首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

2.
Soil macrofauna play an essential role in the initial comminution and degradation of organic matter entering the soil environment and yet the chemical effects of digestion on leaf litter are poorly understood at the molecular level. This study was undertaken to assess the selective chemical transformations that saprophagous soil invertebrates mediate in consumed leaf litter. A number of pill millipedes (Glomeris marginata) were fed oak leaves (Quercus robur) after which the biomolecular compositions (lipids and macromolecular components) of the leaves and millipede faeces were compared using a series of wet chemical techniques and subsequent analysis by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). It was found that the concentrations of short chain (<C20) n-alkanoic acids, sterols and triacylglycerols reduced dramatically in the millipede faeces relative to the leaf litter. Hydrolysable carbohydrates and proteins both decreased in concentration in the faeces, whereas similar yields of phenolic components were observed for the cupric oxidation products of lignin, although the oxygenated functionalities were affected by passage through the millipede gut, yielding a more highly condensed state for lignin. This shows that the chemical composition of fresh organic matter entering the soil is directly controlled by invertebrates feeding upon the leaf litter and as such that they are key contributors to the early stages of diagenesis in terrestrial soils.  相似文献   

3.
 A soil microcosm experiment was performed to assess the uptake of Hg from various Hg-spiked food sources (soil, leaf litter and root litter of Trifolium alexandrinum) by two earthworm species, Lumbricus terrestris (anecic) and Octolaseon cyaneum (endogeic). Treatments were applied in which one of the three food sources was Hg spiked and the other two were not. Additional treatments in which all or none of the food sources were Hg spiked were used as controls. Uptake of Hg from soil into tissues of both earthworm species was significantly higher than uptake of Hg from leaf litter or root litter, indicating that soil may be the most important pool for the uptake of Hg into earthworms. In addition, the anecic L. terrestris significantly accumulated Hg from all Hg-spiked food sources (leaf litter, root litter and soil), whereas the endogeic O. cyaneum took up Hg mainly from soil particles. Interestingly, there was no further increase in Hg in L. terrestris when all food sources were Hg spiked compared to the single Hg-spiked sources. This may be attributed to the relatively high Hg content in the soil, which may have influenced the feeding behavior of the earthworms, although their biomass did not significantly decline. We suggest that, in addition to the physiological differences, feeding behavior may also play a role in the contrasting uptake of Hg by the two earthworm species.  相似文献   

4.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

5.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

6.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

7.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

8.
Nanoparticles (NPs) of TiO2 and ZnO are receiving increasing attention due to their widespread applications. To evaluate their toxicities to the earthworm Eisenia fetida (Savigny, 1826) in soil, artificial soil systems containing distilled water, 0.1, 0.5, 1.0 or 5.0 g kg−1 of NPs were prepared and earthworms were exposed for 7 days. Contents of Zn and Ti in earthworm, activities of antioxidant enzymes, DNA damage to earthworm, activity of cellulase and damage to mitochondria of gut cells were investigated after acute toxicity test. The results from response of the antioxidant system combined with DNA damage endpoint (comet assay) indicated that TiO2 and ZnO NPs could induce significant damage to earthworms when doses were greater than 1.0 g kg−1. We found that Ti and Zn, especially Zn, were bioaccumulated, and that mitochondria were damaged at the highest dose in soil (5.0 g kg−1). The activity of cellulase was significantly inhibited when organisms were exposed to 5.0 g kg−1 of ZnO NPs. Our study demonstrates that both TiO2 and ZnO NPs exert harmful effects to E. fetida when their levels are higher than 1.0 g kg−1 in soil and that toxicity of ZnO NPs was higher than TiO2.  相似文献   

