首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 593 毫秒
1.
为了分析不同矿化度微咸水滴灌对土壤水盐分布及西葫芦生长的影响,进行了西葫芦不同灌溉水矿化度条件下微咸水膜下滴灌温室种植试验,试验设3个矿化度水平,分别为1.7、3.5和5.1 g/L。试验结果表明:采用不同矿化度微咸水滴灌后土壤水分分布区域不同,在二维空间内大致呈半椭圆状,且矿化度越高,区域越窄深,矿化度越低,区域越宽浅;生育期结束后,各处理0~20 cm土层土壤电导率均低于土壤初始电导率,1.7 g/L处理的积盐区主要集中在20~30 cm土层,3.5 g/L处理和5.1 g/L的积盐区主要集中在30~40 cm土层,说明盐分被淋洗至湿润锋附近,且灌溉水矿化度越高,该土层土壤的电导率越大;随着灌溉水矿化度的增大,西葫芦的出苗率降低,出苗时间延长,西葫芦的叶面积指数和产量也会受到一定程度的抑制作用。  相似文献   

2.
【目的】探索微咸水-改良材料协同调控对碱化土壤水盐运移的影响。【方法】基于一维垂直土柱入渗试验研究不同微咸水淋洗结合不同改良材料对碱化土壤水盐运移的影响。【结果】水分入渗速率和累积入渗量表现为“磷石膏”处理最大,随着淋洗水矿化度的增加,累积入渗水量和湿润锋推进深度呈增加趋势,但各处理间的差异变小。与其他处理相比,“磷石膏”和“硫酸亚铁+柠檬酸”处理在1.2 g/L矿化度水淋洗条件下可显著降低0~40 cm土层的土壤全盐量,但在3.6 g/L矿化度水淋洗条件下则会增加上层土壤盐分量。1.2 g/L和2.4 g/L矿化度水淋洗条件下,“磷石膏”处理显著降低了0~30 cm土层的土壤Na+、Cl-、HCO3-+CO32-等有害盐分离子量,而在3.6 g/L矿化度水淋洗下,“硫酸亚铁+柠檬酸”处理在降低0~30 cm土层的HCO3-+CO32-、Na+量以...  相似文献   

3.
【目的】探讨积水入渗条件下矿化度对酸性红壤水盐运移特征的影响,为我国南方非常规水合理利用提供参考。【方法】采取土柱入渗试验,以蒸馏水灌溉(CK)为对照,探究不同矿化度水(1、2、3、5、10 g/L)入渗下南方红壤水分动态运移、水盐分布及土壤pH值变化,并量化矿化度与入渗模型参数关系。【结果】与CK相比,1~10g/L处理抑制红壤水分入渗,同一时刻累积入渗量表现为CK1 g/L处理5 g/L处理2 g/L处理3 g/L处理10 g/L处理。5 g/L处理持水能力显著高于其他处理(p0.05),单位时间湿润锋运移距离小于CK和1、2 g/L处理。Kostiakov公式较Philip方程能更精确描述1~3 g/L处理红壤累积入渗量随时间变化,矿化度大于3 g/L时则相反。红壤累积入渗量与湿润锋运移距离符合线性关系,红壤持水能力、入渗模型参数与矿化度关系均满足三次多项式(R20.95,RMSE0.06)。1~5 g/L处理可使5~25 cm土壤平均含水率增加0.09%~4.61%,各处理土壤EC值和Na~+、Cl~-质量分数随深度增加呈减小趋势,矿化度对25~40cm范围土壤盐分的影响小于上层土壤。与CK相比,1~5g/L处理加剧红壤酸化,10 g/L处理则增加土壤pH值。【结论】矿化度对土壤酸化和分散作用程度不同是造成红壤水盐运移特征差异的原因,南方红壤区非常规水安全利用需综合考虑矿化度作用下土壤水盐、酸碱环境变化。  相似文献   

