首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

2.
OBJECTIVE: To determine proportions of cats in which feline infectious peritonitis (FIP) was diagnosed on an annual, monthly, and regional basis and identify unique characteristics of cats with FIP. DESIGN: Case-control study. SAMPLE POPULATION: Records of all feline accessions to veterinary medical teaching hospitals (VMTH) recorded in the Veterinary Medical Data Base between January 1986 and December 1995 and of all feline accessions for necropsy or histologic examination at 4 veterinary diagnostic laboratories. PROCEDURE: Proportions of total and new feline accessions for which a diagnosis of FIP was recorded were calculated. To identify characteristics of cats with FIP, cats with FIP were compared with the next cat examined at the same institution (control cats). RESULTS: Approximately 1 of every 200 new feline and 1 of every 300 total feline accessions at VMTH in North America and approximately 1 of every 100 accessions at the diagnostic laboratories represented cats with FIP. Cats with FIP were significantly more likely to be young, purebred, and sexually intact males and significantly less likely to be spayed females and discharged alive than were control cats. The proportion of new accessions for which a diagnosis of FIP was recorded did not vary significantly among years, months, or regions of the country. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that FIP continues to be a clinically important disease in North America and that sexually intact male cats may be at increased risk, and spayed females at reduced risk, for FIP. The high prevalence of FIP and lack of effective treatment emphasizes the importance of preventive programs, especially in catteries.  相似文献   

3.
To assess whether alpha‐1‐acid glycoprotein (AGP) can be detected on the membrane of feline circulating leucocytes. Design The presence of AGP on circulating leucocytes was investigated in both clinically healthy cats and cats with different diseases. A group of feline coronavirus (FCoV)‐positive cats, comprising cats with feline infectious peritonitis (FIP) and cats not affected by FIP but seropositive for FCoV, were included in this study because the serum concentration of AGP increases during FCoV infection. Procedure Flow cytometry (using an anti‐feline AGP antibody), serum protein electrophoresis, routine haematology and measurement of the serum AGP concentration were performed using blood samples from 32 healthy cats (19 FCoV‐seropositive), 13 cats with FIP and 12 with other diseases (6 FCoV‐seropositive). The proportion of cats with AGP‐positive leucocytes in the different groups (e.g. controls vs sick; FIP vs other diseases, etc.) or in cats with different intensities of inflammatory response was compared using a Chi‐square test. Results AGP‐positive leucocytes were found in 23% of cats. Compared with controls, the proportion of patients with positive granulocytes and monocytes was higher among sick cats (especially cats with diseases other than FIP) and cats with high serum AGP concentration, but not in cats with leucocytosis or that were FCoV‐seropositive. Conclusion AGP‐positive leucocytes can be found in feline blood, especially during inflammation. Conversely, no association between AGP‐positive leucocytes and FIP was found. Further studies are needed to elucidate the mechanism responsible for this finding and its diagnostic role in cats with inflammation.  相似文献   

4.
The long-term safety of a temperature-sensitive feline infectious peritonitis (FIP) vaccine was evaluated. Five hundred eighty-two healthy cats of various age groups were vaccinated with 2 doses of the vaccine. Seventy-eight percent, or 453 cats, were available for follow-up. The mean follow-up period was 541 days. At the end of the follow-up period, 427 cats (94%) were alive. FIP was not diagnosed in any cat during the follow-up period, but 1 cat died of FIP after completion of the follow-up period. Fifty cats (11%) presented with a problem during the follow-up period, but there were typical of those seen in a feline practice. The temperature-sensitive FIP vaccine appears to be safe for use in the general cat population. It does not appear to sensitize cats to develop FIP, nor do there appear to be any other systemic problems associated with use of the vaccine.  相似文献   

5.
The possible role of some acute phase proteins (APPs) and immunoglobulins in both the pathogenesis and diagnosis of feline infectious peritonitis (FIP) has been investigated. Serum protein electrophoresis and the concentration of haptoglobin (Hp), serum amyloid A (SAA), alpha(1)-acid glycoprotein (AGP), IgG and IgM were evaluated in cats exposed to feline coronavirus (FCoV) and in cats with FIP. The highest concentration of APPs was detected in affected cats, confirming the role of these proteins in supporting a clinical diagnosis of FIP. Repeated samplings from both FIP affected and FCoV-exposed cats showed that when FIP appeared in the group, all the cats had increased APP levels. This increase persisted only in cats that developed FIP (in spite of a decrease in alpha(2)-globulins) but it was only transient in FCoV-exposed cats, in which a long lasting increase in alpha(2)-globulins was observed. These results suggest that changes in the electrophoretic motility of APPs or APPs other than Hp, SAA and AGP might be involved in the pathogenesis of FIP or in protecting cats from the disease.  相似文献   

