首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greenhouse experiment was conducted to evaluate the effects of foliarly-applied Humic Acid (HA) and Salicylic Acid (SA) on strawberry (Fragaria × Ananassa cv. Camarosa). On average, HA applications, regardless of concentration, increased overall yield, Soluble Solids Concentrations (SSC), Titratable Acidity (TA), vitamin C, red tone (a*), leaf potassium (K), phosphorus (P), calcium (Ca) and magnesium (Mg) while had no effect on pH and fruit luminosity (L*). In contrast, fruit from the untreated control tended to have higher Total Antioxidant Capacity (TAC) and SSC: TA ratio than HA-treated plants. Application of SA significantly increased yield, vitamin C, SSC, SSC: TA ratio, TAC, a*, leaf P and Ca while had no effect on TA, fruit size, L* and pH. In general, application of either HA at 25 mg L1 or SA at 2 mM resulted in better strawberry performance than did other rates of these compounds.  相似文献   

2.
Salicylic acid (SA) occurs naturally in plants at low concentrations. Previous studies reported a vast range of responses after SA application on plants. Nickel (Ni) as an essential element for plant growth and development has been proven to have positive impact on overall plant life cycle. To evaluate influence of these two compounds on strawberry plants cv. ‘Pajero’ this study was carried out as a 3 × 4 factorial in a completely randomized design in greenhouse conditions. Treatments included SA at 0, 1, 2, and 3 mM and nickel sulfate (NiSO4) at 0, 150 and 300 mg L?1 concentration. It seems that treatments had promoting effects on measured parameters as 2 mM of SA increased root and shoot fresh and dry weight, concentration of anthocyanins and poliphenolics of fruits significantly, 3 mM of this phytohormone caused augmentation of vitamin C content of fruits. Nitrogen and nickel concentration within leaves and fruits were affected after SA treatments. 150 mg L?1 of nickel solution promoted total yield, root dry weight and nitrogen concentration of fruits. Worth mentioning, beneficial effects of such treatments were higher when applied together. Further research is needed before recommendation on other cultivars and commercial use.  相似文献   

3.
Salinity has deleterious effects on plant growth and development through membrane stability, photosynthetic activity, protein content, and ionic composition; however, salicylic acid (SA) could restore these properties in plants. The objective of this study was to determine the ameliorative effects of SA as foliar pre-treatments on membrane permeability, proline and protein contents, chlorophyll a, b and total chlorophyll and ionic composition of strawberry cv. ‘Camarosa’ under saline conditions. Membrane permeability and proline content significantly increased and protein and chlorophyll contents significantly decreased by 6 mS cm?1 application without SA treatment compared with the control (2 mS cm?1) treatment. Membrane permeability decreased from 6.9 in 0 mM SA treatment to 5.2 by application of 1.0 mM SA under saline conditions and same to the control (5.2). Compared with 0 mM SA treatment, the average increases of proline and protein contents were 66.7% in 0.25 mM SA treatment and 62.2% in 0.1 mM SA treatment in 6 mS cm?1 level, respectively. Chlorophyll b and total chlorophyll significantly increased by 0.25 mM SA treatments under saline conditions. The lowest and the highest chlorophyll b and total chlorophyll were obtained from 0 mM SA treatment (19.6 and 44.5 mg L?1) and 0.25 mM SA treatment (28.6 and 52.9 mg L?1) in 6 mS cm?1 salinity level. Ionic compositions of leaves were significantly affected by salinity and SA treatments. Nitrogen in 1.0 mM SA treatment and P contents of leaves in 0.1 mM SA treatment significantly increased but Na and Cl contents of leaves significantly decreased by SA treatments in 6 mS cm?1 salinity level. The results of this study were clearly indicated that the SA application on strawberry plants could ameliorate the deleterious effect of salt stress on membrane permeability, proline, protein, and chlorophyll contents. Therefore, SA treatment could offer an economic and simple application to salinity stress.  相似文献   

