首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth-independent effect of ovine growth hormone (oGH) and oGH + cortisol treatment on seawater (SW) adaptation in immature rainbow trout, Salmo gairdneri was investigated. Fish were injected every second day with saline, 2.0 μg oGH/g or 2.0 μg oGH + 8.0 μg cortisol/g for a maximum of 8 injections in freshwater (FW). Subgroups were transferred to 28‰ SW after 4 or 8 injections, and changes in plasma Na+ and Cl, muscle water content and gill Na+/K+-ATPase activity were measured. In both of the hormone-treated groups retained in FW, gill Na+/K+-ATPase activity and interlamellar chloride cell density increased. The effects were most pronounced in the oGH + cortisol group after 2 weeks of treatment. After transfer to SW most of the control fish died due to the osmotic stress, whereas in the hormone-treated groups, mortality was low and there was a positive correlation between pretransfer gill Na+/K+-ATPase and the ability to maintain ionic-osmotic homeostasis after SW transfer. After two weeks of oGH + cortisol treatment, gill Na+/K+-ATPase activity was maximal. In contrast, after SW transfer, Na+/K+-ATPase activity increased further in the oGH-treated group. This group regulated ionic-osmotic parameters less effectively than the oGH + cortisol-treated group. The data indicate that GH and cortisol are important hormones in the regulation of hypoosmoregulatory mechanisms in S. gairdneri.  相似文献   

2.
The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 g g–1) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na+,K+-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.  相似文献   

3.
The aim of this work was to determine the effects of supplemental dietary sodium chloride on salt water acclimation of tilapia Oreochromis niloticus. Fish were fed a basal diet supplemented with NaCl (8%) during three weeks in fresh water (FW) and then transferred to salt water (SW) at 15 and 20. Changes in plasma osmolality, chloride ion concentration (Cl), plasma level of cortisol and gill Na+, K+-ATPase activity were measured at 6, 12, 24, 48, 72 and 168 h after transfer to 15SW, while the higher strength SW group (20) was only monitored up to 24 h. Morphological changes in the gill mitochondria-rich (MR) cells were examined in relation to environmental salinity. The changes associated with dietary NaCl were sporadic and of small magnitude. The plasma osmolality and Cl increased immediately after transfer up to 12–24 h, but fish fed dietary salt (S) showed lower values than the control group (C). The S group showed higher plasma levels of cortisol than the control, which maintained its initial levels during the experiment. Gill Na+, K+-ATPase activity of the S group began to increase in the first hours after transfer, reaching maximum at 12 h and returned to basal level at 24 h, while the control group maintained basal levels. The differences between gill Na+, K+-ATPase activity of S and C fish were significant (p < 0.05) at 12 h. Transmission electron microscopy (TEM) revealed that MR cells in SW show more mitochondria and a more developed tubular system arising from the basolateral membrane. The MR cells of both groups frequently formed a multicellular complex in SW, consisting of a main MR and one or more accessory cells. Such complexes are rarely observed in FW. Some MR cells of fish fed supplemented dietary salt displayed convex apical membrane in FW.  相似文献   

4.
The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 g g–1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 g g–1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 g g–1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 g g–1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.  相似文献   

