首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

2.
We measured forest floor CO2 flux in three age classes of forest in the southern Appalachians: 20-year-old, 85-year-old, and old-growth. Our objectives were to quantify differences in forest floor CO2 flux among age classes, and determine the relative importance of abiotic and biotic driving variables. Forest floor CO2 flux was measured using an openflow infrared gas analyzer measurement system for 24 h periods and samples were taken every 2 months over a 2-year period. Litter/soil interface, soil temperature (5 cm depth), soil moisture (%), forest floor moisture (%), forest floor mass, fine root (2 mm) mass, coarse root mass (>2 mm), forest floor C and N (%), fine root C and N, coarse root C and N, and soil N and C were co-measured during each sample period. Results showed significant nonlinear relationships (r2=0.68 to 0.81) between litter/soil interface temperature and forest floor CO2 flux for all three forest age classes, but no differences in temperature response parameters. These results indicated no differences in forest floor CO2 flux among age classes. Considerable temporal variation in abiotic and biotic variables was observed within and among forests. Biotic variables correlated with forest floor CO2 flux included indices of litter and root quality. Differences in biotic variables correlated with forest floor CO2 flux among forests may have been related to shifts in the relative importance of heterotrophic and autotrophic respiration components to overall forest floor CO2 flux.  相似文献   

3.
Understanding the sensitivity of soil respiration to temperature change and its impacting factors is an important base for accurately evaluating the response of terrestrial carbon balance to future climatic change, and thus has received much recent attention. In this study, we synthesized 161 field measurement data from 52 published papers to quantify temperature sensitivity of soil respiration in different Chinese ecosystems and its relationship with climate factors, such as temperature and precipitation. The results show that the observed Q10 value (the factor by which respiration rates increase for a 10 °C increase in temperature) is strongly dependent on the soil temperature measurement depth. Generally, Q10 significantly increased with the depth (0 cm, 5 cm, and 10 cm) of soil temperature measuring point. Different ecosystem types also exhibit different Q10 values. In response to soil temperature at the depth of 5 cm, alpine meadow and tundra has the largest Q10 value with magnitude of 3.05 ± 1.06, while the Q10 value of evergreen broadleaf forests is approximately half that amount (Q10 = 1.81 ± 0.43). Spatial correlation analysis also shows that the Q10 value of forest ecosystems is significantly and negatively correlated with mean annual temperature (R = −0.51, P < 0.001) and mean annual precipitation (R = −0.5, P < 0.001). This result not only implies that the temperature sensitivity of soil respiration will decline under continued global warming, but also suggests that such acclimation of soil respiration to warming should be taken into account in forecasting future terrestrial carbon cycle and its feedback to climate system.  相似文献   

4.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass at a soil depth of 25 cm in a secondary forest (dominated by Tabebuia heterophylla) and a pine (Pinus caribaea) plantation in the Luquillo Experimental Forest in Puerto Rico. The experimental plots were initially established in 1990, when root, forest floor mass and new litterfall were excluded for 7 y since then. Soil respiration was significantly reduced in the litter and root exclusion plots in both the secondary forest and the pine plantation compared with the control. Root exclusion had a greater effect on soil CO2 efflux than the litter exclusion in the plantation, whereas a reversed pattern was observed in the secondary forest. The reduction of microbial biomass in the root exclusion plot was greater in the secondary forest (59%) than in the plantation (31%), while there was no difference of the reduction in the litter exclusion plots between these forests. Our results suggest that above-ground input and roots (root litter and exudates) differentially affect soil CO2 efflux under different vegetation types.  相似文献   