4.
Orange fruits of two blood varieties (Tarocco and Moro) were stored at 8 degrees C and 22 degrees C for 85 and 106 days, respectively, and analyzed periodically for standard quality parameters (total soluble solids, total acidity, ascorbic acid, juice yield, and rind color) and sensory influencing parameters (anthocyanins, and total and free hydroxycinnamic acids). A decrease in total acidity (TA) and juice yield during storage was observed for both cultivars; total soluble solids (TSS) increased only in the Tarocco oranges stored at 8 degrees C. The increase in TSS observed for Tarocco and the simultaneous decrease in TA in both varieties resulted in a higher maturity index (TSS/TA) for the two cultivars. No loss of vitamin C was noted in Tarocco orange at either temperature, whereas a sharp reduction in vitamin C occurred in the first 50 days of storage for Moro. A significant increase in anthocyanin content was observed in Tarocco and Moro stored at 8 degrees C. Overlong storage induces extensive hydrolysis of hydroxycinnamic derivatives to free acids in Moro orange and these, in turn, could develop the malodorous vinylphenols.  相似文献   

5.
The objective of this study was to determine the effect of foliar salicylic acid (SA) applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. The study was conducted in pot experiments under greenhouse conditions. Cucumber seedlings were treated with foliar SA applications at different concentrations (0.0, 0.25, 0.50, and 1.00 mM). Salinity treatments were established by adding 0, 60, and 120 mM of sodium chloride (NaCl) to a base complete nutrient solution. The SA was applied with spraying two times as before and after transplanting. Salt stress negatively affected the growth, chlorophyll content and mineral uptake of cucumber plants. However, foliar applications of SA resulted in greater shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight as well as higher plants under salt stress. Shoot diameter and leaf number per plant increased with SA treatments under salt stress. The greatest chlorophyll content was obtained with 1.00 mM SA treatment in both saline and non-saline conditions. Leaf water relative content (LWRC) reduced in response to salt stress while SA raised LWRC of salt stressed cucumber plants. Salinity treatments induced significant increases in electrolyte leakage. Plants treated with foliar SA had lower values of electrolyte leakage than non-treated ones. In regard to nutrient content, it can be interfered that foliar SA applications increased almost all nutrient content in leaves and roots of cucumber plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application. Based on these findings, the SA treatments may help alleviate the negative effect of salinity on the growth of cucumber.  相似文献   

6.
Benzothiadiazole (BTH) enhanced the accumulation of soluble and cell-wall-bound phenolics in strawberry leaves and also improved the resistance to powdery mildew infection under greenhouse conditions. The most pronounced change was seen in the levels of ellagitannins, which increased up to 2- to 6-fold 4 days after the BTH application, but persisted only in the inoculated plants. The induction of phenolic metabolism by BTH was also reflected in the fruits, several compounds being increased in inoculated, BTH-treated plants. Basal salicylic acid (SA) content was high in strawberry leaves, but increased in a similar fashion to other phenolics after the treatments. Several phenolic compounds were identified in strawberries for the first time. For example, ellagic acid deoxyhexose, three agrimoniin-like ellagitannins, sanguiin H-10- and lambertianin C-like ellagitannins in the leaves, ellagic acid, p-coumaric acid, gallic acid, and kaempferol hexose in the cell-wall-bound fraction of the leaves, and kaempferol malonylglucoside in the fruits. The findings show that BTH can enhance the accumulation of phenolics in strawberry plants which may then be involved in the BTH-induced resistance to powdery mildew.  相似文献   

7.
Abstract

Field trials were performed to investigate the effects of humic acid (HA) and multinutrient foliar fertilizer “Micro Power” (MP) coupled with farmer’s practices ( FP ), addressed in single and/or split dose frames at different plant phenological stages on various vegetative, reproductive, and physiological attributes of citrus trees (Citrus reticulata cv. kinnow mandarin). The results exhibited a profound response of treatments on various growth parameters (32.5% increase in plant height, 22.2% increase in fruit set branch?1, 5.25% decrease in fruit drop percentage, 89.81% increase in fruit yield (kg), etc.) of citrus trees when compared to the control (FP). Likewise, a significant positive response was observed regarding various plant physiological parameters (leaf nutrients, total chlorophyll content, etc.) and physicochemical characteristics (ascorbic acid, total sugars, etc.) of citrus fruits. This study confirmed the reproducibility of HA and MP applications to improve the yield/quality of citrus and can lead to an organically sustainable citriculture.  相似文献   