5.
The impact of 17-estradiol (E2) and the putative estrogenic compound, 4-nonylphenol (4-NP), on smoltification and vitellogenesis in Atlantic salmon (Salmo salar) was investigated during a 30 day period starting late April. Three groups of fresh water (FW) fish (1 year old, mixed sexes, average weight 23 g) were injected once a week with 50 µg (0.18 µmol) 17-estradiol, 3 mg (13.6 µmol) 4-nonylphenol dissolved in peanut oil, or peanut oil alone as control. Every ten days, subgroups were challenged with 28 ppt seawater (SW) for 24h, and sampled together with subgroups of FW fish. Treatment effects were examined on vitellogenic and osmoregulatory parameters. E2 and 4-NP treatment increased the total calcium and protein level in plasma and the hepatosomatic index of FW fish, both indicating an activated vitellogenesis in the liver. The presence of vitellogenin in the plasma of 4-NP- and E2-treated groups was further indicated by the appearance of a high molecular weight vitellogenin band (550 kDa) in electropherograms produced by native gel electrophoresis. This band appeared in exactly the same position in both the E2- and the 4-NP-treated groups but could not be detected in controls. During the 30 day treatment period, control fish approached the peak of smoltification, as indicated by a distinct silvery appearance, decreasing condition factor, increasing levels of gill Na+,K+-ATPase and improved hypoosmoregulatory performance in the SW-challenge test. Both E2 and 4-NP treatments significantly inhibited the progress of smoltification, as judged by a significant reduction of gill Na+,K+-ATPase activity, relative -subunit Na+,K+-ATPase mRNA expression, gill chloride cell density and a poorer hypoosmoregulatory performance of treated fish. The impaired SW-tolerance of E2- and 4-NP-treated fish was strongly correlated with a decreased gill Na+,K+-ATPase activity. Despite a difference in relative potency, the present study shows that 4-nonylphenol and 17-estradiol may have qualitatively similar inhibitory effects on smoltification and hypoosmoregulatory physiology of Atlantic salmon. Both 4-NP and E2 activated the vitellogenic system, and the study supports the hypothesis that sexual maturation and smoltification are antagonistic, developmental phenomena in salmon. It is suggested that the presence of estrogenic compounds in the environment may negatively influence smoltification and migration in wild stocks of salmon.  相似文献   

6.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

7.
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33–35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na+/K+-ATPase expression and protein amounts of basolaterally located Na+/K+/2Cl? cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.  相似文献   

8.
Thein vivo andin vitro potency of native and modified forms of gonadotropin releasing hormone (GnRH) to release gonadotropin (GtH) was studied inSparus aurata and correlated with their relative susceptibility to degradation by cytosolic-bound enzymes of the pituitary, kidney, and liver. Salmon (s) GnRH and luteinizing hormone-releasing hormone (LHRH) are equipotent whereas analogs of these peptides ((D-Arg6-Pro9NET)-sGnRH, (D-Ala6-Pro9NET)-LHRH, (D-Trp6)-LHRH) are superactive in inducingin vivo GtH release (at 10 μg/kg body weight). In anin vitro superfusion system of pituitary fragments all analogs are equipotent to the native peptides (at 10−10 to 2.5 × 10−7M). sGnRH and LHRH are rapidly degraded by cytosolic peptidases of the pituitary, liver, and kidney. The preferred site of cleavage is the Tyr5-Gly6 bond. Substitution of the position 6 glycine by D-amino acids renders the 5–6 bond resistant to degradation and shifts the main site of cleavage to the Pro9-Gly10NH2 bond. Substitution at position 6 (as above) and at position 10 with Pro9NET results in analogs that are resistant to degradation. We propose that enzymatic cleavage terminates GnRH bioactivityin vivo and thus increased resistance to degradation is a major determinant of GnRH analog superactivity.  相似文献   

9.
The role of environmental ion composition and osmolality in Ca2+ signaled activation was assessed in spermatozoa of brook trout Salvelinus fontinalis. Milt from ten mature males was obtained by abdominal massage. Spermatozoa motility was evaluated in 0, 100, and 300 mOsm/kg NaCl or sucrose solutions, buffered by 10 mM Tris–HCl pH 8.5. For investigation of spermatozoa reaction to external Ca2+ concentration, 2 mM ethylene glycol tetraacetic acid (EGTA) was added to the activation media as a calcium ions chelator. For investigation of the effect of external Na+ concentration in conditions of low external Ca2+, 100 µM amiloride was added to the EGTA-containing solutions as a Na+ transport blocker. Low motility was observed in sucrose (Na+ free) solutions containing 2 mM EGTA but not in Na+ solutions containing 2 mM EGTA. Addition of amiloride led to significantly increased motility (P < 0.05) compared with sucrose (Na+ free) solutions containing 2 mM EGTA. We conclude that Na+ transport in Ca2+-free solutions plays a regulatory role in brook trout spermatozoa activation. The influence of competitive Na+ and Ca2+ transport on the control of spermatozoa activation requires further study with respect to its application for improvement of artificial activation and storage media.  相似文献   

