首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose  

This paper evaluates the feasibility of using the buffering capacity of natural soil for the remediation of dredged material before being disposed in soil landfills. To achieve that, an Integrated Soil Microcosms (ISM) system was designed to produce elutriates and leachates from the sediment/soil percentage mixtures. Furthermore, to investigate the biological effects of the contaminated sediments, the toxicity behavior of leachates and elutriates was assessed and compared by performing acute (48 h) toxicity assays with the cladoceran Daphnia magna as test organism.  相似文献   

2.
A comparison of elutriate and sediments effects on phytoplankton photosynthesis was undertaken in view of the widespread use of sediment elutriates in bioassays. The logistic problem of measuring 14C in the presence of sediments was overcome by extracting 14C labelled photosynthate with DMSO. In Lake Ontario, sediments were more inhibitory than elutriates to photosynthesis, depressing Pmax, the light saturated photosynthesis by up to 50%. The less severe toxicity of elutriates is attributed mainly to binding and removal from solution of metals with phosphate, although phosphate rich elutriates may also allow algae to accumulate polyphosphate which binds, and thus detoxifies metals inside the cells. Also, any hydrophobic organic contaminants present in the sediments and toxic to algae are not likely to be extracted into elutriates. In P deficient phytoplankton populations, the high concentrations of phosphate in elutriates may lead to a temporary depression of photosynthesis.  相似文献   

3.
Metal contamination of freshwater bodies resulting from mining activities or deactivated mines is a common problem worldwide such as in Portugal. Bra?al (galena ore) and Palhal (pyrrhotite, chalcopyrite, galena, sphalerite, and pyrite ore), located in a riverside position, are both examples of deactivated mining areas lacking implemented recovery plans since their shutdown in the early mid-1900s. In both mining areas, effluents still flow into two rivers. The purpose of this work was to evaluate the potential hazard posed by the mining effluents to freshwater communities. Therefore, short- and long-term ecotoxicological tests were performed on elutriates from river sediments collected at each site using standard test organisms that cover different functional levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Lemna minor, and Daphnia sp.). The results show that elutriates from the sediments of Palhal were very toxic to all tested species, while in contrast, elutriates from Bra?al showed generally no toxicity for the tested species. Our study highlights the usefulness of using an ecotoxicological approach to help in the prioritization/scoring of the most critical areas impacted by deactivated mines. This ecotoxicological test battery can provide important information about the ecological status of each concerning site before investing in the application of time-consuming and costly methods defined by the Water Framework Directive or can stand as a meaningful complementary analysis.  相似文献   

4.

Aim and Background  

In order to identify potential risks of sediments contaminated by pulp and paper mill effluents, two boreal lake areas were investigated from core samples. Resin acids (RA) and their aromatized derivative retene were measured, suggesting that these aquatic toxicants can be long-lasting sources to expose benthic biota. On the other hand, dredging or other human actions can liberate toxicants, even from deep sediments, to an aqueous phase with harmful consequences to aquatic species. Since no historical sediment profiles were available, we investigated the toxic potential of sediment-water elutriates by way of the bioluminescent bacteria Vibrio fischeri. In this investigation, we therefore analyzed both the concentrations of toxic chemicals and the toxicity as profiles in two contaminated lake sediments in Finland.  相似文献   

