首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了阐明不同玉米自交系间氮效率差异特征,筛选优异的氮高效种质,改良玉米的氮素利用效率,为玉米氮高效育种方面的研究奠定基础.以平均产量和氮效率为评价指标并结合抽雄期、散粉期、成熟期、株高、穗位等二级性状,对25份目前在黄淮海应用的核心种质和自育玉米自交系材料进行相关性分析及氮利用效率评价.相关性分析结果表明,氮效率在2种不同的氮处理条件下与散粉-吐丝间隔期、平均产量都呈极显著正相关,与株高分别呈显著和极显著正相关,即3个性状可作为评价玉米自交系材料氮效率高低的指标.方差分析结果显示,在低氮和高氮条件下,散粉-吐丝间隔期、平均产量及株高均存在极显著的差异.将高氮条件与低氮条件下的平均产量进行分析并结合株高和散粉-吐丝间隔期等二级性状,鉴定出郑58、WK858和9058这3个玉米自交系材料可在氮高效育种中作为供体亲本来改良玉米的氮素利用效率.丰富了氮高效种质资源,评价了不同玉米材料的氮素利用效率,揭示了不同材料对氮素的反应程度,为氮高效育种提供材料以及自交系的选育和合理的利用肥料提供理论基础和技术支撑.  相似文献   

2.
茄子氮效率基因型差异的研究   总被引:2,自引:0,他引:2  
为了解茄子的氮素吸收利用特性和筛选氮高效基因型,采用田间小区试验和测试分析方法,通过测定茄子产量、氮利用效率、氮响应度和氮素吸收总量等指标,对10个茄子基因型进行了氮效率方面的研究。结果表明,不同基因型茄子的产量、氮利用效率、氮响应度和氮素吸收总量均存在显著差异。根据供试材料在施氮和不施氮处理下氮效率的不同将供试10个基因型划分为5种类型:高氮高效-低氮高效型(HH-LH)包括06-991;高氮高效-低氮中效型(HH-LM)包括06-917;高氮高效-低氮低效型(HH-LL)包括06-961和06-867;高氮中效-低氮低效型(HM-LL)包括06-972,06-947,06-854,06-830和06-909;高氮低效-低氮低效型(HL-LL)包括06-910。对氮效率构成因素通径分析表明,氮素吸收总量对氮效率的直接作用大于氮利用效率的直接作用,氮素吸收总量是决定氮效率的主要因素。  相似文献   

3.
不同马铃薯品种的氮利用效率及其分类研究   总被引:3,自引:0,他引:3  
以7个马铃薯品种为供试材料,设置大田条件下施氮和不施氮2种处理,在对块茎产量和植株氮素吸收、利用评价的基础上,将不同氮效率品种马铃薯分类并解析了其差异机制。基于2016年施氮和不施氮条件下各品种马铃薯的平均产量,把不同氮效率品种马铃薯分为双高效型、低氮高效型、高氮高效型和双低效型。2017年选择双高效型、低氮高效型、双低效型的代表性品种,对各类型氮效率差异进一步解析表明,双高效型氮素利用效率显著高于另两个类型,氮素吸收效率则是双高效型、低氮高效型显著高于双低效型。不施氮条件下,双高效型马铃薯的干物质累积量在整个生育时期均显著高于另2个品种;双高效型、低氮高效型氮素累积速率在出苗后0~50d显著高于双低效型马铃薯。施氮条件下,双高效型马铃薯的干物质累积量显著高于另2个品种,与双低效型马铃薯相比,双高效型和低氮高效型产量的提高主要归因于它们前期较高的干物质累积;双高效型氮素累积速率显著高于双低效型、低氮高效型。双高效型马铃薯在各生育期的物质生产和氮素吸收能力强,从而有利于氮效率提升和产量的形成。该研究结果可为马铃薯氮高效品种筛选和利用提供理论支撑。  相似文献   

4.
不同氮效率茄子氮代谢相关酶活性的差异   总被引:3,自引:0,他引:3  
以3个不同氮效率基因型茄子为供试材料,采用大田培养,研究了正常供氮和低氮胁迫下,茄子幼苗期到结果期的氮代谢相关酶活性,探讨氮代谢相关酶活性的差异.结果表明,与正常供氮相比,低氮胁迫下,不同氮效率基因型茄子的硝酸还原酶活性、谷氨酰胺合成酶活性均降低,且大多数指标达到显著水平.与低氮高效基因型07-860及氮双低效基因型07-857相比,氮双高效基因型07-862具有较强的氮代谢相关酶活性.在供氮水平相同条件下,通过对幼苗期至结果期不同氮效率基因型进行GS及NR活性测定,选择具有相对高活性GS及NR的氮效率基因型是对氮高效基因型的有效早期选择.  相似文献   