10.
With the aim of comparing the effects of oral T3 and NaCl administration on trout hypoosmoregulatory mechanisms, three groups of rainbow trout (Oncorhynchus mykiss Walbaum) held in freshwater (FW) were fed a basal diet (C), the same diet containing 8.83 ppm of 3,5,3-triiodo-L-thyronine (T3) (T) or 10% (w/w) NaCl (N) respectively for 30 d. They were then transferred to brackish water (BW) for 22 d and fed on diet C. Gill (Na++K+)-ATPase activity and its dependence on ATP, Na+ and pH, number of gill chloride cells (CC), serum T3 level as well as fish growth, condition factor (K) and mortality were evaluated. During the FW phase, as compared to C trout, T trout showed a two fold higher serum T3 level, had unchanged gill (Na++K+)-ATPase activity and increased CC number, whereas N trout showed higher gill (Na++K+)-ATPase activity and CC number. At the end of the experiment the enzyme activity was in the order T>N>C groups and all groups showed similar CC number. Both treatments changed the enzyme activation kinetics by ATP and Na+. A transient increase in K value occurred in N group during the period of salt administration. In BW, T and N groups had higher and lower survival than C group respectively. Other parameters were unaffected by the treatments. This trial suggests that T3 administration promotes the development of hypoosmoregulatory mechanisms of trout but it leaves the (Na++K+)-ATPase activity unaltered till the transfer to a hyperosmotic environment.  相似文献   

11.
The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (Acipenser sinensis Gray) (128.8 ± 15 g) transferred directly from fresh water (0‰, 46 mOsmol kg−1) to brackish water (10‰, 273 mOsmol kg−1) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl), sodium (Na+), potassium (K+) and calcium (Ca2+) ion concentrations, as well as gill and spiral valve Na+,K+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na+, Cl and Ca2+) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (P < 0.05) than the BW group. Gill Na+,K+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned to a new steady state at 216 h. The differences between gill Na+,K+-ATPase activity of BW and FW fish were significant (P < 0.05) after 12 h. In contrast, Na+,K+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216 h after exposure to BW, Na+,K+-ATPase activities of the spiral valve increased slowly to the levels of FW control. The results of our study indicate the existence of hyposmoregulatory adaptive mechanisms in 7-month-old juvenile Chinese sturgeon which enable this fish to acclimate itself successfully to brackish water.  相似文献   

12.
The presumptive Na+/H+ exchange sites of trout and eel erythrocytes were quantified using amiloride-displaceable 5-(N-methyl-N-[3H]isobutyl)-amiloride (3H-MIA) equilibrium binding to further evaluate the mechanisms of i) hypoxia-mediated modifications in the trout erythrocyte -adrenergic signal transduction system and ii) the marked differences in the catecholamine responsiveness of this system between the trout and eel. MIA was a more potent inhibitor of both trout apparent erythrocyte proton extrusion (IC50 = 20.1 ± 1.1 mol l–1, N = 6) activity (as evaluated by measuring plasma pH changes after addition of catecholamine in vitro) and specific 3H-MIA binding (IC50 = 257 ± 8.2 nmol l–1, N = 3) than amiloride, which possessed a proton extrusion IC50 of 26.1 ± 1.6 mol l–1 (N = 6) and a binding IC50 of 891 ± 113 nmol l–1 (N = 3). The specific Na+ channel blocker phenamil was without effect on adrenergic proton extrusion activity or specific 3H-MIA binding. Trout erythrocytes suspended in Na+-free saline and maintained under normoxic conditions possessed 37,675 ± 6,678 (N = 6) amiloride-displaceable 3H-MIA binding sites per cell (Bmax, presumptive Na+/H+ antiporters) with an apparent dissociation constant (KD) of 244 ± 29 nmol l–1 (N = 6). Acute hypoxia (PO2 = 1.2 kPa; 30 min) did not affect the KD, yet resulted in a 65% increase in the number of presumptive Na+/H+ antiporters. Normoxic eel erythrocytes, similarly suspended in Na+-free saline, possessed only 17,133 ± 3,716 presumptive Na+/H+ antiporters (N = 6), 45% of that of trout erythrocytes, with a similar KD (246 ± 41 nmol l–1, N = 6). These findings suggest that inter- and intra-specific differences in the responsiveness of the teleost erythrocyte -adrenergic signal transduction system can be explained, in part, by differences in the numbers of Na+/H+ exchange sites.  相似文献   