6.
7.
A population of Persian cats experienced an epidemic of feline infectious peritonitis (FIP) over 2 years. Twelve cases of FIP occurred in litters born during this period. Cats contracting FIP were all genetically related through the sire. Feline coronavirus (FCoV) genomic RNA was detected consistently in this study in biologic samples from adult cats, kittens suffering from FIP, and their siblings. Analysis of viral 7a/7b open reading frame (ORFs) were analyzed and revealed two distinct virus variants circulating in the population, one with an intact 7a ORF and one with two major deletions in the 7a ORF. The 7b ORFs were intact and similar among all virus isolates, although point mutations resulting in amino acid changes were present. The sire was determined to be infected with both variants, and was persistently virus-infected. We speculate the deletion variant arose from the non-deletion variant during viral replication in this population, possibly in the sire.  相似文献   

8.
9.
The objective of this study was to determine whether patient signalment (age, breed, sex and neuter status) is associated with naturally-occurring feline infectious peritonitis (FIP) in cats in Australia. A retrospective comparison of the signalment between cats with confirmed FIP and the general cat population was designed. The patient signalment of 382 FIP confirmed cases were compared with the Companion Animal Register of NSW and the general cat population of Sydney. Younger cats were significantly over-represented among FIP cases. Domestic crossbred, Persian and Himalayan cats were significantly under-represented in the FIP cohort, while several breeds were over-represented, including British Shorthair, Devon Rex and Abyssinian. A significantly higher proportion of male cats had FIP compared with female cats. This study provides further evidence that FIP is a disease primarily of young cats and that significant breed and sex predilections exist in Australia. This opens further avenues to investigate the role of genetic factors in FIP.  相似文献   

10.
Feline coronaviruses (FCoV) vary widely in virulence causing a spectrum of clinical manifestations reaching from subclinical course to fatal feline infectious peritonitis (FIP). Independent of virulence variations they are separated into two different types, type I, the original FCoV, and type II, which is closely related to canine coronavirus (CCV). The prevalence of FCoV types in Austrian cat populations without FIP has been surveyed recently indicating that type I infections predominate. The distribution of FCoV types in cats, which had succumbed to FIP, however, was fairly unknown. PCR assays have been developed amplifying parts of the spike protein gene. Type-specific primer pairs were designed, generating PCR products of different sizes. A total of 94 organ pools of cats with histopathologically verified FIP was tested. A clear differentiation was achieved in 74 cats, 86% of them were type I positive, 7% type II positive, and 7% were positive for both types. These findings demonstrate that in FIP cases FCoV type I predominates, too, nonetheless, in 14% of the cases FCoV type II was detected, suggesting its causative involvement in cases of FIP.  相似文献   

11.
To investigate the usefulness of ascites as a material for viral tests in cats with effusive feline infectious peritonitis (FIP), we attempted to detect anti-feline coronavirus antibody, anti-feline immunodeficiency virus antibody, and feline leukemia virus antigen in ascites from 88 cats clinically suspected with effusive FIP. In each of these three viral tests, all cats positive for serum antibody/antigen were also positive for ascitic antibody/antigen, while cats negative for serum antibody/antigen were also negative for ascitic antibody/antigen. This finding indicates that ascites is useful for these viral tests.  相似文献   

12.
13.
14.
There are four outcomes to feline coronavirus (FCoV) infection: the development of feline infectious peritonitis (FIP, which is immune-mediated), subclinical infection, development of healthy lifelong carriers and a small minority of cats who resist infection (Addie and Jarrett, Veterinary Record 148 (2001) 649). Examination of the FCoV genome has shown that the same strain of virus can produce different clinical manifestations, suggesting that host genetic factors may also play a role in the outcome of infection. FIP is most prevalent amongst pedigree cats, although how much of this is due to them living in large groups (leading to higher virus challenge and stress which predisposes to FIP) and how much is due to genetic susceptibility is not known. If host genetics could be shown to play a role in disease, it may allow the detection of cats with a susceptibility to FIP and the development of increased population resistance through selective breeding. The feline leucocyte antigen (FLA) complex contains many genes that are central to the control of the immune response. In this preliminary study, we used clonal sequence analysis or reference strand conformational analysis (RSCA) to analyse the class II FLA-DRB of 25 cats for which the outcome of FCoV exposure was known. Individual cats were shown to have between two and six FLA-DRB alleles. There was no statistically significant association between the number of alleles and the outcome of FCoV infection. No particular allele appeared to be associated with either the development of FIP, resistance to FCoV, or the carrier status. However, the analysis was complicated by apparent breed variation in FLA-DRB and the small number of individuals in this study.  相似文献   