5.
Fungal breakdown of plant material rich in lignin and cellulose (i.e. lignocellulose) is of central importance to terrestrial carbon (C) cycling due to the abundance of lignocellulose above and below-ground. Fungal growth on lignocellulose is particularly influential in tropical forests, as woody debris and plant litter contain between 50% and 75% lignocellulose by weight, and can account for 20% of the C stored in these ecosystems. In this study, we evaluated factors affecting fungal growth on a common wood substrate along a wet tropical elevation gradient in the Peruvian Andes. We had three objectives: 1) to determine the temperature sensitivity of fungal growth - i.e. Q10, the factor by which fungal biomass increases given a 10 °C temperature increase; 2) to assess the potential for above-ground fungal colonization and growth on lignocellulose in a wet tropical forest; and 3) to characterize the community composition of fungal wood decomposers across the elevation gradient. We found that fungal growth had a Q10 of 3.93 (95% CI of 2.76-5.61), indicating that fungal biomass accumulation on the wood substrate nearly quadrupled with a 10 °C increase in temperature. The Q10 for fungal growth on wood at our site is higher than Q10 values reported for litter decomposition in other tropical forests. Moreover, we found that above-ground fungal growth on the wood substrate ranged between 37% and 50% of that measured in the soil, suggesting above-ground breakdown of lignocellulose represents an unexplored component of the C cycle in wet tropical forests. Fungal community composition also changed significantly along the elevation gradient, and Ascomycota were the dominant wood decomposers at all elevations. Fungal richness did not change significantly with elevation, directly contrasting with diversity patterns observed for plant and animal taxa across this gradient. Significant variation in fungal community composition across the gradient suggests that the characteristics of fungal decomposer communities are, directly or indirectly, influenced by temperature.  相似文献   

6.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

7.
Extensive research has focused on the temperature sensitivity of soil respiration. However, in Mediterranean ecosystems, soil respiration may have a pulsed response to precipitation events, especially during prolonged dry periods. Here, we investigate temporal variations in soil respiration (Rs), soil temperature (T) and soil water content (SWC) under three different land uses (a forest area, an abandoned agricultural field and a rainfed olive grove) in a dry Mediterranean area of southeast Spain, and evaluate the relative importance of soil temperature and water content as predictors of Rs. We hypothesize that soil moisture content, rather than soil temperature, becomes the major factor controlling CO2 efflux rates in this Mediterranean ecosystem during the summer dry season. Soil CO2 efflux was measured monthly between January 2006 and December 2007 using a portable soil respiration instrument fitted with a soil respiration chamber (LI-6400-09). Mean annual soil respiration rates were 2.06 ± 0.07, 1.71 ± 0.09, and 1.12 ± 0.12 μmol m−2 s−1 in the forest, abandoned field and olive grove, respectively. Rs was largely controlled by soil temperature above a soil water content threshold value of 10% at 0-15 cm depth for forest and olive grove, and 15% for abandoned field. However, below those thresholds Rs was controlled by soil moisture. Exponential and linear models adequately described Rs responses to environmental variables during the growing and dry seasons. Models combining abiotic (soil temperature and soil rewetting index) and biotic factors (above-ground biomass index and/or distance from the nearest tree) explained between 39 and 73% of the temporal variability of Rs in the forest and olive grove. However, in the abandoned field, a single variable - either soil temperature (growing season) or rewetting index (dry season) - was sufficient to explain between 51 and 63% of the soil CO2 efflux. The fact that the rewetting index, rather than soil water content, became the major factor controlling soil CO2 efflux rates during the prolonged summer drought emphasizes the need to quantify the effects of rain pulses in estimates of net annual carbon fluxes from soil in Mediterranean ecosystems.  相似文献   

8.
A reliable determination of the response of soil organic carbon decomposition to temperature is critical in the context of global warming. However, uncertainties remain in estimated temperature sensitivity of soil respiration, which may be partly due to different experimental conditions. To investigate the possible effects of laboratory incubation procedures on estimated Q10 value, soil samples taken from various ecosystems were incubated under changing temperature with different experimental conditions or procedures: 1) different rate of temperature change; 2) different intervals of temperature change; 3) equilibration time after temperature change; 4) the duration of chamber closure and 5) the size of incubated soil sample. The results indicated that respiration rate was affected by experimental procedures. The respiration rate of soil samples containing high concentration of organic carbon decreased quickly if the soil container sealed longer than 2 h. Estimated Q10 values across all soils ranged from 1.56 to 2.70, with respect to the effects of incubation procedures. Temperature rate change, equilibration time, the duration of chamber closure and soil sample size had no effect on estimated Q10 values of soil respiration. However, Q10 values derived from temperature changing intervals of 2 and 7 °C were significantly different, despite the fact that the exponential function fitted well for the relationship between respiration rate and temperature for both intervals. The results of these experiments suggested that incubation procedures have different effects on measured soil respiration and estimated Q10 values. For soil incubations of short-duration, the effects of incubation procedures on soil respiration and estimated Q10 values based on respiration rate should be appropriately tested with experimental setting-up, and estimating Q10 values with few temperatures should be avoided.  相似文献   