5.
Goal, Scope and Background. Based on a bioassay battery covering only primary producers and consumers as well as degraders, the potential ecological hazard of sediments to vertebrates cannot be estimated comprehensively. Therefore, there is an urgent need to develop and standardize integrated vertebrate-based test systems for sediment investigation strategies. Whereas vertebratebased in vitro systems have frequently been used for the investigation of aqueous samples, there is a significant lack of whole sediment assays. Thus, the purpose of the present study was: (1) to develop a rapid and reliable, but comprehensive method to investigate native sediments and particulate matters without preceding extraction procedures; (2) to compare the hazard potential of solid phase sediments to the effects of corresponding pore waters and organic extracts in order to characterize the bioavailability of the particle-bound pollutants; and (3) to relatively evaluate the embryotoxic effects of sediments from the catchment areas of the rivers Rhine, Neckar and Danube. Methods (or Main Features).  To investigate the toxicity of sediment samples on vertebrates, the standard embryo toxicity test with the zebrafish (Danio rerio; Hamilton-Buchanan 1922) according to DIN 38415-6 was modified with respect to exposure scheme and toxicological endpoints. Sediments from the catchment area of the Neckar River were assessed using pore waters, acetonic extracts and native sediments in order to get inside into the potential bioavailability of particle-bound pollutants. A comprehensive test protocol for the investigation of native sediments in the embryo toxicity test with the zebrafish is presented. Results and Discussion.  The fish embryo assay with Danio rerio can be carried out with both aqueous and organic sediment extracts as well as native (whole, solid phase) sediment samples. Elongation of exposure time from 48 to up to 196 h significantly increased the mortality. Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, including clear-cut dose-response curves for the embryotoxic effects of contaminated sediments; in contrast, absence of embryotoxic effects could be demonstrated even for the highest test concentrations of unpolluted sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that — at least for fish eggs — the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The relative ranking of sediment toxicity was identical using both native sediments and sediment extracts, EC20 values of the latter, however, being eight time lower higher than with the native sediments. A comparison of the embryo toxic effects of samples from the Neckar area with locations along the Rhine and Danube rivers elucidated a broad range of results, thus indicating different levels of contamination. Conclusions.  A modified protocol of the zebrafish embryo test allows the assessment of sediment toxicity in both aqueous extracts and native sediments. The isolated investigation of pore waters may result in a clear-cut underestimation of the bioavailability of lipophilic particle-bound substances (as determined by native sediments). Recommendations and Perspectives.  The zebrafish embryo test with native (whole, solid phase) sediments appears very promising for the evaluation of the bioavailable fraction of lipophilic particle-bound substances and can therefore be recommended for the evaluation of vertebrate toxicity in tiered sediment test strategies and dredging directives such as the HABAB-WSV. Whereas acetone extracts may be tested as a rough estimation of embryotoxicity, native sediment samples will provide a more comprehensive and realistic insight into the bioavailable hazard potential  相似文献   

6.

Purpose  

The main objective of the current study was to assess the impact of pleasure boat activities on harbour sediment quality in the Stockholm area. Sediment contamination is a growing ecological issue, and there is consequently a need to use sediment bioassays in combination with chemical analysis to determine the impact on the ecosystem. To generate sediment toxicity data relevant for the Baltic Sea, a secondary objective was to further develop and evaluate two well-established bioassays for saltwater, with the macroalga Ceramium tenuicorne and the crustacean Nitocra spinipes, to be useful also for toxicity testing of whole sediment. A major concern has been to minimize any manipulation of the sediments. A third objective was to assess whether a simple leaching procedure could be used to simulate sediment toxicity by comparing results from whole sediment and leachate tests.  相似文献   

7.
Background, Goal and Scope  To date, standardised bioassays for the assessment of the ecotoxicological potential in sediments and dredged material use test organisms like bacteria, algae and crustaceae. This paper presents the development and application of a novel sediment contact test (whole sediment) withMyriophyllum aquaticum, a representative of rooted aquatic macrophytes. The aim of the present study is to demonstrate the value of a sediment contact test with rooted macrophytes as a supplement to existing test batteries in order to improve the assessment of sediment toxicity. Methods  The newly developed sediment contact test withMyriophylhim aquaticum was applied to natural whole sediments. For performing the test, whorls ofMyriophyllum aquaticum were directly planted in the native sediment and incubated in the light at 24°C (cf. section results and discussion). The end points of the test were the number of the shoots and the fresh weight of the whole plants. The duckweed growth inhibition test withLemna minor according to ISO/DIS 20079 was performed in pore waters from sediment samples. The results of the sediment contact test withMyriophyllum aquaticum were compared with each other and with those of the aquatic duckweed test. Results and Discussion  A test protocol for the new plant-based sediment contact test using the aquatic plantMyriophyllum aquaticum as an indicator was developed. The best control sediment proved to be the OECD sediment (OECD 207). A test period of 10 days appeared to be sufficient for the test. The increase of biomass and the derived growth rate were found to be the most suitable evaluation parameters. The growth behaviour ofMyriophyllum aquaticum differed depending on the origin of sediments. Therefore, plant-affecting contamination, that is bound in sediments, was indicated. Conclusions  The novel sediment contact test withMyriophyllum aquaticum can indicate phytotoxic effects in sediments. Therefore, it allows a better assessment of the overall-toxicity in whole sediments. Recommendations and Outlook  The sediment contact test withMyriophyllum aquaticum is a valuable tool for the evaluation of the ecotoxicological risk potential of waters and sediments. It should become a complement to a standardised test battery generally used for the assessment of sediment toxicity.  相似文献   