5.
不同氮效率玉米自交系对氮素供应的反应   总被引:9,自引:2,他引:7  
以对氮反应有典型差异的玉米自交系自330和陈94—11为材料,研究了不同供氮水平对其生物量和氮素吸收、利用的基因型差异。结果表明,植株的株高、叶片数、氮浓度、含氮量以及地上部生物量随着供氮水平的降低而降低,但根系的生物量、根冠比和氮素的根冠比却呈上升趋势。自330在氮素胁迫的条件下,具有较高的耐低氮能力。两个基因型玉米自交系吸氮量表现出的差异不是由于其氮含量造成的,而是由于根系生物量的差异造成的。  相似文献   

6.
阐明不同氮效率玉米品种对土壤硝态氮时空分布及农田氮素平衡的影响, 是挖掘品种氮素高效利用的生物学潜力, 提高氮素供应与作物需求的匹配度, 进而提高氮肥利用效率的重要途径。本研究以氮高效玉米品种郑单958、金山27和氮低效玉米品种蒙农2133、内单314、四单19为材料, 在不同施氮量下(0、300和450 kg hm-2), 系统研究了不同氮效率玉米品种对土壤硝态氮时空分布、农田氮素平衡的影响, 并分析了植株氮积累量与土壤硝态氮累积量的关系。结果表明, 不同施氮水平下, 氮高效品种的产量、氮素吸收效率、氮肥利用率都显著高于氮低效品种; 相关分析表明植株氮素积累量与土壤硝态氮累积量呈显著负相关。从土壤硝态氮时空分布来看, 随生育进程, 土壤硝态氮含量最大土层逐渐下移, 下移速率不受品种氮效率影响, 其年际间差异与降雨量差异显著相关; 但吐丝后氮高效品种的60~100 cm土壤剖面内硝态氮含量显著低于氮低效品种, 差异达显著水平; 收获后土壤硝态氮残留量则表现为氮低效品种显著高于氮高效品种, 且随施氮量的增加显著增加。从农田氮素平衡来看, 品种的氮效率显著影响农田土壤氮素残留及表观损失, 氮低效品种的农田氮素表观损失是氮高效品种的2.2倍(300 kg hm-2)和1.5倍(450 kg hm-2), 且年际间差异较大。因此, 不同氮效率品种通过对氮素的差异性吸收显著影响农田氮素平衡。选用氮高效品种可显著降低土壤中硝态氮残留和表观损失, 降低氮素淋溶风险, 是提高氮肥利用率的有效途径。  相似文献   

7.
本试验以21份不同玉米自交系为基础材料,通过钾素吸收效率的聚类分析将供试材料分为钾高效型、钾中效型和钾低效型三类。以三种不同钾素吸收效率类型玉米自交系为材料,采用大田试验,研究了施用钾肥对不同钾素吸收效率类型玉米自交系光合、荧光特性和钾素吸收效率的影响。结果表明,与不施钾水平相比较,在施钾水平下,玉米自交系穗位叶的净光合速率、气孔导度、蒸腾速率、可变荧光、最大荧光产量、最大光化学效率、籽粒钾素积累量、钾含量和钾素吸收效率均显著升高,胞间CO2浓度和初始荧光显著降低。可变荧光和最大荧光产量的升高,以及初始荧光的降低显著增加净光合速率,进而提高钾素吸收效率。不施钾水平下,钾高效型玉米自交系钾素吸收效率、光合特性和荧光特性降低程度较小,说明钾高效型玉米自交系在低钾胁迫下维持钾素营养、光合及荧光特性的能力较强,这为下一步钾高效型玉米材料的选育提供理论基础。  相似文献   