8.
This study aimed to investigate the response of vegetative growth, yield, and some metabolic constituents of maize grains cv. Single Cross 124 to foliar applications of salicylic acid (SA; 100, 200, and 400 mg L?1) and thiourea (TU; 500, 1000, and 1500 mgL?1), two bioregulators, either alone or in combination. The foliar application of SA and TU alone significantly increased stem diameter, number of leaves?/?plant, leaf area, total dry weight?/?plant, leaf area index, net assimilation rate, specific leaf weight, and yield (i.e., ear length, ear diameter, number of grains?/?row, number of rows?/?ear, 100-grain weight, grain yield?/?plant, grain yield?/?fed (1 feddan = 4200 m2), harvest index, and shelling percentage) by increasing SA or TU concentrations up to 200 and 1500 mg L?1, respectively. Salicylic acid and TU, when applied alone, significantly improved the nutritional value and quality of maize grains by increasing crude protein, total soluble sugars, total free amino acids, and total soluble phenols.  相似文献   

9.
A trial was conducted on the effect of salinity and method of fertilizer application on two varieties of cultivated tomato, i.e. VF 145 and Edkawi. Salinity ranged from 0.52 to 11 dS/m, and fertilizer was applied by either broadcasting in small doses or added with irrigation water. Weight of shoots, fruit yield, and sodium (Na), calcium (Ca), chloride (Cl), free proline contents in both developing and mature leaves, and total soluble salts and ascorbic acid contents in fruits were taken as evaluating criteria. Salinity depressed both growth and fruit yield, and simultaneously increased ion concentration in plant leaves. Sodium and Cl accumulated with salinity, being greater in mature leaves, while proline accumulation in developing leaves was much higher than in mature leaves. Total soluble salts and ascorbic acid were not affected. Liquid fertilization resulted in higher fruit yields than that obtained with the solid fertilizer treatments as well as better alleviating the depressive effects of salinity on plant growth and yield, especially at the lower salinity level where it was more beneficial to fruit yield. The VF 145 tomato variety was found a bit more sensitive to salinity than the Edkawi variety, and was affected differently by salinity, regarding both the yield and the pattern of organic and inorganic ion accumulation. Our results suggest that there exists a physiological mechanism that is involved in the salt tolerance difference observed between the two varieties that needs to be investigated.  相似文献   

10.
Plant growth promoting effects of Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37 and Kocuria erythromyxa EY43 were tested on strawberry cv. ‘Fern’ in terms of fruit yield, growth, chlorophyll reading value, leaf relative water content (LRWC), membrane permeability and ionic composition of leaves and roots under saline conditions. Compared with 0 mM sodium chloride (NaCl) treatment, the average decrease of yield and LRWC were 51.6% and 21.0%, respectively, when 35 mM NaCl was applied. However, EY30, EY37, and EY43 treatments under saline condition (35 mM NaCl) significantly increased fruit yield (54.4%, 51.7% and 94.9%) compared with 35 mM NaCl treatment without plant growth promoting bacteria (PGPB). The LRWC increased from 72.0% in 35 mM NaCl treatment to 88.4%, 86.6%, 84.2%, 83.5%, and 86.2% by EY2, EY6, EY30, EY37, and EY43 applications, respectively. The lowest membrane permeability among the bacterial strains was obtained from EY37 treatment (37) while it was 33 and 58 in 0 mM NaCl and 35 mM NaCl treatments, respectively. The concentration of all plant tissue nutrients investigated [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] with the exception of root phosphorus (P) and Mg concentration significantly decreased with 35 mM salt treatment. Nitrogen content of leaves varied between 3.04 and 3.14% in bacterial treatments under saline conditions while it was 2.71% in 35 mM NaCl treatment. In contrast sodium (Na) and chloride (Cl) of leaves and Cl content of roots were significantly decreased by root inoculation with all bacterial treatments in comparison to 35 mM NaCl treatment with no inoculation. Treatment with Bacillus EY30, Staphylococcus EY37 and Kocuria EY43 to strawberry plants can ameliorative the deleterious effect of salt stress on fruit yield, growth and nutrition. These results demonstrate that PGPB treatment could be offer an economic and simple means to increased plant resistance for salinity stress.  相似文献   