8.
Goal, Scope and Background   Numerous xenobiotics released into surface waters are transferred to suspended particulate matter and finally attached to sediments. Aquatic organisms may be exposed to them by direct particle feeding, by physical contact with contaminated surfaces as an exposure route, and by the uptake of dissolved contaminants after equilibration via the free water phase. In order to assess potential sediment toxicity, each of these exposure routes has to be addressed. This paper presents a newly developed particle contact assay that uses the fermentation performance of a specific Saccharomyces cerevisiae strain for the assessment of toxic effects in sediments. The test procedure is based on the characteristic feature of growing yeast cells to attach to sediment particles, which are also relevant for the accumulation of contaminants. The physical contact with lipophilic contaminants mirrors an exposition pathway for the direct uptake into the cells. In order to quantitatively characterize the toxic effects of particle attached pollutants on the fermentation performance, unpolluted native reference sediment was spiked with representatives for widely distributed anthropogenic contaminants. Methods   Saccharomyces cerevisiae was established as sensitive eukaryotic microorganism for the ecotoxicological assessment of particle attached anthropogenic contaminants in freshwater sediments. For this purpose, yeast cells were cultivated in sediment samples and the resulting fermentation performance was continuously measured. Sediments artifically spiked with HCB, PCB, g-HCH, DDT, and benzo(a)pyrene and solutions of each contaminant were comparatively investigated by means of their adverse effects on yeast fermentation performance. Additionally, four native river sediments characterized by increasing levels of pollution were assessed by the yeast particle contact assay, and simultaneously by standard aquatic tests with algae, daphniae, and luminescent bacteria using pore water and elutriates. Results of the bioassays were related to specific sediment contamination with respect to metals and organic priority pollutants. Results and Discussion   In sediments spiked with PCB and benzo(a)pyrene fermentation, performance was affected extensively below concentrations inhibiting fermentation in contaminant solutions. This suggests a high efficiency of the exposure route by physical contact. The fermentation performance was only slightly affected by single lipophilic pollutants, whereas mixtures of individually spiked sediments caused critically reduced fermentation performance suggesting additive synergistic effects. Native river sediments modestly to critically polluted by hazardous organic compounds lead to a slightly to dangerously reduced fermentation performance in the yeast contact assay. These inhibitory effects were much less pronounced in the standard bioassays conducted with algae, daphniae and luminescent bacteria, applying pore waters and elutriates as sample matrices. Using pore water, inhibition was measured only in the most polluted sediment, elutriates lead to a slight inhibition of the algal growth in the undiluted sample only. These results indicate an improved sensitivity of the yeast particle contact assay compared to the standard assays, due to uptake and physical cell contact as additional routes of exposure. Conclusion   The yeast particle contact assay is a valuable tool for the assessment of ecotoxicological potential in freshwater sediments. Since the assay addresses physical contact as an exposure route, it indicates bioavailability of lipophilic compounds in sediments. Outlook   The sensitive indication of bioavailable contaminants associated to sediment particles by the newly developed yeast particle contact assay recommends it as a complementary microbial bioassay in a test battery for assessing major pathways of contaminants in whole sediments.  相似文献   

9.
Recent studies have shown that the lower basin of the Salado River is highly polluted with copper and chromium. In order to evaluate the effect of those metals on Notodiaptomus conifer, a representative calanoid copepod, we carried out two (acute and chronic) experimental assays. In the first one, the 24- and 48-h EC50 values were determined in nauplii and adults. Chronic assays were conducted to evaluate the time of development for nauplii, time of development for each copepodite stage, total development time, growth, number of ovigerous females, fecundity, and time required to produce the first egg sac. Additionally, the effect of those metals on the equiproportional model proposed for copepods was evaluated. Acute experiments reveled that juveniles were more sensible than adults. Although growth was not seriously affected by metal exposition, development time was delayed and reproductive variables were altered with the increase of metal concentrations. The deviation from the equiproportional model proposed for copepods proved to be a useful parameter to provide relevant information on toxicity of both metals along development time. In comparison with other zooplanktonic species, the highest sensitivity of N. conifer to copper and chromium makes it a suitable bioindicator in ecotoxicological tests.  相似文献   