9.
Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (Rs) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2-3 continuous years of Rs measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of Rs to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in Rs of the 15 ChinaFLUX ecosystems (R2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of Rs in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of Rs and ecosystem carbon cycles.  相似文献   

10.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

11.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   

12.
An open dynamic chamber system was used to measure the soil CO2 efflux intensively and continuously throughout a growing season in a mature spruce forest (Picea abies) in Southern Germany. The resulting data set contained a large amount of temporally highly resolved information on the variation in soil CO2 efflux together with environmental variables. Based on this background, the dependencies of the soil CO2 efflux rate on the controlling environmental factors were analysed in-depth. Of the abiotic factors, soil temperature alone explained 72% of the variation in the efflux rate, and including soil water content (SWC) as an additional variable increased the explained variance to about 83%. Between April and December, average rates ranged from 0.43 to 5.15 μmol CO2 m−2 s−1 (in November and July, respectively) with diurnal variations of up to 50% throughout the experiment. The variability in wind speed above the forest floor influenced the CO2 efflux rates for measuring locations with a litter layer of relatively low bulk density (and hence relatively high proportions of pore spaces). For the temporal integration of flux rates for time scales of hours to days, however, wind velocities were of no effect, reflecting the fact that wind forcing acts on the transport, but not the production of CO2 in the soil. The variation in both the magnitude of the basal respiration rate and the temperature sensitivity throughout the growing season was only moderate (coefficient of variation of 15 and 25%, respectively). Soil water limitation of the CO2 production in the soil could be best explained by a reduction in the temperature-insensitive basal respiration rate, with no discernible effect on the temperature sensitivity. Using a soil CO2 efflux model with soil temperature and SWC as driving variables, it was possible to calculate the annual soil CO2 efflux for four consecutive years for which meteorological data were available. These simulations indicate an average efflux sum of 560 g C m−2 yr−1 (SE=22 g C m−2 yr−1). An alternative model derived from the same data but using temperature alone as a driver over-estimated the annual flux sum by about 7% and showed less inter-annual variability. Given a likely shift in precipitation patterns alongside temperature changes under projected global change scenarios, these results demonstrate the necessity to include soil moisture in models that calculate the evolution of CO2 from temperate forest soils.  相似文献   

13.
Invasive earthworms can have significant impacts on C dynamics through their feeding, burrowing, and casting activities, including the protection of C in microaggregates and alteration of soil respiration. European earthworm invasion is known to affect soil micro- and mesofauna, but little is known about impacts of invasive earthworms on other soil macrofauna. Asian earthworms (Amynthas spp.) are increasingly being reported in the southern Appalachian Mountains in southeastern North America. This region is home to a diverse assemblage of native millipedes, many of which share niches with earthworm species. This situation indicates potential for earthworm-millipede competition in areas subject to Amynthas invasion.In a laboratory microcosm experiment, we used two 13C enriched food sources (red oak, Quercus rubra, and eastern hemlock, Tsuga canadensis) to assess food preferences of millipedes (Pseudopolydesmus erasus), to determine the effects of millipedes and earthworms (Amynthas corticis) on soil structure, and to ascertain the nature and extent of the interactions between earthworms and millipedes. Millipedes consumed both litter species and preferred red oak litter over eastern hemlock litter. Mortality and growth of millipedes were not affected by earthworm presence during the course of the experiment, but millipedes assimilated much less litter-derived C when earthworms were present.Fauna and litter treatments had significant effects on soil respiration. Millipedes alone reduced CO2 efflux from microcosms relative to no fauna controls, whereas earthworms alone and together with millipedes increased respiration, relative to the no fauna treatment. CO2 derived from fresh litter was repressed by the presence of macrofauna. The presence of red oak litter increased CO2 efflux considerably, compared to hemlock litter treatments.Millipedes, earthworms, and both together reduced particulate organic matter. Additionally, earthworms created significant shifts in soil aggregates from the 2000-250 and 250-53 μm fractions to the >2000 μm size class. Earthworm-induced soil aggregation was lessened in the 0-2 cm layer in the presence of millipedes. Earthworms translocated litter-derived C to soil throughout the microcosm.Our results suggest that invasion of ecosystems by A. corticis in the southern Appalachian Mountains is unlikely to be limited by litter species and these earthworms are likely to compete directly for food resources with native millipedes. Widespread invasion could cause a net loss of C due to increased respiration rates, but this may be offset by C protected in water-stable soil aggregates.  相似文献   

