首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the endogeic earthworm species Octolasion tyrtaeum (Savigny) on decomposition of uniformly 14C-labelled lignin (lignocellulose) was studied in microcosms with upper mineral soil (Ah-horizon) from two forests on limestone, representing different stages of succession, a beech- and an ash-tree-dominated forest. Microcosms with and without lower mineral soil (Bw-horizon) were set-up; one O. tyrtaeum was added to half of them. It was hypothesised that endogeic earthworms stabilise lignin and the organic matter of the upper mineral soil by mixing with lower mineral soil of low C content. Cumulative C mineralization was increased by earthworms and by the addition of lower mineral soil. Effects of the lower mineral soil were more pronounced in the beech than in the ash forest. Cumulative mineralization of lignin was strongly increased by earthworms, but only in the beech soil (+24.6%). Earthworms predominantly colonized the upper mineral soil; mixing of the upper and lower mineral soils was low. The presence of lower mineral soil did not reduce the rates of decomposition of organic matter and lignin; however, the earthworm-mediated increase in mineralization was less pronounced in treatments with (+8.6%) than in those without (+14.1%) lower mineral soil. These results indicate that the mixing of organic matter with C-unsaturated lower mineral soil by endogeic earthworms reduced microbial decomposition of organic matter in earthworm casts.  相似文献   

2.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

3.
Mucus excretion and carbon turnover of endogeic earthworms   总被引:4,自引:0,他引:4  
Summary Mucus excretion of endogeic earthworms, by the body surface to burrow walls and by the intestine to casts, was investigated using uniformly 14C-labelled adult or subadult specimens of Octolasion lacteum (Örley) in laboratory incubations in soil from a beechwood on limestone. The daily loss of C due to mucus excretion from the body surface and in casts was calculated as 0.2 and 0.5% of total animal C, respectively. The C loss due to mucus excretion by subadult or adult individuals of O. lacteum is assumed to account for 63% of total C losses (including mucus excretion and respiration) of the earthworms. In a second experiment we studied the incorporation of 14C from labelled soil, again from a beechwood on limestone, into the tissue of the endogeic earthworm species Aporrectodea caliginosa (Savigny). The results of this experiment indicate the existence of two C pools, one more labile and one more stable, in earthworms. It is assumed that the C investment for respiration and mucus excretion is derived from the labile C pool of endogeic earthworms.  相似文献   

4.
Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Düngungsversuch, Bad Lauchstädt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days.Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum, whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.  相似文献   

5.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

6.
7.
Low phosphorus (P) availability in Ferralsols of the Malagasy Highlands is a major limitation to crop growth. Direct seeding mulch-based cropping practices which were adopted in the region to improve and sustain soil fertility are known to favour earthworms’ presence. The mesocosm study aims to analyse the effect of an endogeic geophageous earthworm species on the soil P status. Total P content (P t), NaOH-extractable P content, P ions (Pi) concentration (C p) in solution and rapid and slow reactions of Pi in solution with solid phase were determined in two Malagasy Ferralsols. Both C p and reactions rates were assessed in laboratory batch experiments using 32Pi labelling and isotopic exchange kinetics (IEK). The P t values were 836 and 349 mg P g−1 in a clayey soil and a sandy–clayey soil, respectively. For both soils, NaOH-extractable organic P was significantly higher in earthworm casts than in parent soils, whereas Pt was unchanged. Also, the effect of earthworm ingestion significantly changed parameters of the IEK. In casts compared with the soil from which they were derived, the immediate isotopically exchangeable Pi (E 1 min) increased by 116%, whereas relative rates of Pi release at the solid-to-solution with time were slightly lowered. The effect of earthworm ingestion on IEK corresponded to a transfer of slowly exchangeable Pi towards quicker Pi pools of exchange. However, according to the literature, the increase in E 1 min remained below the critical level for optimal growth, stating that the soils remained P-deficient even in the presence of active and numerous earthworms.  相似文献   