10.
Goal, Scope and Background  Situated in the transboundary belt between Montenegro and Albania, Lake Skadar is the largest freshwater reservoir in Southeastern Europe. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Skadar and its extensive adjacent wetlands are internationally recognised as a site of significance and importance (Ramsar site). Within the last 10 to 20 years, Lake Skadar was exposed to intensive pollution. For the assessment of the ecotoxic load of the sediments sampled in Lake Skadar, a triad approach was recently applied. Overall, a complex spectrum of ecotoxic loads was elucidated. The aim of the present study was to use plant-based bioassays for assessing the sediment quality of Lake Skadar in order to facilitate and complement the triad test battery. The newly developed sediment contact test with Myriophyllum aquaticum and the aquatic growth inhibition test with Lemna minor were applied to native sediments and pore water, respectively, allowing the investigation of different toxicity-effects caused by particle-bound pollutants as well as pollutants in the interstitial water. This investigation is the first application of the novel sediment contact test with Myriophyllum aquaticum to lake sediments. Methods  Sediment samples were taken from nine selected sites at Lake Skadar and investigated by the sediment contact assay with Myriophyllum aquaticum. The pore water was extracted from these sediment samples to be analysed in the aquatic growth inhibition test with Lemna minor. The results of the sediment contact tests were compared with each other and with those of the aquatic growth inhibition test. Results and Discussion  Both applied macrophyte biotests revealed distinct changes in the growth behaviour of the two macrophytes subsequent to the exposure to the investigated natural sediments of Lake Skadar. The Myriophyllum sediment contact test revealed significant toxicity in the sediment samples from Radus and Kamenik, whereas the aquatic Lemna test showed inhibition effects for the samples from Sterbeq, Plavnica and Kamice. Data obtained with the newly developed Danio rerio contact test and the Arthrobacter globiformis contact test confirmed the Myriophyllum results. Analyses of the heavy metal content in the sediments revealed low or moderate contamination levels. Correlation analyses between the content of heavy metals in the sediments and growth inhibition of Myriophyllum aquaticum showed a significant correlation between Cr concentrations and growth inhibition. Comparable findings are available for a German river system. In contrast, no significant correlation between inhibition rates and concentration of metals could be observed with Lemna minor. Conclusions  It was shown that the newly developed sediment contact test with Myriophyllum aquaticum is applicable to lake sediments. In both the sediment contact test with Myriophyllum aquaticum on whole sediments and the aquatic growth inhibition test with Lemna minor on pore water, plant growth was influenced by the natural sediments and its components. Therefore, both test systems were found to be suitable for the detection of phytotoxic effects upon exposure to sediments. Myriophyllum aquaticum as test organism of the contact test grows directly in the sediment without an additional water-layer. Thus, it is able to detect toxicity caused by particle-bound phytotoxic substances as well as pore water-related contamination, while the floating Lemna minor can only detect effects emanating from pore water. Significant differences of the results were observed between these two test systems and, accordingly, the two different exposure scenarios. Hence, none of the tests can replace the other one and, as a consequence, both should be included into a test battery for the assessment of sediment toxicity. Recommendations and Perspectives  Both plant assays were shown to be reliable tools for the evaluation of the eco-toxicological risk potentials of pore water and solid-phase sediment. They should become a complement to the standardised test battery generally used for comprehensive hazard assessment. ESS-Submission Editor: Dr. Ulrike Kammann (ulrike.kammann@ifo.bfa-fisch.de)  相似文献   

11.

Purpose

This paper reports a toxicity survey of Canadian Arctic marine sediments. During the Amundsen scientific cruise, eight sites distributed across the Canadian Arctic and sub-Arctic regions were selected to highlight sensitive areas affected by either atmospheric deposition, ocean current, river drainage, or anthropogenic activities. As part of the Canadian-led ArcticNet research program, this study aims to monitor and to better understand potential changes likely to impact the Arctic.

Materials and methods

Surface sediments were investigated with bioanalytical tests to assess sediment toxicity. Testing of sediment elutriates was undertaken with the ARTOXKIT M, Microtox liquid phase (MLPA), and ROTOXKIT M toxicity assays, while whole sediment testing was carried out with the Microtox solid phase assay (MSPA) toxicity test procedure. Sediment mercury (Hg) content was also determined in each sample since Hg transport and toxicity is specifically an important issue in the Arctic and is generally a key indicator of the pollution status in many aquatic ecosystems.

Results and discussion

Based on bioassay results and sediment granulometric criteria, these Arctic sediments must be considered nontoxic. However, based on MSPA half maximal inhibitory concentrations (IC50s) and/or MLPA threshold effect concentration (TEC) values, some degree of toxicity may be measureable particularly in the sediments located in southern and northeast Hudson Bay. The Hudson Bay watershed drains 30% of Canadian rivers and extends to northern USA. Despite the large Hg concern in the Arctic, the input of local or long-range Hg sources does not appear to be a contributing factor to sediment toxicity.

