The objective of this study was to investigate the changes in selected antioxidants in rice bran from both long‐ and medium‐grain rice during commercial milling and bran processing. Rice bran collected from various milling breaks of a commercial system had varying antioxidant levels. Bran collected after milling break 2 had the highest levels of tocopherol and tocotrienol. Oryzanol concentration was significantly higher in outer bran layers. Results also indicate that the long‐grain rice bran averaged ≈15% more antioxidants than the medium‐grain rice bran.  相似文献   

18.
Rice bran is a rich source of phytochemicals including tocopherols (T), tocotrienols (T3), and γ‐oryzanol that have purported positive effects on human health. The screening of germplasm to determine the genetic diversity influencing contents of these compounds requires knowledge of how sample preparation influences concentrations of the phytochemicals in rice bran. Obtaining this knowledge was the objective of this study. Cultivars with different milling qualities were all milled to different degrees. The differences in bran removal among cultivars decreased as the milling time increased. Samples that were milled for 30 and 40 sec (milled to the degree of 0.23–0.44% surface lipid content [SLC]) showed no significant differences in T and T3 concentrations in the bran within cultivars. Bran starch concentration affected the rankings of cultivars based on phytochemical contents. Expression of the γ‐oryanol concentration in bran after subtracting starch reduced the concentration differences resulting from differences in degree of milling (DOM). Bran from the mature thin kernels had phytochemical contents similar to that of the mature thick kernels milled for 30 sec. The immature thin kernels had significantly lower contents of most of the bran phytochemicals than did the mature kernel fractions.  相似文献   

19.
调质大米半干法磨粉制备鲜米粉及其品质测定   总被引:4,自引:1,他引:3  
为考察半干法磨粉对鲜米粉品质的影响,该研究选用旋风磨和布勒磨对调质后含水率为28%和30%的大米进行磨粉,分析大米粉的白度、凝胶特性及糊化特性,对加工鲜米粉的质构特性、蒸煮特性和感官品质进行了分析。结果显示:调质大米可以减小磨粉仪器机械力和热能对大米粉品质的破坏,其中调质大米经布勒磨粉碎后的白度显著高于湿磨粉白度(P0.05);旋风磨含水率为30%调质粉的凝胶硬度最大为3.45 N/cm2,与湿磨粉的无显著差异(P0.05);2种调质粉相比于湿磨粉其崩解值较小,其中布勒磨含水率为30%调质粉回生程度较低,与湿磨粉无显著差异(P0.05)。对于鲜米粉的品质,筛选得到的旋风磨含水率为30%鲜米粉的硬度为35.10 N/cm2,弹性为0.97,较湿磨米粉更柔软弹滑,感官评价总分和蒸煮特性与湿磨米粉无显著差异。以上结果表明,含水率为30%的大米经旋风磨粉碎后能够制得与湿法磨浆相媲美的鲜米粉,可为解决湿磨法废水量大、产品得率低等问题提供参考。  相似文献   

20.
长沙生态条件下籼爪交杂交稻在整精米率、精米长宽比、垩白粒率、垩白面积率、碱消值和直链淀粉含量方面表现为正向超亲优势;在精米长宽比、碱消值和直链淀粉含量方面表现为正向对照优势。三亚生态条件下籼爪交杂交稻在糙米率、总精米率、情米长宽比和胶稠度方面表现出正向对照优势,三亚籼爪交杂交稻的糙米率、总精米率、整精米率、精米长宽比和胶稠度对照优势极显著高于长沙相应性状的对照优势;三亚的垩白粒率对照优势显著高于长沙的垩白粒率对照优势;三亚的碱消值和直链淀粉含量对照优势显著低于长沙相应性状的对照优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号