11.
The present study was undertaken to investigate the effect of soil contamination with heavy metals on physico-biochemical properties of tomato fruit. The deleterious effect of soil contamination on the quality and quantity of tomato plant yield was determined. Harvested tomato fruit characteristics including fruit length, diameter, volume and fresh and dry weights, total soluble solids, titratable acidity, lycopene and carbohydrates contents were measured in tomato fruits cultivated in soil contaminated with industrial effluents. In addition, some secondary metabolites (total phenols and flavonoids), micro- and macronutrients were also detected. Residual heavy metals (Cd, Co, Ni and Pb) were examined in the harvested fruits. The obtained results were compared with those of tomato fruits cultivated in non-contaminated soil. Results demonstrate that soil contamination with heavy metals have a negative effect on tomato fruits characteristics, titratable acidity, total soluble solids, lycopene, ascorbic acid, micro-elements and carbohydrates content. Moreover, fruits originated from plants grown in contaminated soil possess high phenols and flavonoids contents and higher heavy metals content compared to control fruits. It is recommended that fruits cultivated in that area not to be eaten by large quantities, to avoid excessive accumulation of heavy metals in the human body.

Abbreviations: (AsA): Ascorbic acid; (DTPA): diethylenetriamine penta acetic acid; (TA): Titratable acidity; (TSS): Total soluble solids  相似文献   

12.
The appropriate tissue and sampling time for the Greek wine-grape variety ‘Agiorgitiko’ nutritional diagnosis was to be evaluated by relating leaf tissue nutrient contents with the yield and must potassium (K), pH, total soluble solids (TSS), and titratable acidity (TA). At bloom, véraison and harvest, leaves opposite the basal cluster (LOBC) and youngest mature leaves (YML) were harvested, and soil and berry samples were collected from six vineyards in Nemea, Greece. Petiole K concentration of the LOBC was found to be better correlated with the yield, TSS, TA and must K than the blade or whole leaf K content; the contrary was observed in nitrogen (N), phosphorus (P), calcium (Ca), and magnesium (Mg) concentrations. The LOBC reflected better the nutritional status of the variety compared to the YML. Regarding the sampling time, petiole K presented stronger correlations with yield and must K, TSS, TA at harvest whereas N and P at bloom and véraison.  相似文献   

13.
A study was carried out to explore leaf traits analysis of three strawberry varieties under different drought conditions in Malaysian upland environment in 2013. Plants of three strawberry varieties were grown in three different soil moisture levels including 25 percent (severe stress), 50 percent (mild stress), and 75 percent (normal irrigation) and remained for 60 days as a duration of stress to get appropriate observations of plants to drought stress. Significant differences were observed among varieties, treatments, and duration of drought stress in different traits (P < 0.05). Leaf area, leaf number, chlorophyll content, chlorophyll stability index, leaf moisture, leaf expansion rate, and leaf yield were diminished under stress especially when treated with 25 percent of soil moisture level and 60 days of duration. Moreover, there were remarkable differences among plants in terms of leaf thickness in 25 percent, 50 percent, and control. Severe stress reduced leaf thickness significantly compared to other treatments.  相似文献   