14.
Red wood ants (Formica rufa group) are important elements in boreal forest ecosystems, where they occur in high abundance and build large and long-lasting, above-ground mounds of organic material. However, little is known on their role in the carbon (C) cycling in boreal forests. We measured temperature and carbon dioxide (CO2) efflux from three different-sized wood ant mounds and the surrounding forest floor from May 2004 to April 2005 in Norway spruce [Picea abies (L.) Karst.] dominated forests in eastern Finland. Additionally, mound and forest floor temperatures were measured continuously and CO2 effluxes at 2-4-week-intervals. During the ants’ active season (May-September), measurements were conducted in the morning, afternoon, evening and at night, while fluxes were measured once a day during the ants’ inactive season. CO2 emissions from the mounds were up to nearly eight times higher than those from the surrounding forest floor during the active season of the ants, but no statistically significant differences were observed during the period from October to February. Both mound and forest floor CO2 fluxes were highly correlated to mound or forest floor temperature. Based on our measurements, we are able to estimate the annual CO2 efflux from ant mounds and the surrounding forest floor, based on nonlinear regression analyses using CO2 flux as dependant and mound or forest floor temperatures as independent variables. Although red wood ant mounds were found to be “hot spots” for CO2 efflux, that increase the spatial heterogeneity of C emissions within a forest ecosystem, their annual emissions were only 0.30% of that from the forest floor. Thus, our results indicate that red wood ant mounds do not directly contribute significantly to the overall C budget of the boreal forest ecosystem studied.  相似文献   

15.
Knowledge of seasonal trends and controls of soil CO2 emissions to the atmosphere is important for simulating atmospheric CO2 concentrations and for understanding and predicting the global carbon cycle. This is particularly the case for high arctic soils subject to extreme fluctuating environmental conditions. Based on field measurements of soil CO2 efflux, temperature, water content, pore gas composition in soil and frozen cores as well as detailed temperature experiments performed in the laboratory, we evaluated seasonal controls of CO2 effluxes from a well-drained tundra heath site in NE-Greenland. During the growing season, near-surface temperatures correlated well with observed CO2 effluxes (r2>0.9). However, during intensive thawing of near-surface layers we observed up to 1.5-fold higher effluxes than expected due to temperature alone. These high rates were consistent with high CO2 concentrations in frozen soil (>10% CO2) and suggested a spring burst event during soil thawing and a corresponding trapping of produced CO2 during winter. Laboratory experiments revealed that microbial soil respiration continued down to a least −18 °C and that up to 80% of the produced CO2 was trapped in soil at temperatures between 0 and −9 °C. The trapping of CO2 in frozen soil was positively correlated with soil moisture (r2=0.85) and led to an abrupt change of the temperature sensitivity (Q10) observed for soil CO2 release at 0 °C with Q10 values below 0 °C being up to 100-fold higher than above 0 °C. The results of sub-zero CO2 production allowed us to predict the microbial soil respiration throughout the year and to evaluate to what extent burst events during thawing can be explained by the release of CO2 being produced and trapped during winter. Taking only the upper 20 cm of the soil into account, winter soil respiration accounted for about 40% of the annual soil respiration. At least 14% of the winter CO2 production was trapped during the winter 2000-2001 and observed to be released upon thawing. Thus, the site-specific winter soil respiration is an important part of the annual C cycle and CO2 trapping should be accounted for in future field and modelling studies of soil respiration dynamics in arctic ecosystems. In conclusion, we have discovered a soil moisture dependent uncoupling of CO2 production and release in frozen soils with important implications for future field studies of Arctic C cycling.  相似文献   

16.
In boreal forests, canopy-scale emissions of biogenic volatile organic compounds (BVOCs) are rather well characterised, but knowledge of ecosystem-scale BVOC emissions is still inadequate. We used adsorbent tubes to measure BVOCs from a boreal Scots pine (Pinus sylvestris L.) forest floor in southern Finland and analysed the compounds with a gas chromatograph-mass spectrometer. The most abundant compound group was the monoterpenes (averaging 5.04 μg m−2 h−1), in which α-pinene, Δ3-carene and camphene contributed over 90% of the emissions. Emissions of other terpenoids (isoprene and sesquiterpenes) were low (averaging 0.05 and 0.04 μg m−2 h−1, respectively). BVOC emissions from the forest floor varied seasonally, peaking in early summer and autumn, with most of the compounds following similar patterns. The emission pattern was sustained throughout the measurement period, suggesting that the main sources of the emissions remained more or less stable. We compared the BVOC fluxes with environmental parameters such as temperature, precipitation and PAR, and with fluxes of other trace gases (CO2, CH4, N2O), as well as with ground vegetation photosynthesis and with litter input. Several of these parameters were correlated with the presence of BVOCs. The sources of soil BVOC emissions are very poorly understood, but our results suggest, that changes in litter quantity and quality, soil microbial activity and the physiological stages of plants are linked with changes in BVOC fluxes.  相似文献   

