首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many authors have attempted to explain the adaptive response of tropical plants to drought based on studies of water relations at the leaf level. Little attention has been given to the role of the xylem system in the control of plant water requirements. To evaluate this role, we studied the hydraulic architecture and water relations parameters of two tropical canopy trees with contrasting leaf phenologies: deciduous Pseudobombax septenatum (Jacq.) Dug and evergreen Ochroma pyramidale (Cav. ex lamb) Urban, both in the family Bombacaceae. The hydraulic architecture parameters studied include hydraulic conductivity, specific conductivity, leaf specific conductivity, and Huber value. Water relations parameters include leaf water potential, stem and leaf water storage capacitance, transpiration, stomatal conductance, and vulnerability of stems to cavitation and loss of hydraulic conductivity by embolisms. Compared to temperate trees, both species showed a pattern of highly vulnerable stems (50% loss of conductivity due to embolism at water potentials less than 1 MPa) with high leaf specific conductivities. The vulnerability of xylem to water-stress-induced embolism was remarkably similar for the two species but the leaf specific conductivity of petioles and leaf-bearing stems of the evergreen species, Ochroma (e.g., 9.08 and 11.4 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively), were 3.4 and 2.3 times higher, respectively, than those of the deciduous species, Pseudobombax (e.g., 2.64 and 5.15 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively). A runaway embolism model was used to test the ability of Ochroma and Pseudobombax stems to maintain elevated transpiration rates during the higher evaporative demand of the dry season. The percent loss of leaf area predicted by the runaway embolism model for stems of Pseudobombax ranged from 5 to 30%, not enough to explain the deciduous phenology of this tree species without analysis of root resistance or leaf and petiole vulnerability to embolism.  相似文献   

2.
树木水力结构特征季节变化规律研究   总被引:1,自引:0,他引:1  
在北京林业大学校园内选取侧柏、刺槐等11个针阔叶树种为研究对象,测定1a生枝条小枝水势及水力结构参数季节变化。研究表明:小枝水势及水力结构参数均具有季节变化规律。导水率与比导率季节变化规律基本相似,从树种材性上看均表现为:环孔材树种〉散孔材树种〉无孔材树种,而木质部栓塞化程度也表现为:环孑L材树种〉散孔材树种〉无孔材树种。枝条水势、导水率和比导率季节变化节律均与树木生长发育节律相一致,都表现出枝条木质化时期〉嫩枝生长期〉早春,而木质部空穴和栓塞化程度也存在着季节变化节律,且与比导率季节变化节律相反,即:早春〉嫩枝生长期〉枝条木质化时期。  相似文献   

3.
Ten healthy tree species with regular management were selected on the campus of Beijing Forestry University, and they belong to tall tree, shrub and liana, respectively. Water potential and hydraulic architecture parameters of one-year-old twigs were measured in sunny day in the last ten days of March to the middle ten days of May in 2002. The results show that the daily change in water potential of tree species examined appears convex, i.e. the water potential is higher in the morning and evening, and lower in the midday. The change trend of water potential is consistent among different months. The seasonal change trend of water potential appears lower in March than that in April and May. There is a similar relationship between the daily change trend of water potential and special conductivity in spring, i.e. the higher the water potential, the higher the special conductivity, but this trend of change is not entirely synchronic. The seasonal change of special conductivity of conifer species is not obvi  相似文献   

4.
Hydraulic architecture parameters, water relation parameters and wood anatomy were studied in roots and shoots of the flood-tolerant tree Annona glabra L. on Barro Colorado Island, Panama. Hydraulic conductivity, leaf specific conductivity, and Huber value were similar to the corresponding values for tree species living in non-flooded habitats. The vulnerability of stems to loss of hydraulic conductivity resulting from embolism was low (50% loss of conductivity at -3.3 MPa). The lowest leaf water potential measured in the field was about -1.0 MPa, indicating that A. glabra has a large margin of safety from embolism, which may provide protection against rare drought events, or may be an adaptation to brackish mangrove habitats. Low absolute conductivity of roots was compensated for by an increase in the number of roots. More than two-thirds of whole-plant resistance to water flow was located in the roots.  相似文献   

5.
Hydraulic properties of xylem in seven species of conifer were studied during late winter and early spring 1991. Vulnerability to cavitation and air embolism was investigated using hydraulic conductivity and acoustic techniques. Embolisms were induced in branches excised from mature trees by air-drying them in the laboratory. Both techniques gave comparable results indicating that they both assess the same phenomenon. Within a tree, vulnerability was related to the permeability of the xylem, the largest stems tended to cavitate before the smallest ones when water deficits developed in a branch. Interspecific comparisons showed large differences in the xylem water potential needed to induce significant embolism, values ranged from -2.5 MPa in Pinus sylvestris to -4 MPa in Cedrus atlantica, but these differences did not correlate with differences in the xylem permeability of the species. The vulnerability of a species to air embolism was found to be consistent with its ecophysiological behavior in the presence of water stress, drought-tolerant species being less vulnerable than drought-avoiding species.  相似文献   