4.
为了分析不同微咸水矿化度和滴头流量对滴灌土壤湿润体的影响,在室内进行了不同微咸水矿化度(0、1.7、3、4和5 g/L)和不同滴头流量(7、9和11 m L/min)条件下滴灌入渗试验。试验结果表明:不同流量和不同矿化度下滴灌湿润锋形状相似,均为1/4椭圆形,湿润锋随着时间增大而增大;滴头流量越大,水平湿润锋推进越快,随着矿化度增大,水平湿润锋最大推进距离先减小后增大,垂直湿润锋最大推进距离先增大后减小;不同微咸水矿化度和滴头流量下土壤湿润锋均可采用椭圆方程拟合,并在分析微咸水矿化度、滴头流量和时间对椭圆方程参数A和B的影响基础上,建立了微咸水矿化度和滴头流量耦合条件下滴灌土壤湿润锋动态变化模型,并采用试验数据进行验证,结果表明训练集模型的MAE和RMSE分别为0.390和0.549,验证集模型的MAE和RMSE分别为0.438和0.635,表明模型有较高的计算精度,可以用于微咸水矿化度和滴头流量耦合下的湿润体动态模拟。  相似文献   

5.
以高(亚)油酸量的食用向日葵为试验材料,研究向日葵生长指标、生物量、产量和营养品质,并结合土壤盐分的时空变化,在盆栽条件下探讨了不同矿化度微咸水滴灌对食用葵花的生长影响。结果表明,土壤含盐量会随着灌溉水矿化度的增加而增加,但在0~30cm土层内并未形成明显的积盐。对于生长指标,微咸水滴溉对株高的影响大于对茎粗的影响,矿化度为3.5g/L时株高显著增大。各处理的根冠比均经过增长—下降—平稳的变化过程,且现蕾至开花期是微咸水灌溉影响最为显著时期。当微咸水矿化度处于较低水平(≤3.5g/L)时,其对葵花产量及产量因素的影响较小。同时,微咸水可以提高和改善作物籽实的营养品质,以矿化度2~3.5g/L增幅最大。因此,在河套灌区等半干旱区,建议葵花微咸水滴灌的临界矿化度为3.5g/L。  相似文献   

6.
咸淡水交替灌溉下土壤水盐分布与玉米吸水规律研究   总被引:7,自引:0,他引:7  
为探明不同矿化度微咸水和地下水在不同交替灌溉方式下对土壤水盐分布和玉米吸水规律的影响,采用3种矿化度(2. 0、3. 5、5. 0 g/L)微咸水和地下水(1. 1 g/L)在2种交替灌溉方式("地下水-微咸水"、"地下水-微咸水-微咸水")下进行了大田试验。结果表明,在同一土壤深度下,土壤含水率和电导率随着微咸水矿化度升高而升高,"地下水-微咸水-微咸水"交替灌溉方式下的含水率和电导率较高;在不同时期各处理的土壤纵向含水率均表现出先下降、后上升的规律,在拔节期和抽穗期各处理的土壤纵向电导率表现出先下降、后上升的规律,在灌浆期表现出上升、下降、再上升的规律。通过氢氧稳定同位素分析得出,不同矿化度微咸水和不同交替灌溉方式组合下,玉米在拔节期、抽穗期和灌浆期的主要吸水深度分别为:0~20 cm、20~40 cm和0~20 cm,不同时期主要吸水深度的平均贡献率随着微咸水矿化度的升高而减小,"地下水-微咸水-微咸水"交替灌溉方式的平均贡献率较低。矿化度2. 0 g/L微咸水与地下水在"地下水-微咸水"的交替灌溉方式下得到的产量最高,达到1. 54 kg/m~2。  相似文献   