8.
氮效率研究是油菜营养性状遗传改良的前提,为探究不同氮效率油菜种质苗期氮吸收、转运和利用的异同,以2个氮效率差异油菜种质H6(氮高效)和L18(氮低效)为供试材料,利用水培营养液设置正常氮(CK)和低氮(LN)2个氮浓度处理,培养14d后检测植株氮含量,计算氮累积量、氮转运系数和氮利用效率。结果显示,不同氮浓度处理对油菜苗期氮的吸收、转运和利用效率影响的差异达到极显著水平(P<0.01)。与CK相比,LN处理的油菜生物量、氮含量和氮累积量均显著降低,而氮利用效率和根冠比显著提高;氮高效油菜种质H6的生物量、氮累积量、氮转运系数和氮生理利用效率均显著大于氮低效种质L18,分别为L18的2.07、1.42、3.23和1.56倍。从氮的吸收、转运和利用3个方面探讨了低氮胁迫处理下油菜种质苗期氮效率差异的原因,对深入开展油菜氮高效机理研究及油菜品种氮效率改良具有一定的指导意义。  相似文献   

9.
水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响   总被引:16,自引:0,他引:16  
以高产氮高效品种(德香4103)和中产氮低效品种(宜香3724)为材料,通过“淹水灌溉+氮肥优化运筹(W1N1)”、“控制性交替灌溉+氮肥优化运筹(W2N1)”、“旱种+氮肥优化运筹(W3N2)” 3种水氮管理模式处理,研究其对氮素利用及产量的影响及其生理特性,并探讨氮素利用及产量与生理响应间的关系。结果表明,氮效率品种间的差异与水氮管理模式对水稻氮素利用特征、灌溉水生产效率、生理特性及产量均存在显著影响;不同氮效率品种间在氮肥利用效率方面的差异明显高于水氮管理模式的调控效应;而水氮管理模式对灌溉水生产效率、总吸氮量、氮素干物质生产效率及稻谷生产效率的调控作用显著。W2N1相对于W1N1及W3N2水氮管理模式能促进不同氮效率水稻拔节至抽穗期、抽穗至成熟期氮素的累积,提高功能叶谷氨酰胺合成酶(GS)活性、光合速率(Pn)及根系活力,进而提高稻谷产量及氮肥利用率,且对中产氮低效品种的调控效应显著高于对高产氮高效品种,为本试验最佳的水氮管理模式。高产氮高效品种的平均总颖花数、拔节至抽穗期稻株氮累积量、功能叶GS活性、Pn及根系活力均显著高于氮低效品种,尤其结实期高产氮高效品种更有利于维持叶片及根系的代谢同化能力,利于氮素转运、再分配到籽粒中提高稻谷生产效率及氮肥利用效率,是氮高效品种相对于氮低效品种高产、氮高效利用的重要原因。相关分析表明,水氮管理模式下不同氮效率水稻主要生育时期功能叶GS活性、Pn及根系活力与氮素利用及稻谷产量均存在显著或极显著的正相关;尤其以水稻抽穗期剑叶GS活性及根系活力与氮素利用及稻谷产量的正相关性最高。  相似文献   

10.
施氮对不同基因型玉米籽粒发育和氮效率的影响   总被引:2,自引:0,他引:2  
为解决生产中氮肥过度施用造成的资源浪费和环境污染问题,选择适宜的玉米氮高效品种至关重要。在不同施氮水平下,对不同基因型玉米籽粒发育及氮效率的差异进行了比较,采用田间试验,对屯玉99(TY)、潞玉19(LY)、先玉335(XY)3个玉米品种在4个施氮水平N0、N1、N2、N3(0,80,160,240 kg/hm2)条件下的籽粒发育和氮效率进行对比分析。结果表明,各品种玉米的籽粒干质量与氮含量差异在N3水平下最大,依次表现为N3N2N0N1;随着施氮量的增加,双高效型先玉335和高氮高效型屯玉99籽粒发育速率加快,籽粒干质量和籽粒氮含量在各生长时期都有明显增加,增施氮肥可以有效提高其氮肥利用率,促进氮在玉米植物体内的转移;低氮高效型潞玉19在低氮(N0、N1)水平下保持较高的产量,但随施氮量的增加,其籽粒干质量和氮含量无明显变化,产量甚至有所降低,导致氮利用效率降低。双高效型先玉335在低氮和高氮条件下都有较好的产量,是适合广泛种植的玉米品种;低氮高效型潞玉19适合在贫瘠土壤和施氮条件不良的条件下种植。  相似文献   