6.
INTRODUCTIONShinozakifirstproposedthepipemodeltheoryin1964(Shinozaki,1964a,1964b).Inthistheory,thewholexylemsoftheplantisassumedasauniformpipe.Hebelievedthatperunitareaofleavesdependedonperunitofareaofthepipetogrowth.Thistheoryisagreedbyresearcherswhofoundthatthesectionareaofthexylemisdirectproportiontotheareaoftheleavesintheendofthexylem.Laterthistheorywasfoundverypracticalinestimatingtheleavesarea,understandingthegrowthandthedistributionofmaterialandenergyintrees(Shinozakig,Yoda,Hozum…  相似文献   

7.
Ecotypic variations in leaf conductance, soil-to-leaf hydraulic conductance, components of tissue water potential, hydraulic architecture parameters and xylem embolism were examined in greenhouse-grown two-year-old Aleppo pine (Pinus halepensis Mill.) seedlings from six origins representing the geographic range of the species in Italy. Cortical resin composition of the seedlings was also determined. Measurements were made on well-watered seedlings and on seedlings subjected to recurring severe drought. Drought-stressed seedlings had lower mean leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than well-watered seedlings. They also exhibited more negative osmotic potentials, higher relative water deficit at incipient plasmolysis, but a similar maximum modulus of elasticity. Drought-stressed seedlings showed a higher degree of xylem embolism, a lower Huber value, lower leaf specific conductivity and lower specific conductivity than well-watered seedlings. Drought-stressed seedlings of provenances from more xeric habitats (Tremiti, Porto Pino and Mottola) had greater leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than drought-stressed seedlings of provenances from more mesic habitats (Imperia, Otricoli and Vico del Gargano). They also showed higher osmotic adjustment and a lower degree of xylem embolism. Among provenances, there were no significant differences in hydraulic architecture parameters in response to the drought treatment; however, Tremiti and Porto Pino seedlings displayed smaller drought-induced reductions in specific conductivity and leaf specific conductivity, respectively, than seedlings from other provenances. These differences suggest that seedlings from xeric provenances, especially Tremiti, have greater resistance to desiccation than seedlings from mesic provenances. No clear association was found between terpene variability and the other traits investigated, although terpene composition was related to the geographical distribution of the provenances. We conclude that the drought-tolerance responses of Tremiti make it a more suitable provenance than the others for establishment on sites prone to severe soil water deficits.  相似文献   

8.
Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.  相似文献   

9.
Taneda H  Tateno M 《Tree physiology》2005,25(3):299-306
To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone.  相似文献   

10.
Domec JC  Pruyn ML 《Tree physiology》2008,28(10):1493-1504
Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.  相似文献   

11.
Fan DY  Jie SL  Liu CC  Zhang XY  Xu XW  Zhang SR  Xie ZQ 《Tree physiology》2011,31(8):865-877
Karst topography is a special landscape shaped by the dissolution of one or more layers of soluble bedrock, usually carbonate rock such as limestone or dolomite. Due to subterranean drainage, overland flow, extraction of water by plants and evapotranspiration, there may be very limited surface water. The hydraulic architecture that plants use to adapt to karst topography is very interesting, but few systematic reports exist. The karst area in southwestern China is unique when compared with other karst areas at similar latitudes, because of its abundant precipitation, with rainfall concentrated in the growing season. In theory, resistance to water-stress-induced cavitation via air seeding should be accompanied by decreased pore hydraulic conductivity and stem hydraulic conductivity. However, evidence for such trade-offs across species is ambiguous. We measured the hydraulic structure and foliar stable carbon isotope ratios of 31 karst woody plants at three locations in Guizhou Province, China, to evaluate the functional coordination between resistance to cavitation and specific conductivity. We also applied phylogenetically independent contrast (PIC) analysis in situations where the inter-species correlations of functional traits may be biased on the potential similarity of closely related species. The average xylem tension measurement, at which 50% of hydraulic conductivity of the plants was lost (Ψ(50)), was only -1.27 MPa. Stem Ψ(50) was positively associated with specific conductance (K(s)) (P?相似文献   

12.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s)?=?2.0?×?10(-4) m(2) MPa(-1) s(-1)) and safety (P(50)?=?-?1.5 MPa) than stem xylem (k(s)?=?7.7?×?10(-4) m(2) MPa(-1) s(-1); P(50)?=?-?3.6 to?-?3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was?-?0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to?-?3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.  相似文献   