7.
新疆滴灌技术已在小麦作物上推广应用,但滴灌小麦农田大多受盐碱危害,为研究滴灌小麦水盐分布特点,通过测坑试验,分析了小麦各生育期土壤剖面上的水盐分布,结果表明,小麦滴灌条件下土壤水盐分布垂直方向受影响深度主要在0~60cm土层,在0~20cm土层水盐变化最为剧烈。土壤盐分分布变化范围和水分变化范围基本吻合。在0~100cm土壤剖面内,土壤含水量的分布呈随土层深度呈先降低后升高的趋势,而土壤盐分则基本上呈现先增加后减少再增加的分布特点。  相似文献   

8.
磁化微咸水矿化度对土壤水盐运移的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用300 mT磁感应强度恒定磁水器对不同矿化度微咸水(0.14、2、3、4、5 g/L)进行磁化处理,并进行一维垂直土柱入渗试验,研究磁化微咸水矿化度对土壤水盐运移的影响。结果表明:微咸水磁化处理后,土壤入渗速率及湿润锋迁移速率显著降低,湿润体含水率显著提高;微咸水矿化度对磁化效果具有显著影响,磁化微咸水矿化度为3 g/L时,相同入渗时间累积入渗量和湿润锋深度相对减少量最大,湿润体含水率相对增加量最多。磁化微咸水入渗对Philip和Green-Ampt入渗公式参数有显著影响,相同矿化度的磁化微咸水土壤吸渗率S、饱和导水率K_s及湿润锋处吸力hf均小于未磁化微咸水;磁化与未磁化微咸水相对吸渗率ΔS及相对饱和导水率ΔK_s与矿化度之间均呈现较好的二次多项式关系,在矿化度为3 g/L时,相对吸渗率ΔS及相对饱和导水率ΔK_s均达到最大。磁化微咸水能够提高土壤持水能力,相同土层深度的土壤含水率显著增加;微咸水磁化处理后,脱盐率显著提高,土层深度0~20 cm磁化微咸水脱盐率均大于未磁化微咸水,矿化度为3 g/L的磁化微咸水磁化脱盐强度最大,相对脱盐效果更好。  相似文献   

9.
微咸水灌溉对土壤EC值及冬小麦产量的影响   总被引:2,自引:1,他引:1  
通过测坑试验,在"咸淡淡"、"淡咸淡"、"淡淡咸"3种微咸水-淡水交替灌溉方式和1、3、5 g/L三种微咸水矿化度水平条件下,监测并分析了各生育期灌水前后及生育期结束后土壤0~20、20~40、40~60 cm土层EC值,测定并分析了冬小麦产量及其构成因子。结果表明,整个生育期内,各层土壤EC值呈波动周期性变化趋势;微咸水-淡水交替灌溉方式主要影响土壤盐分的垂直分布,盐灌越靠前,盐分聚集层越深;灌水矿化度主要影响土壤总体EC值,随灌水矿化度增加,土壤总EC值变大。冬小麦产量和产量构成因子随灌水矿化度升高而呈减小的趋势,冬小麦的产量构成因子及产量在"咸淡淡"与"淡淡咸"2种轮灌方式下差异性显著,表现为"咸淡淡""淡淡咸"。  相似文献   

10.
以棉花各生育期适宜土壤含水率上、下限差值为灌水控制指标,设置3水平灌水处理,开展膜下滴灌大田试验,分析研究适宜试验区棉花生长、水分利用效率高的灌溉制度及膜下滴灌棉田土壤水盐运移规律。结果表明:适宜土壤含水率上、下限差值形成的灌溉制度,决定了土壤水盐运移规律、盐分分布和积累特征。总体表现为:空间上土壤水分分布与滴灌带间距呈负相关系,盐分分布则相反,0~40 cm深度土壤水分在灌后重分布,盐分在滴灌水分的淋洗作用下定向运移,至湿润体边缘积聚。综合分析关键点与主根层的土壤水盐时间序列变化,T2处理(385 mm/18次)主根层0~40 cm深度水分处于棉花生长的适宜含水率范围,并形成淡化脱盐区,对盐分的调控最佳。T2处理棉田产量最高,为6 083 kg/hm~2,水分利用效率为1.05 kg/(mm·hm~2),为适宜的灌溉制度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号