Conclusions

These initial results are valuable in that they set baseline quality levels for these sediments as of 2005. As such, future comparisons can be made to assess temporal and spatial trends. Human activity and climate change is expected to impact these regions in the future, resulting in further reduction of sea ice extent, access to new Arctic seaways, and drilling associated with the exploitation of natural resources.  相似文献   

12.
Background, aim, and scope  It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods  Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e., ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion  Clear concentration–response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi-polar compounds, which are normally not considered in risk assessment of sediment since they are focused on compounds isolated in the hexane fraction. Conclusions  The ranking of the five sediments followed the expected pattern of potential toxicity in both organisms, i.e., sediments with known pollution history caused major effects while reference sediments caused minor effects in the two test systems. Silica gel turned out to be an excellent carrier for exposure of N. spinipes to very hydrophobic and otherwise non-bioavailable sediment extracts. Recommendations and perspectives  Since both test systems demonstrated that a substantial part of the potential toxicity was caused by semi-polar compounds in the acetone fractions, this study enlightens our poor understanding of which compounds are causing adverse effects in environmental samples. Therefore, by investigating potential toxicity (i.e., hazard identification) as a first screening step in prioritizing processes, these implications could be avoided. For proper sediment risk assessment, we however recommend whole sediment toxicity tests to be used for selected sites at following tiers.  相似文献   

13.
The impact of storm water runoff on a small urban stream   总被引:2,自引:0,他引:2  
Background, aim, and scope  In urban areas, storm water runoff often transports various pollutants, some of which settle and form sediments. In order to have the comprehensive view of the ecological state of storm water runoff recipients, both water and sediments of the stream must be assessed. In the Baltic Sea Area, the Water Framework Directive & HELCOM Recommendations aim to prevent or minimise pollution caused by harmful substances arising from storm water runoff, in order to promote the ecological restoration of the Baltic Sea—one of the most vulnerable seas. The aim of the study was to investigate the toxicity of bottom sediments of a small storm water runoff recipient focusing on the potential impact of successive discharges of urban storm water. Some storm water runoff quality parameters and the toxicity of bottom sediments of recipients was studied in this research. Materials and methods  During 9 years, at four discharge points, minimum four grab samples per year at each discharge point were taken for chemical characterisation. General parameters (pH, SS, BOD7, CODCr and TPH) in liquid phase samples were analysed according to standard methods. Annual limit values were taken from the Lithuanian EPA requirements for the management of storm water runoff with a focus on prevention and control of contamination. Eleven composite samples of stream bottom sediments, each consisting of ten sub-samples, were collected in 2006. Toxicity screening from sediments was performed using the plant Lepidium sativum according to modified I. Magone’s methodology (Magone I, Bioindication of phytotoxicity of transport emission. In: Kachalova O-L, Zinatne (eds) Bioindication of toxicity of transport emissions in the impact of highway emissions on natural environment. Riga, pp 108–116, 1989). The level of toxic impact of Lepidium sativum (compared to control) was assessed according to the modified method of Wang (Rev Environ Contam Toxicol 126:88–127, 1992). Results  The mean pH of urban storm water runoff does not vary much from neutral, but range values are quite different, from 4.0 up to 8.7. The highest concentration of SS reached 800 mg L−1, TPH—2.4 mg L−1, BOD7—300 mg O2 L−1 and CODCr—1,400 mg L−1. The SS was above the limit in 64% of total amount of grab samples, TPH—37%, BOD7—41% and CODCr—55%. The toxicity analysis of the bottom sediments showed varying toxicity of bottom sediments along the stream. From nine analysed samples of bottom sediments, 30% had weak toxicity, 30% medium and 30% strong toxicity on the test organism plant L. sativum. There was one single sample with no toxic effects, so that the results showed that urban storm water has an unacceptable environmental impact on recipients. It was also indicated that storm water runoff discharge alone is not the potential source of toxicity of bottom sediments. The litter demonstrated a weak toxicity of bottom sediments as well. Discussion  Most local authorities do not consider storm water runoff discharges to be a matter of great concern because they believe that surface runoff arising from rainfall is still relatively clean. The study showed that the current method of monitoring storm water runoff quality by chemical analyses is not the best tool for environmental impact assessment and must be combined with toxicity tests of bottom sediments of recipients. Recommendations and perspectives  To avoid the environmental impact of storm water runoff more attention should be paid to the development and implementation of storm water runoff pollution prevention measures. The study implies that future research concerning the relationships between storm water runoff deposit characteristics and biological activities must be developed to evaluate the contamination potential of stream sediment deposits for local aquatic ecosystems. Further studies should be developed to characterise the activities of the microbial community of storm water runoff sediments, and to monitor bioremediation in situ.  相似文献   