14.
The objective of this study was to investigate the possibility of predicting the concentrations of total nitrogen (N), nitrate-nitrogen, and ascorbic acid in spinach (Spinacia oleracea) leaves using the pocket chlorophyll meter SPAD-502 (Minolta, Japan) in a pot experiment in a greenhouse. Spinach plants were grown in plastic pots filled with 0.5 kg of brown soil per pot with urea as N fertilizer at 0, 30, 60, 120, and 240 mg N/kg soil. SPAD readings of the two uppermost fully expanded leaves were recorded 18, 25, and 32 d after sowing and at harvesting (34 d). Dry-matter biomass and total N concentrations in leaves and roots, and NO3-N, and ascorbic acid concentrations in leaves, were measured after harvesting. SPAD readings showed continuous reduction with increasing growth period irrespective of N applications. SPAD readings at harvest were significantly correlated with total N, leaf dry weight (DW), and NO3-N concentration. However, this correlation did not exist between SPAD readings and ascorbic acid concentrations in leaves. The above results suggest that it is possible to apply SPAD readings to estimate NO3-N concentrations in spinach plants, and that they may be applied for field assessments in decision-making and operational nutrient-management programs for the plant. Furthermore, the SPAD method may also be useful for ascertaining the harvest time. The results suggest that treatment with 120 mg N/kg significantly improved both leaf yields and leaf quality (i.e., leaf nitrate-N concentration and ascorbic acid). Too little and too much N fertilizer was not good for yield or spinach quality.  相似文献   

15.
Plant growth promoting effects of Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1 and Bacillus M3 were tested on strawberry cv. ‘Aromas’ based on yield, number, and weight of fruit, leaf area, vitamin C, total soluble solids (TSS), acidity and ionic composition of leaves under calcareous soil conditions. The results demonstrated that all of bacterial treatments significantly affected all parameters tested. The best result was obtained from 637Ca treatment, which significantly increased fruit yield, number and weight about 47.5, 34.7, and 9.4%, respectively, compared to control. Except for magnesium (Mg) and zinc (Zn) in the leaf, the concentrations of all plant tissue nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), copper (Cu), manganese (Mn), boron (B)] were significantly increased by bacterial treatments tested. The data in the present study showed that all bacterial treatments including Alcaligenes 637Ca, Staphylococcus MFDCa-1, MFDCa-2, Agrobacterium A18, Pantoea FF1, and Bacillus M3 to strawberry plants can ameliorative the deleterious effect of high lime on fruit yield, growth and nutrition. These results suggested that plant growth-promoting Rhizobacteria (PGPR) treatments could be offer an economic and simple means to increased plant resistance for high calcareous soil conditions.  相似文献   

16.
The objective of this study was to determine the effects of foliar salicylic acid (SA) on salt tolerance of sweet basil seedlings by examining growth, photosynthetic activity, total osmoregulators, and mineral content under salinity. Salinity treatments were established by adding 0, 60, and 120 mM sodium chloride (NaCl) to a base nutrient solution. The addition of 60 and 120 mM NaCl inhibited the growth, photosynthetic activity, and nutrient uptake of sweet basil seedlings, and increased the electrolyte leakage and the plant contents of proline and Na. Sweet basil seedlings were treated with foliar SA application at different concentrations (0.0, 0.50, and 1.00 mM). Foliar applications of SA led to an increase in the growth, chlorophyll content, and gas exchange attributes. With regard to nutrient content, it can be inferred that foliar SA applications increased almost all nutrient content in leaves of sweet basil plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application.  相似文献   

17.
Abstract

An experiment was conducted to substitute mineral fertilizers with biofertilizers in strawberry to work out the yield, quality of strawberry and soil fertility. A 25% substitution of mineral fertilizer with biofertilizer increased the number of fruits/plant along with improving Juice content (89.55%), Total soluble solids (10.35°B), total sugar (6.69%), ascorbic acid (43.80?mg 100?g?1), anthocyanin content (81.05?mg 100?g?1), total phenol (5.97?mg Gallic acid equiv. g?1), flavonoids (0.12?mg g?1) and antioxidant capacity (2.13?µmol. Trolox equiv. 100?g?1). The available N and K content in post-harvest soils were improved significantly with 75% RDF + Azospirillium @ 2?g plant?1 + PSB @ 2?g plant?1 + topdressing of 25% K treatments (200.10 and 211.70?kg ha?1, respectively). Viable count of soil microorganisms (Bacteria, actinomycetes and fungi) was also estimated maximum (4066, 190 and 11.33?×?104 cfu g?1?dry soil, respectively) with substitution of 25% of mineral fertilizer either with Azotobacter or Azospirillum.  相似文献   