13.
The effects of ovine prolactin (oPRL) on osmoregulatory ability (electrolyte balance, plasma osmolality and activity of gill chloride cells and gill Na+/K+‐ATPase) and stress responses (plasma cortisol, glucose, aspartate aminotransferase: AST and alanine aminotransferase: ALT) were investigated in black porgy transferred to freshwater (FW). Fish in seawater (SW) were injected twice at a 24 h interval with oPRL (at 1, 3, or 5 μg g–1 body weight) or vehicle (0.9% NaCl) and then transferred to FW. They were sampled 3 days after the transfer. With oPRL at 5 μg g–1, levels of plasma Na+ and Cl? and osmolality were significantly higher than in saline‐treated fish, whereas gill CCs number and Na+/K+‐ATPase activity were lower. Also, the 5 μg g–1oPRL treatment led to significantly lower plasma cortisol levels than did saline treatment. However, there were no significant differences in plasma AST and ALT between groups. These results support the positive osmoregulatory role of PRL in black porgy during FW adaptation.  相似文献   

14.
15.
Atlantic salmon (Salmo salar) exposed to either simulated natural photoperiod (SNP) or continuous light (L24) were used to examine developmental changes in the presence and absence, respectively, of the parrsmolt transformation. Plasma osmolarity and ion concentrations were unaffected by photoperiod treatment. Gill Na+, K+-ATPase specific activity increased 150% between February and June in SNP fish and was low and unchanged in L24 fish. Kidney Na+, K+-ATPase specific activity varied within similar, narrow limits in both groups. Citrate synthase of liver, gill and kidney, expressed as specific activity or activity/g total body weight (relative activity), increased 25–60% between March and June in SNP fish. With the exception of kidney relative activity, citrate synthase activity declined to initial (March) levels by August. Liver, gill and kidney cytochrome c oxidase activity of the SNP group underwent similar though less marked changes. Liver, gill and kidney citrate synthase and cytochrome c oxidase activities of the L24 group remained relatively constant between March and August, and where significant differences occurred, they were lower than those of the SNP group. These results indicate that respiratory capacities of the liver, gill and kidney increase in smolls concurrent with preparatory osmoregulatory changes, and subsequently decline. The findings are consistent with a hypothesized transient increase in catabolic activity during the parr-smolt transformation that may be due to the metabolic demands of differentiation.  相似文献   

16.
There is increasing evidence for complex dosage effects on gene expression, enzyme activity and phenotype resulting from induced ploidy change. In this study, ocean-type chinook salmon were bred using a 2 × 2 factorial mating design to create four families and test whether triploidization resulted in changes in growth performance and smolting. Eggs were pressure shocked after fertilization to create triploid fish from a subset of each family. In June, fish were sampled for size, plasma insulin-like growth factor 1 (IGF-1), gill Na+–K+-ATPase activity, and expression of two Na+–K+-ATPase α subunits in the gill. Diploids were significantly heavier than triploids, and there were significant differences due to family. Despite a significant positive correlation between plasma IGF-1 and fish size, plasma IGF-1 did not differ between diploid and triploid smolts. Diploids also had significantly greater gill Na+–K+-ATPase enzyme activities than triploids and there was a strong family effect. Gill Na+–K+-ATPase α1b isoform expression differed significantly by family, but not ploidy, and generally families with lower Na+–K+-ATPase enzyme activity had higher α1b isoform gene expression. Na+–K+-ATPase α1a isoform expression did not differ among any of the groups. Although diploids were larger and had higher specific activities of Na+–K+-ATPase in the gills, there was no difference in gene expression or circulating hormone levels. The strong family effect, however, suggests that strain selection may be useful in improving performance of triploids for aquaculture.  相似文献   