14.
Aluminum (Al) toxicity is a major factor limiting yield production on acid soils (Foy 1983). The initial symptom of Al toxicity in many plants is manifested by the inhibition of root elongation (Ownby and Popham 1990; Llugany et al. 1994; Sasaki et al. 1994; Horst et al. 1997), which occurs during a very short period of time after exposure to Al (Llugany et al. 1994; Staß and Horst 1995). In a large number of recent reports, it was shown that the root apex plays a major role in the Al-sensitivity and response mechanisms (Zhang et al. 1994; Sasaki et al. 1997; Sivaguru and Horst 1998). However, it is interesting to note that stimulatory effects of Al on the growth of plants have also been reported in some studies (Chenery 1955; Konishi et al. 1985; Huang and Bachelard 1993; Osaki et al. 1997). In tea plant (Camellia sinensis L.) a stimulatory effect of Al on the growth was also demonstrated in some experiments, using intact plant (Chenery 1955; Konishi et al. 1985), cultured roots (Tsuji et al. 1994), and pollen tubes (Yokota et al. 1997). The growth of tea roots was typically more stimulated than that of shoots by Al (Konishi et al. 1985). It was assumed that Al effects might be due to the amelioration of phosphorus absorption (Konishi et al. 1985), secretion of malic acid from roots to dissolve aluminum phosphate in the rhizosphere (Jayman and Sivasubramaniam 1975), stimulation of growth of microorganisms on the root surface (Konishi 1990) or replacement of some functions of boron (Konishi 1992; Yokota et al. 1997). However, the stimulatory effects of Al on tea plant growth have not yet been el ucidated.

The formation of callose (1,3-β-glucan) has been reported as a common plant response to a variety of stresses, as well as mechanical, biophysical, chemical, and biological injury (Jaffe and Leopold 1984; Zhang et al. 1994). Increased synthesis of callose has been observed upon exposure to excess amounts of some elements, such as boron (McNairn and Currier 1965), cobalt, nickel, zinc (Peterson and Rauser 1979), and manganese (Wissemeier and Horst} 1987, 1992). Callose synthesis was also induced by Al in the roots of Triticum aestivum (Zhang et al. 1994) and Zea mays (Horst et al. 1997; Sivaguru and Horst 1998), suspension-cultured cells of Glycine max (Staß and Horst 1995), and protoplasts of Avena sativa (Schaeffer and Walton 1990) and Zea mays (Wagatsuma et al. 1995). Induction of callose synthesis in roots seems to be a very rapid physiological indicator of Al-induced injury or genotypical differences in Al sensitivity (Wissemeier and Horst 1992; Zhang et al. 1994; Horst et al. 1997). Nevertheless, Al-induced callose synthesis in tea plant, whose growth is stimulated by suitable Al concentrations, has not been described yet. Therefore, to elucidate the physiological basic effects of Al on tea plant, callose synthesis affected by Al in the root tips of intact plants was analyzed in the present study.  相似文献   

15.
Although zinc (Zn) is an essential element for the growth of higher plants, excess supply may lead to growth inhibition. Symptoms of Zn toxicity are characterized by a reduction in root growth and leaf expansion followed by chlorosis (Mengel and Kirkby 1987), especially root elongation is severely inhibited (Godbold et al. 1983). Due to the increase of input of Zn to farmland by the application of sewage sludge or large amounts of Zn-containing pig manure, Zn toxicity may become an important problem in certain regions (Ruano et al. 1987). In addition, Zn toxicity is also a problem in some acidic soils (Takahashi et al. 1980).

Increasing soil pH by liming is the most effective procedure for decreasing both Zn content and Zn toxicity in plants (White et al. 1979), because Zn solubility decreases 100 times for each unit increase in pH (Neue and Lantin 1994). As an alternative approach, application of large amounts of phosphorus (P) fertilizer was employed to detoxify Zn (Takahashi et al. 1980). However, the mechanisms responsible for the detoxification of the excess Zn by P is remained to be elucidated.

Interactions between Zn and P, which may occur in the rhizosphere and in the uptake and translocation processes, are complex. To separate these factors, in the present study, pollen tubes of tea (Camellia sinensis L.) were used as a model, and the efrect of P on pollen tube growth under Zn toxicity was studied.  相似文献   

16.