9.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems.  相似文献   

10.
11.
This study investigated the effect of two earthworm species (Amynthas robustus Perrier and Eisenia fetida Savigny) on the soil microbial degradation of pentachlorophenol (PCP). PCP-degrading microbes were identified using DNA-stable isotope probing (SIP). The results showed that adsorption and fixing to soil particles and organic fractions dominated the fate of PCP in soil without any amendments. The inoculation of both earthworm species significantly enhanced soil PCP disappearance and basal respiration. The DNA-SIP results revealed that Klebsiella, Cupriavidus, Aeromonas, and Burkholderia spp. were present at higher relative abundances in [13C]-labeled-PCP-amended soil microcosms than [12C]-PCP-amended soil in the presence of A. robustus, indicating that these bacterial species were responsible for PCP assimilation. Cupriavidus and Aeromonas sp. were also detected in the earthworm gut before inoculation, and their relative abundance was affected by earthworms. These results demonstrated that earthworms can introduce functional bacteria into soils and increase the population of PCP-degrading bacteria, thereby accelerating soil PCP degradation.  相似文献   

12.
Sources of competition for limited soil resources, such as nitrogen (N), include competitive interactions among different plant species and between plants and soil microorganisms (microbes). To study these competitive interactions, blue oak seedlings (Quercus douglasii) were grown alone or grown together with an annual grass, wild oats (Avena barbata) in pots containing field soil. We injected 15N-labeled ammonium, nitrate or glycine into the soil of each pot and harvested plants 5 days later. Plant shoots and roots, soil microbial N and soil KCl-extractable N were analyzed for 15N content. When oak and grass were grown together, 15N recovery from the inorganic N treatments (NH4+, or NO3) was 34, 9 and 4% for the grass, microbes and oak seedlings, respectively, and only 1% remained as KCl-extractable N. 15N recovery from the glycine treatment was 18, 22, 5% for the grass, microbes and oak seedlings, respectively, and 4% remained as KCl-extractable N. When oaks were grown alone, 15N recovery by soil microbes was 21, 48 and 40% in the NO3, NH4+ and glycine treatments, respectively. N forms had no effects on 15N recovery in oak seedlings (7%) and in KCl-extractable N pool (13%). In general, total N recovery by the grass was much greater than by oaks. However, on a fine root surface area or length basis, oaks exhibited higher N uptake than the grass. Our results suggest that the high rooting density and rapid growth rate of the annual grasses such as Avena barbata made them superior competitors for available soil N when compared to blue oak seedlings and to microbes. Soil microbes were better competitors for organic than inorganic N when annual grasses were present, but preferred NH4+ when competing only with oak seedlings.  相似文献   

13.
The objective of this study was to determine the impact of earthworm bioturbation on the distribution and availability of zinc in the soil profile.Experiments were carried out with Allolobophora chlorotica and Aporrectodea caliginosa in 24 perspex columns (∅ 10 cm), filled with 20-23 cm non-polluted soil (OM 2%, clay 2.9%, pH 0.01 M CaCl2 6.4), that was covered by a 3-5 cm layer of aged zinc spiked soil (500 mg Zn/kg dry soil) and another 2 cm non-polluted soil on top. After 80 and 175 days, columns were sacrificed and each cm from the top down to a depth of 15 cm was sampled. Earthworm casts, placed on top of the soil, were collected. Each sample was analyzed for total and CaCl2-exchangeable zinc concentrations.Effects of earthworm bioturbation were most pronounced after 175 days. For A. chlorotica, total and CaCl2-exchangeable zinc concentrations in the polluted layers were lower with than without earthworms. Total zinc concentrations in the non-polluted layers were higher in columns with earthworms. Casts of A. chlorotica collected on the soil surface showed slightly higher total zinc concentrations than non-polluted soil. Casts were found throughout the whole column. For A. caliginosa there were no differences in total zinc concentration between columns with and without earthworms. CaCl2-exchangeable zinc concentrations in the polluted layers were lower for columns with earthworms. Casts were mainly placed on top of the soil and contained total zinc concentrations intermediate between those in non-polluted and polluted soil layers.This study shows that different endogeic earthworm species have different effects on zinc distribution and availability in soils. A. chlorotica transfers soil throughout the whole column, effectively mixing it, while A. caliginosa decreases metal availability and transfers polluted soil to the soil surface.  相似文献   