13.
We studied the limits to maximum water transport in three diffuse-porous evergreen shrubs exposed to frequent winter freeze-thaw events (Rhododendron maximum L. and R. catawbiense Michaux from the Appalachian Mountains) and to a severe summer drought (R. macrophyllum G. Don. from the Oregon Cascades). Percent loss of hydraulic conductivity (PLC), vulnerability curves to xylem embolism and freezing point temperatures of stems were measured over 2 years. Controlled freeze-thaw experiments were also conducted to determine the effect of thaw rate on PLC. During both years, native PLC was significantly higher in winter than in summer for R. macrophyllum. Seasonal changes in PLC were variable in both R. catawbiense and R. maximum. Only R. maximum plants growing in gaps or clearings showed higher PLC than understory plants. A rapid (2-4 day) natural recovery of high native PLC during the winter was observed in both R. maximum and R. macrophyllum. Compared with the bench-dehydration method, vulnerability curves based on the air-injection method consistently had less negative slopes and greater variation. Fifty percent PLC (PLC(50)) obtained from vulnerability curves based on the dehydration method occurred at -1.75, -2.42 and -2.96 MPa for R. catawbiense, R. maximum and R. macrophyllum, respectively. Among the study species, R. macrophyllum, which commonly experiences a summer drought, had the most negative water potential at PLC(50). In all species, stem freezing point temperatures were not consistently lower in winter than in summer. A single fast freeze-thaw event significantly increased PLC, and R. catawbiense had the highest PLC in response to freezing treatments. Recovery to control PLC values occurred if a low positive hydraulic pressure was maintained during thawing. Rhododendron macrophyllum plants, which commonly experience few freeze-thaw events, had large stem diameters, whereas plants of R. catawbiense, which had small stem diameters, suffered high embolism in response to a single freeze-thaw event. Both drought-induced and winter-induced embolism caused a significant reduction in hydraulic conductivity in all species during periods when drought or freeze-thaw events occurred in their native habitats. However, rapid recovery of PLC following freezing or drought maintained the species above their relatively low margins of safety for complete xylem dysfunction.  相似文献   

14.
Ladjal M  Huc R  Ducrey M 《Tree physiology》2005,25(9):1109-1117
We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.  相似文献   

15.
Tsuda M  Tyree MT 《Tree physiology》1997,17(6):351-357
Hydraulic properties were studied in Acer saccharinum L., a riparian species that also grows well on a dry soil when transplanted. Hydraulic resistances were measured by two independent techniques: a new high-pressure flowmeter (HPFM) method and a conventional evaporative flux (EF) method. Vulnerability to cavitation was also investigated on petioles, stems and roots using a hydraulic conductivity technique. Vulnerability segmentation was found, i.e., roots, stems and petioles had different vulnerabilities to xylem dysfunction. Petioles were most vulnerable with 50% loss of hydraulic conductivity at -0.5 MPa, roots were least vulnerable (50% loss at -2.2 MPa) and stems were intermediate in vulnerability. The HPFM and the EF methods gave comparable results, except that the EF method gave a significantly higher value for resistance across petioles plus leaves. Native embolism was high enough to explain the discrepancy in resistance across petioles plus leaves between the HPFM and the EF methods, indicating that the HPFM estimates the minimum (potential) hydraulic resistance of plants. Whole-plant hydraulic resistance of A. saccharinum was low compared to resistances of other temperate species. The hydraulic characteristics of A. saccharinum were consistent with adaptation to its typical environment: low whole-plant resistance assures high transpiration rates in the presence of sufficient water, and vulnerability segmentation provides the ability to survive during droughts through shedding of expendable organs.  相似文献   

16.
Despite considerable investigations of diurnal water use characteristics in different plant functional groups, the research on daily water use strategies of woody bamboo grasses remains lacking. We studied the daily water use and gas exchange of Sinarundinaria nitida (Mitford) Nakai, an abundant subtropical bamboo species in Southwest China. We found that the stem relative water content (RWC) and stem hydraulic conductivity (K(s)) of this bamboo species did not decrease significantly during the day, whereas the leaf RWC and leaf hydraulic conductance (K(leaf)) showed a distinct decrease at midday, compared with the predawn values. Diurnal loss of K(leaf) was coupled with a midday decline in stomatal conductance (g(s)) and CO(2) assimilation. The positive root pressures in the different habitats were of sufficient magnitude to refill the embolisms in leaves. We concluded that (i) the studied bamboo species does not use stem water storage for daily transpiration; (ii) diurnal down-regulation in K(leaf) and gs has the function to slow down potential water loss in stems and protect the stem hydraulic pathway from cavitation; (iii) since K(leaf) did not recover during late afternoon, refilling of embolism in bamboo leaves probably fully depends on nocturnal root pressure. The embolism refilling mechanism by root pressure could be helpful for the growth and persistence of this woody monocot species.  相似文献   