Purpose  

Previous studies have shown that ivermectin, a widely used parasiticide, is very toxic to many non-target invertebrate species. In view of the strong binding of ivermectin to sediments and the scarcity of data on chronic toxicity to freshwater sediment invertebrates, chronic effects of the parasiticide on the midge Chironomus riparius and the oligochaete Lumbriculus variegatus were investigated.  相似文献   

17.
Background and Objectives  The current environmental legislation regulating pollution issues is based on total levels of pollutants. This approach is not taking into account the bioavailability of pollutants (that is especially important for an analysis of soils and sediments as heavy metals and hydrophobic organic toxicants tend to sorb to solid matrix) and effects of toxicants in mixtures. Thus, toxicity-based criteria should be added to the currently existing chemical ones for the meaningful evaluation of the environmental hazard. The aim of the current study was 1) to compare the ecotoxicity and chemistry-based environmental evaluations for 27 solid-phase environmental samples (soils, sediments, solid wastes); 2) to suggest the battery of biotests for the screening of water-extracted toxicity. Methods  14 soils, 9 sediments and 4 oil-shale industry solid waste samples from Estonia and Lithuania were analyzed for the concentration of total PAHs, heavy metals, oil products and water-extracted phenols. The pollution level was evaluated by comparison of measured concentrations with Estonian permitted limit values in residential (PLVr) and industrial (PLVi) areas for each key pollutant A battery of 8 aquatic toxicity tests was applied for the analysis of aqueous extracts (L/S=3) of samples: tests with microalgaeSelenastrum capricornutum, macroalgaeNitellopsis obtusa, protozoaTetrahymena thermophila, crustaceansDaphnia magna andThamnocephalus platyurus, rotifersBrachionus calyciflorus and photobacteriaVibrio fiscberi. Particle-bound bioavailable toxicity was evaluated using a kinetic photobacterial assay withVibrio fiscberi (Solid-Phase Flash-Assay). The toxicity data were evaluated by MaxTox index (highest toxic signal of the battery). Results  Chemical evaluation and toxicological evaluation pointed to the same direction in half of the cases (13/27): 5 samples (including 2 presumably clean control soils) proved harmless and 8 hazardous to environment in case of both evaluations. However, there was a disagreement between chemical and toxicological evaluations for the rest of the samples (14/27). In two mismatching cases (soils from the territory of former gasoline stations) the level of oil products exceeded the PLVr, but no toxicity was detected, most probably due to the low bioavailability of aged pollutants. It must be taken as a warning that a majority of mismatching cases (12/14) of the samples proved to be toxic or even very toxic despite the fact that the measured hazardous key pollutant levels were below the PLVr. Within these 12 samples were 2 soils from municipal dumping sites, 2 soils from the territory of military airport, 6 sediments from Curonian lagoon (Lithuania) and 2 oil-shale industry solid wastes (Estonia). Conclusions  The results of this study show the necessity of biotesting in environmental risk assessment to avoid the falsenegative results that may result in harmful effects for the ecosystems and also to human health. The following, reduced test battery was proposed for the ecotoxicological hazard assessment of water-extractable toxicity of solid-phase samples:Tetrahymena thermophila growth inhibition assay,Daphnia magna mortality assay andSelenastrum capricornutum growth inhibition assay. Also, the Microtox test (Vibrio fiscberi luminescence inhibition assay) could be valuable for screening purposes. For the evaluation of particle-bound, bioavailable toxicity of soil suspensions, Solid-Phase Flash-Assay (test organismVibrio fiscberi) is suggested. Compared to the results obtained with the initial battery of 8 tests, the reduced battery detected the toxicity in 85% of the cases.  相似文献   