14.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

15.
Decomposer animals stimulate plant growth by indirect effects such as increasing nutrient availability or by modifying microbial communities in the rhizosphere. In grasslands, the spatial distribution of organic matter (OM) rich in nutrients depends on agricultural practice and the bioturbation activities of large detritivores, such as earthworms. We hypothesized that plants of different functional groups with contrasting nutrient uptake and resource allocation strategies differentially benefit from sites in soil with OM accumulation and the presence of decomposer animals. In a greenhouse experiment we investigated effects of spatial distribution of 15N-labelled grass litter, earthworms and collembola on a simple grassland community consisting of Lolium perenne (grass) and Trifolium repens (legume). Litter aggregates (compared to homogeneous litter distribution) increased total shoot biomass, root biomass and 15N uptake by the plants. Earthworms and collembola did not affect total N uptake of T. repens; however, the presence of both increased 15N uptake by T. repens and L. perenne. Earthworms increased shoot biomass of T. repens 1.11-fold and that of L. perenne 2.50 fold. Biomass of L. perenne was at a maximum in the presence of earthworms, collembola and with litter concentrated in a single aggregate. Shoot biomass of T. repens increased in the presence of collembola, with L. perenne generally responding opposingly. The results indicate that the composition of the decomposer community and the distribution of OM in soil affect plant competition and therefore plant community composition.  相似文献   

16.
Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have significant effects on soil physical, chemical and biological properties. The species Amynthas agrestis (family Megascolecidae) was introduced to the United States from Asia, and has expanded its distribution range to include relatively undisturbed forests. Here, to clarify life history traits, we reared individuals under seven different conditions of food provision using litter, fragmented litter and soil, and also analyzed the stable isotope ratios of field-collected specimens to investigate their food resources in the field. Second, we examined whether prescribed fire can be used to manage invasive earthworms. We constructed eight experimental plots, each with 100 individuals of A. agrestis each, and burned half of the plots. The feeding experiment showed that the earthworms in units containing soil and some form of organic matter (litter and/or fragmented litter) produced many cocoons, indicating that litter and fragmented litter are important food resources for them. Stable isotope analyses also supported this result. During the experimental fires, average soil temperature at 5 cm depth increased by only 7.7 °C (average maximum of 32.2 °C). Litter mass was significantly reduced by the fires. Although numbers of A. agrestis and cocoons recovered from burned and unburned plots were not different, the viability of cocoons was significantly lower in burned plots. Fire may also reduce the survival rate of juveniles in the next year by depriving them of their preferred food resource. Most native earthworms in the United States live in the soil, while many invasive ones live in the litter layer and soil surface. Therefore, prescribed fire could be a viable tool for control of invasive earthworms without negatively impacting native earthworm populations.  相似文献   

17.
Many ecological studies have pointed out maternal effects in plants and shown that plant maternal environment influences germination of their seed and subsequent seedling growth. However, few have tested for maternal effects induced by soil macroorganisms. We tested whether two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) trigger such maternal effects on seed germination and seedling growth of three plant species (Veronica persica, Poa annua and Cerastium glomeratum). Our results show that, through maternal effects, A. caliginosa enhanced seed germination (V. persica and P. annua) and seedling growth (C. glomeratum and P. annua) while L. terrestris reduced seed germination only in V. persica. In some cases, the increase in germination rates of seeds produced in the presence of earthworms was associated with a reduction of nitrogen content in seeds. These results show that earthworms induce maternal effects in plants and that the size and direction of these effects depend on the combination of plant and earthworm species.  相似文献   

18.
The parthenogenetic earthworm Aporrectodea trapezoides (Dugès, 1828) is widely distributed all over the world due to European agricultural practices. In order to provide baseline life cycle data, cocoons were obtained from field-collected individuals and their features and viability, incubation period, number of hatchlings and mortality rate were recorded. Singleton and twin earthworms from this first experiment were cultured from hatching during a 490-day period under controlled conditions with biomass, survival, reproductive condition and cocoon production recorded at intervals of 15 days. On average, individuals of isolated-reared A. trapezoides reached maturity at day 153 and body weight at maturity was approximately 1 g. In order to record reproductive traits and differences between field-collected and laboratory-reared individuals, 40 microcosms with an isolated earthworm (20 with field-collected individuals and 20 with laboratory-reared ones) and 40 containing groups of three (20 with each type of individual) were maintained during a complete year under controlled conditions. The amount of soil per individual was the same in both types of microcosm. Both the individuals kept in isolation and those cultured in groups produced cocoons, hence completely proving the obligatory parthenogenetic reproduction in this species without copulation or need of any physical-chemical stimulus. In general, isolated earthworms produced a significantly higher number of cocoons than those in groups of three, and the same was recorded for laboratory-reared earthworms when compared with field-collected ones. This study highlights the importance of knowing the life cycle and reproductive traits of one possible key species in soil management due to its vast distribution and high density in soils, and the species’ highly recommended use in applied studies because of its ease of culture.  相似文献   