8.
A microcosm was used to study the effect of the endogeic earthworm Aporrectodea caliginosa (Savigny) on the use of C by microorganisms in a calcareous beech forest soil and its dependence on temperature (5–25%C). Inclusion of 14C-labelled beech leaf litter made it possible to differentiate between C use by litter-colonizing microflora and by autochthonous soil microflora. The effect of temperature on the soil microbial biomass 12C was confined to a significant increase at 15 and 20°C. The size of the 14C-labelled microbial biomass, in contrast, was positively correlated with temperature. The 12C mineralization increased exponentially with temperature. The relationship between 14C mineralization and temperature, in contrast, followed a logistic curve. Significant main effects of A. caliginosa were confined to 12C mineralization, reflecting an increase in 12CO2–C production in the earthworm treatments. The earthworm effects on 12CO2–C production and on 14C incorporation of the microflora were not linear. The effect of A. caliginosa on 12CO2–C production was most pronouned at intermediate temperatures. It is concluded that temperature alterations affect the microbial use of different C sources in different ways and that the temperature effects can be significantly modified by endogeic earthworms.  相似文献   

9.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably.  相似文献   

10.
The objective of this study was to determine the impact of earthworm bioturbation on the distribution and availability of zinc in the soil profile.Experiments were carried out with Allolobophora chlorotica and Aporrectodea caliginosa in 24 perspex columns (∅ 10 cm), filled with 20-23 cm non-polluted soil (OM 2%, clay 2.9%, pH 0.01 M CaCl2 6.4), that was covered by a 3-5 cm layer of aged zinc spiked soil (500 mg Zn/kg dry soil) and another 2 cm non-polluted soil on top. After 80 and 175 days, columns were sacrificed and each cm from the top down to a depth of 15 cm was sampled. Earthworm casts, placed on top of the soil, were collected. Each sample was analyzed for total and CaCl2-exchangeable zinc concentrations.Effects of earthworm bioturbation were most pronounced after 175 days. For A. chlorotica, total and CaCl2-exchangeable zinc concentrations in the polluted layers were lower with than without earthworms. Total zinc concentrations in the non-polluted layers were higher in columns with earthworms. Casts of A. chlorotica collected on the soil surface showed slightly higher total zinc concentrations than non-polluted soil. Casts were found throughout the whole column. For A. caliginosa there were no differences in total zinc concentration between columns with and without earthworms. CaCl2-exchangeable zinc concentrations in the polluted layers were lower for columns with earthworms. Casts were mainly placed on top of the soil and contained total zinc concentrations intermediate between those in non-polluted and polluted soil layers.This study shows that different endogeic earthworm species have different effects on zinc distribution and availability in soils. A. chlorotica transfers soil throughout the whole column, effectively mixing it, while A. caliginosa decreases metal availability and transfers polluted soil to the soil surface.  相似文献   

11.
Experiments were performed in 2D terraria to investigate the burrowing behaviour of different earthworm species from various ecological categories in single- and multi-species assemblages. The burrowing behaviour was quantified using image analysis software during a 2-week period. Terraria were found to reveal realistic impressions of the burrowing behaviour of various species according to the ecological classification of Bouché into epigeic, endogeic and anecic species. Results of the study also permit the recommending of classifying various earthworms as intermediate species, e.g. Aporrectodea longa as endo-anecic and Lumbricus rubellus as epi-endogeic. Burrowing activity of endogeic species was significantly reduced in multi-species compositions compared to single-species treatments. Moreover, burrowing activity of Octolasion tyrtaeum was significantly reduced in the presence of Lumbricus terrestris compared to the specific single treatment. This endogeic species profited from the burrowing behaviour, e.g. bioturbation, of L. terrestris, and as such this is circumstantial evidence for commensalism (species interaction, in which one partner benefits while the other is unaffected) between anecic and endogeic earthworm species. Simultaneous burrowing activity of a combined assemblage of both endogeic species, Aporrectodea caliginosa and O. tyrtaeum, was also significantly reduced compared with the particular single treatments. Thus, this seems likely to be a response of interspecific competition and trophic niche separation between endogeic species.  相似文献   