17.
Oxidative damage repair by glutamine in fish enterocytes   总被引:1,自引:0,他引:1  
Fish intestine is very sensitive to oxidative damage. Repair of damaged enterocytes may be involved to restore normal function of fish intestine. However, studies of fish enterocyte repair are scarce. The present study aimed to investigate the potential repair role of glutamine after a H2O2 challenge. In this study, fish enterocytes were post-treated with graded levels of glutamine (0, 4, 8, 12 and 20 mM of glutamine) after expose to 100 μM H2O2. The basal control cells were kept in the glutamine-free minimum essential medium only. Results showed that the H2O2-induced decreases in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide optical density, alkaline phosphatase and Na+, K+-ATPase activities were completely restored by subsequent glutamine treatments. In addition, cellular injury (lactate dehydrogenase), lipid peroxidation (malondialdehyde) and protein oxidation (protein carbonyls) caused by H2O2 were reversed by subsequent glutamine treatments. Furthermore, the H2O2-induced decreases in glutathione contents, glutathione reductase, superoxide dismutase and glutathione peroxidase activities were completely restored by subsequent glutamine treatments. In summary, the present study indicated that glutamine improved the repair activity in fish enterocytes after challenge with H2O2.  相似文献   

18.
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.  相似文献   

19.
The mudskipperB. boddaerti, was able to survive in waters of intermediate salinities (4–27). Fish submerged in dechlorinated tap water suffered 60% mortality by the fifth day while 60% of those in 100% sea-water (sw) died after the third day of exposure. After being submerged in 50% or 80% sw for 7 days, the plasma osmolality, plasma Na+ and Cl concentrations and the branchial Na+ and K+ activated adenosine triphosphatase (Na+,K+-ATPase) activity were significantly higher than those of fish submerged in 10% sw for the same period. However, the activities of the branchial HCO3 and Cl stimulated adenosine triphosphatase (HCO3 ,Cl-ATPase) and carbonic anhydrase of the latter fish were significantly greater than those of the former. Such correlation suggests that Na+,K+-ATPase is important for hyperosmotic adaptation in this fish while HCO3 -Cl-ATPase and carbonic anhydrase may be involved in hypoosmotic survival.  相似文献   

20.
We investigated the effect of exposure to low salinity water on plasma ion regulation and survival rates in artificially wounded devil stinger Inimicus japonicus. All fishes survived in 33% seawater (SW), while survival rate in 100% SW was 5.1% at 24 h. In 100% SW, plasma Na+, K+, Mg2+, and Ca2+ concentrations significantly increased to 238?±?49.9, 9.6?±?2.4, 15.1?±?3.5 and 5.0?±?0.7 mmol/l at 6 h, respectively; the gill Na+/K+–ATPase (NKA) activity was almost stable, although only one fish survived to 24 h. In 33% SW, plasma Na+ and K+ concentrations remained at the same level, and plasma Mg2+ and Ca2+ concentrations gradually increased to 16.2?±?0.7 and 4.5?±?0.2 mmol/l until 24 h, respectively. The NKA activity significantly increased to 5.1?±?1.1 µmol ADP/mg protein per h at 6 h. A positive correlation was observed between the wound surface area against body weight and the plasma ion concentrations, although no difference was observed in the restoration rate of the wounded area between 100 and 33% SW. These results indicate that exposure of wounded fish to low salinity water improves survivability by favoring plasma ion regulation without influencing the restoration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号