15.
Feline alpha(1)-acid glycoprotein (fAGP) increases during feline infectious peritonitis (FIP). We have recently identified a 29 kDa protein that we named feline AGP-related protein (fAGPrP) due to its cross-reactivity with an anti-human AGP monoclonal antibody. In this work we describe the tissue distribution of fAGPrP during FIP, and its relationship with feline coronavirus (FCoV) and myeloid cells. Tissues from five control cats and from 15 cats with FIP were examined by immunohistochemistry using monoclonal antibodies against human AGP, FCoV and myeloid antigens. Diffuse fAGPrP positivity within the lesions, likely due to vascular plasma leakage, endothelial and epithelial lining were detectable. Compared to controls, fAGPrP-expressing cells often increased in number and were diffusely distributed in lymph nodes, as usually occurs for IgM-producing plasma cells during early immune responses. These findings did not depend on the presence of FCoVs or of myeloid cells, suggesting that fAGPrP is not directly involved in the pathogenesis of FIP.  相似文献   

16.
OBJECTIVE: To determine whether expression of feline coronavirus (FCoV) 7b protein, as indicated by the presence of specific serum antibodies, consistently correlated with occurrence of feline infectious peritonitis (FIP) in cats. SAMPLE POPULATION: 95 serum samples submitted for various diagnostic assays and 20 samples from specific-pathogen-free cats tested as negative control samples. PROCEDURES: The 7b gene from a virulent strain of FCoV was cloned into a protein expression vector. The resultant recombinant protein was produced and used in antibody detection assays via western blot analysis of serum samples. Results were compared with those of an immunofluorescence assay (IFA) for FCoV-specific antibody and correlated with health status. RESULTS: Healthy IFA-seronegative cats were seronegative for antibodies against the 7b protein. Some healthy cats with detectable FCoV-specific antibodies as determined via IFA were seronegative for antibodies against the 7b protein. Serum from cats with FIP had antibodies against the 7b protein, including cats with negative results via conventional IFA. However, some healthy cats, as well as cats with conditions other than FIP that were seropositive to FCoV via IFA, were also seropositive for the 7b protein. CONCLUSIONS AND CLINICAL RELEVANCE: Expression of the 7b protein, as indicated by detection of antibodies against the protein, was found in most FCoV-infected cats. Seropositivity for this protein was not specific for the FCoV virulent biotype or a diagnosis of FIP.  相似文献   

17.
BACKGROUND: The detection of typical lesions and feline coronavirus (FCoV) antigen in tissues is the only conclusive method for making a diagnosis of feline infectious peritonitis (FIP). A positive result using Tru-cut biopsy (TCB) and fine-needle aspiration biopsy (FNAB) has high diagnostic specificity, but information about the capacity of these techniques to correctly identify cats with FIP lesions is not available. OBJECTIVES: The diagnostic sensitivity of TCB and FNAB for detecting liver and kidney histologic lesions caused by FIP was evaluated. METHODS: TCB and FNAB specimens collected mainly at necropsy from 25 cats with FIP were analyzed. Diagnostic sensitivity was calculated on the basis of the number of false-negative and true-positive specimens, compared with the number of organs bearing histologic lesions of FIP. RESULTS: Diagnostic sensitivity was higher for hepatic TCB (64%) and FNAB (82%) than for renal (39% and 42%, respectively) procedures. A high percentage of renal cytologic and TCB specimens were inadequate. Combined analysis of TCB and FNAB specimens collected from the same organ increased the diagnostic sensitivity for liver (86%) and kidney (48%). The sensitivity of immunohistochemical/cytochemical analysis was low (11-38% depending on the technique), probably due to variable distribution of feline coronavirus in the lesions. CONCLUSION: Biopsy of liver and kidney can correctly identify FIP lesions. However, false-negative results or inadequate samples occur with moderate frequency, especially for immunochemical analysis. Diagnostic sensitivity may be increased when both TCB and FNAB specimens from the same organ are examined.  相似文献   

18.
19.
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.  相似文献   

20.
Although known that purebreed cats are more likely to develop feline infectious peritonitis (FIP), previous studies have not examined the prevalence of disease in individual breeds. All cats diagnosed with FIP at a veterinary teaching hospital over a 16-year period were identified. Breed, sex and reproductive status of affected cats were compared to the general cat population and to mixed breed cats evaluated during the same period. As with previous studies sexually intact cats and purebreed cats were significantly more likely to be diagnosed with FIP; males and young cats also had a higher prevalence of disease. Abyssinians, Bengals, Birmans, Himalayans, Ragdolls and Rexes had a significantly higher risk, whereas Burmese, Exotic Shorthairs, Manxes, Persians, Russian Blues and Siamese cats were not at increased risk for development of FIP. Although additional factors doubtlessly influence the relative prevalence of FIP, this study provides additional guidance when prioritizing differentials in ill purebreed cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号