12.
《Soil biology & biochemistry》2001,33(4-5):583-591
Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.  相似文献   

13.
The production and stability of soil aggregates produced by laboratory cultures of the endogeic earthworm Hormogaster elisae was studied using three different techniques: the determination of the soil mean weight diameter (MWD), the aggregate tensile strength, and by the Blanchart method, which involves three different tests. The MWD index of soils was higher in microcosms containing H. elisae. Tensile strength was significantly higher in earthworm casts than in naturally formed aggregates. The Blanchart method also showed aggregates produced by earthworms to be more stable. The results of all three methods concur in that aggregates produced by H. elisae are larger and more stable than those produced in control microcosms without earthworms.  相似文献   

14.
Although the role of earthworms in soil functioning is often emphasised, many important aspects of earthworm behaviour are still poorly understood. In this study we propose a simple and cost-effective method for estimating burrow system area and continuity, as well as a new and often neglected parameter, the percentage of burrow refilling by the earthworms own casts. This novel parameter is likely to have a huge influence on the transfer properties of the burrow system. The method uses standard repacked soil cores in PVC cylinders and takes advantages of clay shrinkage and the fact that earthworms were previously shown to prefer to burrow at the PVC/soil interface. In this way, after removing the PVC cylinders off dry cores, the external section of the burrow system made by earthworms along the soil walls could be easily described. We applied this method to characterise the burrow systems of four earthworms species: two anecics (Aporrectodea caliginosa nocturna and Aporrectodea caliginosa meridionalis) and two endogeics (Aporrectodea caliginosa icaliginosa and Allolobophora chlorotica). After one month the burrow's area generated by both anecic species were much larger (about 40 cm2) than the endogeic burrow's area (about 15 cm2). A. nocturna burrow system continuity was higher than that of A. meridionalis and both anecic burrow systems were more continuous than those made by the endogeic earthworms. This was partly explained by the far larger proportion of the burrow area that was refilled with casts: approximately 40% and 50% for Al. chlorotica and A. caliginosa, respectively compared with approximately 20% for the anecic burrows. We discuss whether these estimates could be used in future models simulating the dynamics of earthworm burrow systems by taking into account both burrow creation and destruction by earthworms.  相似文献   

15.
By burrowing galleries and producing casts, earthworms are constantly changing the structure and properties of the soils in which they are living. These changes modify the costs and benefits for earthworms to stay in the environment they modify. In this paper, we measured experimentally how dispersal behaviour of endogeic and anecic earthworms responds to the cumulative changes they made in soil characteristics. The influence of earthworm activities on dispersal was studied in standardised mesocosms by comparing the influence of soils modified or not modified by earthworm activities on earthworm dispersal rates.The cumulative use of the soil by the earthworms strongly modified soil physical properties. The height of the soil decreased over time and the amount of aggregates smaller than 2 mm decreased in contrast to aggregates larger than 5 mm that increased. We found that: (i) earthworm activities significantly modified soil physical properties (such as bulk density, soil strength and soil aggregation) and decreased significantly the dispersal rates of the endogeic species, whatever the species that modified the soil; (ii) the decreasing in the dispersal proportion of the endogeic species suggests that the cost of engineering activities may be higher than the one of dispersal; (iii) the dispersal of the anecic species appeared to be not influenced by its own activities (intra-specific influences) or by the activities of the endogeic species (inter-specific influences). Overall these results suggest that the endogeic species is involved in a process of niche construction, which evolved jointly with its dispersal strategy.  相似文献   