17.
The effects of timber harvesting and the resultant soil disturbances (compaction and forest floor removal) on relative soil water content, microbial biomass C and N contents (Cmic and Nmic), microbial biomass C:N ratio (Cmic-to-Nmic), microbial respiration, metabolic quotient (qCO2), and available N content in the forest floor and the uppermost mineral soil (0-3 cm) were assessed in a long-term soil productivity (LTSP) site and adjacent mature forest stands in northeastern British Columbia (Canada). A combination of principal component analysis and redundancy analysis was used to test the effects of stem-only harvest, whole tree harvest plus forest floor removal, and soil compaction on the studied variables. Those properties in the forest floor were not affected by timber harvesting or soil compaction. In the mineral soil, compaction increased soil total C and N contents, relative water content, and Nmic by 45%, 40%, 34% and 72%, respectively, and decreased Cmic-to-Nmic ratio by 29%. However, these parameters were not affected by stem only harvesting or whole tree harvesting plus forest floor removal, contrasting the reduction of white spruce and aspen growth following forest floor removal and soil compaction reported in an earlier study. Those results suggest that at the study site the short-term effects of timber harvesting, forest floor removal, and soil compaction are rather complex and that microbial populations might not be affected by the perturbations in the same way as trees, at least not in the short term.  相似文献   

18.
Soil respiration (SR) is highly sensitive to future climate change, and particularly to global warming. However, considerable uncertainties remain associated with the temperature sensitivity of SR and its controlling processes. Using 384 field measurement data from 114 published papers and one book, this study quantifies the variation in the seasonal Q10 values of soil respiration, the multiplier by which respiration rates increase for a 10 °C increase in temperature, and its drivers across different sites. No significant correlation between Q10 and mean annual temperature or mean annual precipitation is found when statistically controlling seasonal changes in vegetation activity, deduced from satellite vegetation greenness index observations (normalized difference vegetation index, or NDVI). In contrast, the seasonal amplitude of NDVI is significantly and positively correlated with the apparent Q10 of SR. This result indicates that the variations of seasonal vegetation activity exert dominant control over the variations of the apparent Q10 of SR across different sites, highlighting the ecological linkage between plant physiological processes and soil processes. It further implies that the seasonal variation of vegetation activity may thus dominate the apparent seasonal temperature sensitivity. We conclude that the apparent Q10 value of SR estimated from field measurements is generally larger than the intrinsic temperature sensitivity of soil organic matter decomposition, and thus cautions should be taken when applying apparent Q10 values directly in ecosystem models. Our regression analysis further shows that when the amplitude of NDVI variation approximates 0 (and thus when the seasonality in vegetation activity is marginal), the residual Q10 of SR for soil temperature measured at 5 cm depth is about 1.5.  相似文献   

19.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity.  相似文献   

20.
In the long term, all CO2 produced in the soil must be emitted by the surface and soil CO2 efflux (FCO2) must correspond to soil respiration (Rsoil). In the short term, however, the efflux can deviate from the instantaneous soil respiration, if the amount of CO2 stored in the soil pore-space (SCO2) is changing. We measured FCO2 continuously for one year using an automated chamber system. Simultaneously, vertical soil profiles of CO2 concentration, moisture, and temperature were measured in order to assess the changes in the amount of CO2 stored in the soil. Rsoil was calculated as the sum of the rate of change of the CO2 storage over time and FCO2. The experiment was split into a warm and a cold season. The dependency of soil respiration and soil efflux on soil temperature and on soil moisture was analyzed separately. Only the moisture-driven model of the warm season was significantly different for FCO2 and Rsoil. At our site, a moisture-driven soil-respiration model derived from CO2 efflux data would underestimate the importance of soil moisture. This effect can be attributed to a temporary storage of CO2 in the soil pore-space after rainfalls where up to 40% of the respired CO2 were stored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号