11.
为探讨低氮胁迫对玉米自交系幼苗生物量和根系形态的影响,以35份玉米自交系为材料,测定了两个氮素水平处理后14d玉米幼苗的单株干重、地上部干重、根干重、根冠比、总根长、根表面积、根体积、根平均直径、侧根数和初生根长。结果表明,低氮胁迫下玉米幼苗根干重、根冠比、根总表面积、根体积、侧根数、根平均直径和初生根长显著增加,地上部干重和单株干重显著减小,而总根长没有明显变化。通过主成分分析和聚类分析发现,同一氮素水平下,玉米幼苗各性状的综合表现存在基因型差异,且在正常氮素和低氮条件下均可以分为6组。低氮处理后,选取的9个自交系地上部氮素积累量均显著降低,PH4CV、B73和XY4的根系氮素积累量显著增加,其余6个自交系显著降低。此外,只有XY4的氮素吸收和利用效率均较高。综合分析表明,XY4是低氮高效型玉米自交系。  相似文献   

12.
保护性耕作是改善农田土壤肥力的重要举措,然而其对作物氮吸收与产量的作用尚不明确。为此,本试验于2016—2017年稻季在湖北省武穴市花桥镇,设置常规翻耕与免耕两种耕作方式以及前茬作物秸秆全量还田与不还田两种秸秆还田方法,研究耕作与秸秆还田方式对稻田土壤N2O排放、根系酶活性、水稻氮吸收与产量的影响。结果表明,耕作方式显著影响土壤N2O排放,但不影响根系硝酸还原酶与谷氨酰胺合成酶活性、水稻氮吸收与产量。与翻耕处理相比,免耕处理2016年和2017年土壤N2O排放量分别显著提高了12.5%~18.2%和21.1%~38.6%。秸秆还田显著影响土壤N2O排放量、根系酶活性、水稻氮吸收与产量。相对于秸秆不还田处理,秸秆还田处理2016年和2017年土壤N2O排放量分别显著提高了38.5%~45.5%和13.1%~29.5%。秸秆还田处理相对于不还田处理根系硝酸还原酶与谷氨酰胺合成酶活性分别显著增加了6.7%~45.9%和9.0%~46.7%,水稻氮吸收量提高了12.5%~26.0%,产量增加了9.4%~12.6%。本文认为,虽然秸秆还田提高了水稻氮吸收与产量,但也促进了土壤N2O的排放,因此在评估保护性耕作稻田温室效应时应加强对温室气体(CH4和N2O)排放和土壤碳固定影响的长期监测,以期为发展低碳稻作提供理论依据和技术支撑。  相似文献   

13.
玉米果穗发育的生理特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探讨玉米优良自交系选育中出现短苞叶品种的原因,从生理角度分析了两玉米自交系品种穗轴与苞叶生长发育变化趋势。结果表明:四个时期中139号苞叶硝酸还原酶活性非常低,对照1号的稍高一些。139号苞叶谷氨酰胺合成酶活性小于1号,且1号的酶活性变化较平缓。139号雌穗轴硝酸还原酶活性变化剧烈,授粉后15d达高峰,明显大于1号。139号雌穗轴谷氨酰胺合成酶活性前三时期始终大于1号,最后一时期二者几乎相等,但1号的酶活性变化平缓。就上述结果从氮代谢方面分析了139号苞叶与穗轴发育失调的原因。  相似文献   

14.
聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制   总被引:8,自引:0,他引:8  
2016年和2017年在中国农业科学院作物科学研究所吉林公主岭试验站(43°29'55'N,124°48'43'E),以中单909为材料,设置常规氮素(CN)和PASP螯合氮素(PASP-N)的不同施肥量全基施处理,探讨东北春玉米PASP螯合氮素减量全基施的增效机制。结果表明,相比CN,PASP-N在总施氮量减少1/3的条件下,玉米增产0.9%~3.0%,穗长增加0.5%~2.9%,灌浆中期叶面积指数增大18.5%~22.3%,秃尖长降低13.8%~46.7%,株高及穗位高分别降低1.5%~2.5%和0.7%~8.4%。PASP-N处理下,花期玉米功能叶硝酸还原酶(NR)活性降低1.4%~19.8%,花后30 d穗位叶谷氨酰胺合成酶(GS)活性提高18.5%~33.1%,花后20 d穗位叶谷草转氨酶(GOT)活性增高0.8%~6.4%。多项式曲线模拟结果表明, PASP-N和CN处理全基施最佳氮用量分别为185.3 kg hm~(–2)和219.1 kg hm~(–2), PASP-N比CN少施氮肥33.8kg hm~(–2), PASP-N产量比CN高108.9 kg hm~(–2)。氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率分别比常规氮素处理增加51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。因此, PASP螯合氮肥能促进东北春玉米籽粒灌浆中后期氮素代谢,提高玉米氮肥利用效率。  相似文献   