19.
Soil macrofauna was surveyed in six sites characterised by different vegetation types on five occasions in the Western Ghats, India. Sampling sites included a primary forest, a weakly disturbed forest (slightly logged in the past), a highly disturbed forest (intensively logged), an Acacia auriculiformis plantation (8 years old), a pasture with high density of Phoenix humilis and a pasture without P. humilis. We showed that both land management and temporal variability induced significant changes in the soil macrofauna. Forest sites hosted larger densities of soil macroorganisms. The effect of seasons was apparent as some clear modifications in the fauna composition occurred. Some groups like earthworms mainly exhibited temporal variability whereas others like millipedes were chiefly affected by land management options. The seasonal rhythms of soil macrofauna were poorly expressed in the pasture plots and the Acacia plantation, but were particularly clear in the forest sites. This interaction between land management and temporal patterns may be explained by some changes in the species composition associated with certain land-uses. Our approach was based on a between-within classes PCA that proved particularly useful by providing statistical tests and a hierarchy of land management and temporal rhythm effects.  相似文献   

20.
Litter decomposing basidiomycetous fungi produce ligninolytic oxidases and peroxidases which are involved in the transformation of lignin, as well as humic and fulvic acids. The aim of this work was to evaluate their importance in lignin transformation in forest litter. Two litter decomposing basidiomycete species differing in their abilities to degrade lignin - Hypholoma fasciculare, and Gymnopus erythropus - were cultured on sterile or non-sterile oak litter and their transformation of a 14C-labelled synthetic lignin (dehydrogenation polymer 14C-DHP) was compared with that of the indigenous litter microflora. Both in sterile and non-sterile litter, colonisation by basidiomycetes led to higher titres of lignocellulose-degrading enzymes, in particular of laccase and Mn-peroxidase (MnP). The titres of the latter were 6 to 40-fold increased in the presence of basidiomycetes compared to non-sterile litter. During 10 weeks, G. erythropus mineralised over 31% of 14C-DHP in sterile litter and 23% in non-sterile litter compared to 14% in the non-sterile control. Lignin mineralization by H. fasciculare was comparable to the non-sterile control, 12% in sterile litter and 16% in the non-sterile litter. The largest part of 14C from 14C-DHP was transformed into humic compounds during litter treatment with both fungi as well as in the control. In addition to the fast lignin mineralization, microcosms containing G. erythropus also showed a lower final content of unaltered lignin and 23-28% of the lignin was converted into water-soluble compounds with relatively low molecular mass (<5 kDa). Both G. erythropus and H. fasciculare were also able to further mineralise humic compounds. During a 10-week fungal treatment of an artificial 14C-humic acid (14C-HA) supplemented to the natural humic material of a forest soil, the fungi mineralised 42% and 19% of the labelled material, respectively, under sterile conditions. The 14C-HA mineralization by introduced basidiomycetes in microcosms containing non-sterile humic material, however, did not significantly differ from that of a non-sterile control and was around 12%. Altogether the results show that saprobic basidiomycetes can considerably differ in their rates of lignin and humic substance conversion. Furthermore, lignin degradation in forest soil can rather slow down by interspecific competition than it is accelerated by cooperation of different microorganisms occupying specific nutritional niches. Therefore, the overall contribution of saprobic basidiomycetes depends on their particular eco-physiological status and the competitive pressure, and may be often lower than initially expected. Significant lignin transformation including partial mineralization is seemingly not exclusively dependent on exceptional high titres of ligninolytic enzymes but also on so far unknown factors. Higher endocellulase production and subsequent weight loss was found in microcosms where saprobic basidiomycetes were combined with indigenous microbes. Potentially, lignin degradation by the basidiomycetes may have increased cellulose availability to the indigenous microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号