18.
Cadmium (Cd) is a toxic heavy‐metal pollutant in the environment. Salicylic acid (SA) is an essential component of plant resistance to pathogens and also plays an important role in mediating plant responses to some abiotic stresses. In the present investigation, the potential effects of SA in alleviating Cd toxicity during seedling stage of rice were studied. Seeds of rice (Oryza sativa L. cv. Xiushui 11) were sterilized and divided into two groups. Half of the seeds were presoaked in 0.1 mM SA solution for 24 h, then both groups were allowed to germinate under various Cd concentrations for 7 d. Cadmium treatments caused a gradual decrease in vigor index, root length, α‐amylase activity, and the mitotic index of root tips. However, pretreatment with SA partially alleviated the negative effect of Cd on germination parameters and increased enzyme activity and mitotic index. Cadmium uptake by seedlings increased with increasing Cd concentration and followed Michaelis‐Menten kinetics. Salicylic acid pretreatment of seeds influenced the Cd level in the seedlings by decreasing Vmax. The results suggest that SA plays a positive role in rice‐seed germination and early seedling growth by protecting it against Cd toxicity.  相似文献   

19.
ABSTRACT

The response of ‘Kurdistan’ and ‘Paros’ strawberry cultivars to potassium silicate (K2O3Si) under sodium chloride (NaCl) salinity stress was studied in terms of vegetative parameters, sodium (Na) and potassium (K) content and fruit quality. K2O3Si could recover dry mass distribution of NaCl-stressed strawberry organs. Kurdistan cultivar tended to keep higher dry weight of leaves to maintain its photosynthetic apparatus activity. Inhibitory impact of K2O3Si on Na uptake of leaf was more obvious than root. Implementation of K2O3Si in some cases increased Total Soluble Solid (TSS) and Titratable Acidity (TA), which are the main factors determining taste of strawberry fruit. Furthermore, phenols and flavonoids were increased in Paros cultivar by effect K2O3Si under saline and non-saline conditions, respectively. Overall, our data suggest that silicon supply in strawberry plants not only could be used as a routine strategy to maintain growth and yield under salinity but also it could be beneficial for improvement of fruit quality attributes and health-related constituents.

Abbreviations: ANOVA: Analysis of Variance; CRD: Completely Randomized Design; DPPH: 1,1-Diphenyl-2-picryl-hydrazyl; FF: Fruit Firmness; LSD: Least Significant Difference; PAL: Phenyl Alanine Ammonia Lyase; ROS: Reactive Oxygen Species; TSS: Total Soluble Solid; TAA: Total Antioxidant Activity; TA: Titratable Acidity; TAC: Total Anthocyanin; TF: Total Flavonoids; TP: Total Phenolics;  相似文献   

20.
Abstract

We investigated the effect of foliar application of potassium nitrate (KNO3) and zinc sulfate (ZnSO4) on the fruit quality of pomegranate (Punica granatum L. cv. Malas-E–Torsh in Saveh). Potassium was applied as KNO3 at concentrations of 0%, 0.25%, and 0.5% and zinc was applied as ZnSO4 at concentrations of 0%, 0.5%, and 1% in a completely randomized block design. To determine the effect of the treatments on fruit quality, we measured fruit weight, peel thickness, aril diameter, phenol content of the juice, pH, total soluble solids (TSS), titratable acidity (TA), and antioxidant capacity. Foliar application of KNO3 significantly increased fruit weight, 100 aril weight, peel weight, peel thickness, TTS, and antioxidant capacity. In contrast, pH, TA, TSS/TA, and phenol content of the juice were not influenced by foliar application of KNO3. ZnSO4 significantly increased fruit weight, aril diameter, and phenol content of the juice. KNO3 1% and ZnSO4 0.5% were identified as the most appropriate treatments in improving quality and quantity of pomegranate. The fatty acid profile of the pomegranate oil was primarily composed of punicic acid, linoleic acid, oleic acid, palmitic acid, and stearic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号