15.
灌水对不同追氮水平下夏玉米氮代谢及产量的影响   总被引:1,自引:1,他引:0  
为研究玉米生育后期补灌和追氮对氮代谢及产量的耦合效应,采用大田试验,测定了拔节后灌水对不同追氮水平下硝酸还原酶(NR)、谷氨酰胺合成酶(GS)等氮代谢酶活性、产量及产量构成因素的影响。结果表明,追氮和灌水使花后穗位叶片硝酸还原酶(NR)活性增加;随追氮量增加,谷氨酰胺合成酶(GS)活性反而降低;灌水处理和自然降水处理对GS活性变化影响差异较小。相同灌水下,追氮可明显提高玉米产量;相同追氮下,补灌处理产量要高于自然降水处理。追肥对产量的增加幅度要大于灌水。  相似文献   

16.
本研究旨在分离玉米谷氨酰胺合成酶(GS)家族重要成员Gln1-4 gDNA序列全长,分析基因结构、保守功能域与自然等位变异,为氮利用效率功能位点关联性分析奠定基础。利用PCR步移(walking)方法分离Gln1-4基因区域基因组DNA序列,用生物信息学方法分析基因结构与保守功能域,测序与序列比对法分析重要区域自然等位变异。结果表明,分离得到自交系Mo17 Gln1-4区域gDNA 3 724 bp,起始密码子至终止密码子序列长2 858 bp,登录到GenBank (登录号为EU369651), 并注释。Gln1-4基因含10个外显子与9个内含子,18个剪接位点均为保守的5'供位GU与3'受位AG模式。编码的GS蛋白由356个氨基酸组成,分子量39.2 kD,等电点(pI)为5.202。氨基末端外显子2到外显子6为氨离子结合结构保守功能域;羧基末端外显子8与外显子9构成ATP酶活性保守功能域。Gln1-4与Gln1-3基因相比,在DNA序列、氨基酸序列、基因结构、保守功能域均很保守,氨基酸序列一致性达98.31%。52个玉米自交系的Gln1-4等位变异分析中,共鉴定出318个等位变异位点,其中242个SNP,45个Indels,占90%。该基因氮利用效率功能关联性分析区间应位于氨离子结合功能域与ATPase活性保守功能域中重要的变异位点,18个剪接位点。  相似文献   

17.
紧凑型玉米株型及生理特性研究   总被引:22,自引:1,他引:22  
紧凑型玉米各叶片长度在茎杆上的空间分布呈近似纺锤型,叶角度较平展型小,叶向值也大,其受光姿态优于平展型.紧凑型米玉对CO_2同化强度、根系吸收强度比平展型大;硝酸还原酶活性比平展型高.紧凑型玉米具有体内氮素代谢旺盛,后期不早衰,籽粒灌浆快,粒重高,单株生产力大和适宜密植等优点.选育和推广高光效紧凑型玉米杂交种是今后玉米高产的主要途径.  相似文献   

18.
典型玉米自交系氮素吸收利用特点的研究   总被引:1,自引:0,他引:1  
在大田条件下,对8个代表性的玉米自交系在不同施氮水平下的氮素吸收与利用特点及与氮效率相关的一些性状进行了研究。结果表明:玉米自交系在产量、生物量和氮累积量上存在显著的差异。通过玉米自交系各性状与氮效率的关系的分析表明,低氮胁迫下,应选择抽丝期穗位叶叶绿素含量高、穗位叶叶面积大、籽粒含氮量高和氮收获指数大的自交系,高氮处理条件下,应选择抽丝期生物量大和成熟期生物量大的自交系。通径分析表明,氮吸收和氮利用效率对氮效率的作用均是直接作用大于间接作用。3个施氮水平条件下,对氮效率的直接作用是氮吸收效率大于氮利用效率。在低氮条件下,氮吸收效率的直接作用更强,而氮利用效率对氮效率的直接作用是随着施氮量的增加逐渐增强。在氮2、氮3处理中,吸收效率和利用效率的共同影响导致了产量差异,并且是吸收效率的影响较大;高氮处理则主要是吸收效率的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号