17.
Abies alba and Abies pinsapo are two closely related fir species that occur in the Iberian Peninsula under very different environmental conditions. Abies alba proliferates in the humid European mountains, including the Spanish Pyrenees. In contrast, A. pinsapo is a relict species that occurs in some restricted areas of the Mediterranean mountain ranges in Spain and Morocco, which experience intense summer drought periods. To cope with the high atmospheric evaporative demand during summer, A. pinsapo may either have a high resistance to xylem cavitation or develop a very efficient conducting system to reduce the soil-to-leaf water potential gradient. To investigate such hypotheses, we measured (i) the xylem vulnerability to cavitation for different populations, and (ii) several anatomical and hydraulic parameters indicating xylem sufficiency for -supplying water to the shoot in two contrasting populations of both species. Our results show that the resistance to cavitation was not different between species or populations. However, hydraulic conductivity (K(h)), specific hydraulic conductivity (K(s)), leaf-specific conductivity (LSC) and whole-shoot hydraulic conductance (K(shoot)) were higher in A. pinsapo, indicating a higher efficiency of water transport, which should contribute to maintaining its xylem tension below the threshold for rapidly increasing cavitation. The higher K(s) in A. pinsapo was largely a result of its wider tracheids, suggesting that this species may be much more vulnerable to freeze-thaw-induced cavitation than A. alba. This is consistent with the absence of A. pinsapo in northern mountain ranges with cooler winters. These physiological differences could partly explain the niche segregation and the geographical separation of these two firs.  相似文献   

18.
Gartner BL  Roy J  Huc R 《Tree physiology》2003,23(6):387-395
To determine whether there are decreases in hydraulic function of a woody stem when it has increased mechanical loading, Quercus ilex L. seedlings were grown upright or inclined to force the production of large amounts of tension wood (TW). Seedlings were grown in ambient or elevated carbon dioxide concentrations ([CO2]) for 16-17 months to provide two sets of seedlings differing in growth rates and allocation patterns. In both CO2 environments, inclination caused formation of large amounts of TW at the base and mid-section of most stems, but not at the stem tips. Contrary to expectation, there were no significant effects of stem inclination or amount of TW on specific conductivity (k(s)) or vulnerability to embolism. Samples with high amounts of TW had higher vessel frequency, similar average vessel lumen area, similar vessel lumen fraction (6% of the transverse area), elevated frequency of vessels in the smallest diameter class, and higher wood density than samples with very little TW. Samples from seedlings in the elevated [CO2] treatment had similar vessel frequency, larger average vessel lumen area (caused by a higher frequency of large-diameter vessels), similar vessel lumen fraction, and similar wood density as samples from seedlings in the ambient [CO2] treatment. There was a strong position effect: the highest wood density and lowest ks were at the stem base, intermediate values were at the middle, and the lowest density and highest ks were at the stem tip. We conclude that, in a species that uses different cells for mechanical support and water transport, there can be large modifications in performance of the mechanical function through TW formation without impacting the water transport functions-ks and vulnerability to embolism.  相似文献   

19.
Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations in leaf hydraulic conductance (K(leaf)), stomatal conductance and water potential (Ψ(L)) have only been measured for a few species. The objective of the current study was to characterize stem and leaf vulnerability to hydraulic dysfunction for three eastern U.S. tree species (Acer rubrum, Liriodendron tulipifera and Pinus virginiana) and to measure in situ daily patterns of K(leaf), leaf and stem Ψ, and stomatal conductance in the field. Sap flow measurements were made on two of the three species to compare patterns of whole-plant water use with changes in K(leaf) and stomatal conductance. Overall, stems were more resistant to hydraulic dysfunction than leaves. Stem P50 (Ψ resulting in 50% loss in conductivity) ranged from -3.0 to -4.2 MPa, whereas leaf P50 ranged from -0.8 to -1.7 MPa. Field Ψ(L) declined over the course of the day, but only P. virginiana experienced reductions in K(leaf) (nearly 100% loss). Stomatal conductance was greatest overall in P. virginiana, but peaked midmorning and then declined in all three species. Midday stem Ψ in all three species remained well above the threshold for embolism formation. The daily course of sap flux in P. virginiana was bell-shaped, whereas in A. rubrum sap flux peaked early in the morning and then declined over the remainder of the day. An analysis of our data and data for 39 other species suggest that there may be at least three distinct trajectories of relationships between maximum K(leaf) and the % K(leaf) at Ψ(min). In one group of species, a trade-off between maximum K(leaf) and % K(leaf) at Ψ(min) appeared to exist, but no trade-off was evident in the other two trajectories.  相似文献   

20.
Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号