16.
The objectives of our study were to quantify the impact of endogeic earthworms Aporrectodea caliginosa (Savigny) on iron (Fe), manganese (Mn) and zinc (Zn) mobility and availability in soil. Dried rye straw (Cecale cereale L.), clover aboveground parts (Trifolium pratense L.) or calcium carbonate were added to determine the effects on soil micronutrient mobility. To test the importance of soil–water saturation mediated by earthworms, soil samples were modified to 60% (control) and 100% (as in casts) water holding capacity (WHC). To assess availability of micronutrients, a cucumber plant (Cucumis sativus L.) bioassay were used. Earthworm casts had generally higher amounts of water-soluble micronutrients compared with bulk soils regardless of their moisture contents. The increased micronutrient mobility was more pronounced in casts from soil samples amended with plant residues (especially with straw) and was significantly higher than mobility in control soil for at least 1 week after the casts were deposited. Pre-incubation of soils amended with clover or straw with living earthworms for 4 weeks produced an increase in both shoot biomass and translocation rate of micronutrients (Mn, Zn) into xylem sap of cucumber compared to soils not worked by earthworms. The earthworm-mediated plant performances were determined 4 weeks after the earthworms were removed. The results demonstrated that earthworms can significantly impact the formation of mobile and available micronutrients in a soil. The relationship between micronutrient availability to cucumber plants and earthworm contribution to nitrogen (N) mineralization and micronutrient mobility are discussed.  相似文献   

17.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

18.
This study addressed differences between Diplocardia spp. (a native North American earthworm) and Octolasion tyrtaeum (an introduced European species), with respect to behavior, influence on soil microbial biomass, and plant uptake of N in tallgrass prairie soils. We manipulated earthworms in PVC-encased soil cores (20 cm diameter) over a 45-day period under field conditions. Treatments included: (1) control with no earthworms, (2) Diplocardia spp. only, and (3) O. tyrtaeum only. Prior to addition of earthworms, seedlings of Andropogon gerardii (a dominant tallgrass) were established in each core, and a dilute solution of 13C-labeled glucose and 15N-labeled (NH4)2SO4 was added to the soil to facilitate examination of earthworm/microbe/plant interactions. We found that Diplocardia spp. were significantly more active than O. tyrtaeum, and quickly assimilated 13C and 15N from the tracer. Individuals of Diplocardia spp. were present at shallower soil depths than O. tyrtaeum throughout the study. Contrary to expectation, this greater activity of Diplocardia spp. did not result in increased plant productivity. Rather, the activity of Diplocardia spp. was associated with less plant growth and smaller amounts of N acquired by A. gerardii seedlings compared to controls or O. tyrtaeum treatments. We observed few significant influences of earthworm treatments on microbial biomass C or N pool sizes, but the microbial C/N ratio was consistently greater in the presence of Diplocardia spp. relative to O. tyrtaeum. Results of this study indicate that activity of earthworms may enhance competition for N between microbes and plants during the growing season in tallgrass prairie.  相似文献   

19.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

20.
Soil compaction has a negative impact on both earthworm abundance and diversity. Recent studies, however, suggest that earthworm cast properties are not influenced by the initial soil bulk density. With time, earthworms could therefore transform soils with different bulk densities into a soil with the same physical state and thus with a similar ecological functioning. This study aimed to test this hypothesis in two laboratory incubation experiments. First, we measured the influence of soil bulk density (1.1 or 1.4?g?cm?3) on the production of cast by the endogeic earthworm species Metaphire posthuma. In a second experiment, we investigated the effect of M. posthuma on water infiltration, NH 4 + , and NO 3 ? leaching and soil respiration at the same two soil bulk densities. Although initially higher, earthworm casting activity in soil at 1.4?g?cm?3 decreased until it reached the same level of activity as earthworms in soil at 1.1?g?cm?3. This behavioral plasticity led to a transformation of compacted and loose soils, with their own functioning, to a third and similar state with similar hydraulic conductivity, nitrogen leaching, and soil respiration. The consequences for soil organization and soil functioning are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号