18.
Background, Aim and Scope  Unresolved complex mixtures (UCM) of hydrocarbons, containing many thousands of compounds which cannot be resolved by conventional gas chromatography (GC), are common contaminants of sediments but little is known of their potential to affect sediment-dwelling organisms. Evidence exists for reduced health status in mussels, arising from aqueous exposure to aromatic UCM components acting through a narcotic mode of action. However, UCM contaminants in sediments may not be sufficiently bioavailable to elicit toxic effects. The aim of our study was therefore to measure the sublethal effects of chronic exposure to model UCM-dominated oils at environmentally realistic concentrations and compare this to effects produced by a UCM containing weathered crude oil. A further aim was to determine which, if any, fractions of the oils were responsible for any observed toxicity. Materials and Methods  Whole oils were spiked into estuarine sediment to give nominal concentrations of 500 μg g−1 dry weight. Juveniles of the estuarine amphipod Corophium volutator were exposed to the contaminated sediment for 35 days and their survival, growth rate and reproductive success quantified. Using an effect-directed fractionation approach, the oils were fractionated into aliphatic and two aromatic fractions by open column chromatography and their toxicity assessed by further chronic exposures using juvenile C. volutator. Results  The growth rates of amphipods were reduced following exposure to the oils although this was only statistically significant for the weathered oil; reproductive success was reduced by all oil exposures. Sediment spiked with UCM fractions also caused reduced growth and reproduction but no particular fraction was found to be responsible for the observed toxicity. Survivorship was not affected by any oil or fraction. Discussion  The study showed that chronic exposure to sediments contaminated by UCM-dominated oils could have population level effects on amphipods. The observed effects could not be explained by hydrocarbons resolved by conventional GC and effects were similar for both UCM-dominated and weathered oils. All of the fractions appeared to contribute to the observed effects; this is in contrast to previous research which had shown that an aliphatic UCM did not cause adverse effects in mussels. Conclusions  To our knowledge, this is the first study to demonstrate population-level effects arising from exposure to sediments contaminated by realistic environmental concentrations of UCM hydrocarbons. The results are consistent with many compounds, at very low individual concentrations, contributing towards the overall observed toxicity. Recommendations  Risk assessments of contaminated sediments should take into account the contribution towards the potential for toxic effects from UCM hydrocarbons. Studies into sediment contamination should report both aliphatic and aromatic UCM concentrations to aid risk assessments. ESS-Submission Editor: Henner Hollert (hollert@uni-heidelberg.de) This paper has been developed from a presentation at SETAC Europe 16th Annual Meeting 2006 held at the The Hague, The Netherlands.  相似文献   

19.

Purpose  

The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD.  相似文献   

20.

Background, aim, and scope

Restoration of lakes and reservoirs with extensive cyanobacterial water bloom often requires evaluation of the sediment quality. Next to the chemical analysis of known pollutants, sediment bioassays should be employed to assess toxicity of the present contaminants and to make predictions of associated risk. Brno reservoir in the Czech Republic is a typical example of water bodies with long-term problems concerning cyanobacterial water blooms. Comprehensive assessment of reservoir sediment quality was conducted since successful reservoir restoration might require sediment removal. An important part of this survey focused on an examination of the utility of Tubifex tubifex and its sublethal biochemical markers for the assessment of direct sediment toxicity.

Materials and methods

This complex study included chemical analysis of contaminants (heavy metals, organic pollutants), ecotoxicity testing of sediment elutriates (tests with Daphnia magna, Pseudomonas putida, Sinapis alba, Scenedesmus subspicatus), and other parameters. We have tested in more detail the applicability of T. tubifex as a test organism for direct evaluation of contact sediment toxicity. Survival tests after 14 days of exposure were complemented by an assessment of parameters serving as biomarkers for sublethal effects [such as total glutathione content (GSH), activities of the enzymes glutathione transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR)]. The data matrix was subjected to multivariate analysis to interpret relationships between different parameters and possible differences among locations.

Results

The multivariate statistical techniques helped to clearly identify the more contaminated upstream sites and separate them from the less contaminated and reference samples. The data document closer relationships of the detected sediment contamination with results of direct sediment exposure in the T. tubifex test regarding mortality but namely regarding the sublethal endpoints rather than the results obtained with other test organisms exposed to sediment elutriates. Aside from the reduction in T. tubifex survival, the sediments with organic pollution caused an increase in glutathione content and increased activities of glutathione S-transferase and glutathione peroxidase in the exposed T. tubifex worms.

Discussion

Results of our study confirm the suitability of T. tubifex for toxicity testing of raw waters and sediments. This longer-lasting direct contact test has proven more sensitive and appropriate to reflect a lower level of pollution than do the elutriate tests. Sensitive biochemical changes in T. tubifex, including an elevation in GSH levels and GST activities, reflect a general stimulation of detoxification metabolisms in the presence of xenobiotics. The results also suggest an important role of glutathione and related enzymes in detoxification processes and possible involvement of oxidative stress in toxicity mechanisms in benthic sediment-dwelling worms such as T. tubifex.

Conclusions

The complex assessment has identified the more contaminated samples with locally increased concentration of organic pollutants and significant ecotoxicity. The direct sediment contact test with T. tubifex and especially the biochemical parameters corresponded better to the lower level of pollution than the other tests with sediment elutriates. Despite its greater time and cost demands, the direct sediment contact test can provide a more realistic picture of exposure.

Recommendations and perspectives

Sediment bioassays should always be included as an integral part of the sediment quality assessment. The direct contact tests also take into account the more hydrophobic pollutants that are not easily available for the water elution but can still be accessible to the organisms. The T. tubifex test is a suitable option for contact sediment toxicity tests also because these animals show measurable sublethal biochemical changes that can be associated with this exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号