首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Insulin and insulin-like growth factors (IGFs) have direct effects on cultured ovarian cells. These effects include stimulation of granulosa cell mitogenesis, granulosa and luteal cell progesterone production, and thecal cell androgen production and appear similar among species. However, species differences exist with regard to insulin and IGF-I effects on granulosa cell estradiol production. In addition to endocrine effects of insulin and IGFs, IGFs are produced by granulosa, thecal, and luteal cells, allowing for an intraovarian autocrine and paracrine system. Granulosa, thecal, and luteal cells contain receptors for insulin and IGFs, and these receptors appear to mediate the effects of insulin and IGFs. Adding to the complexity of the regulatory role of IGFs is the presence of IGF-binding proteins (IGFBPs) within the ovary. These IGFBPs are produced by granulosa, thecal, and luteal cells, and their production is hormonally regulated. Evidence for a coherent mechanism by which insulin, IGFs, and IGFBPs interact and regulate ovarian function in vivo has yet to be found.  相似文献   

2.
The aim of the study and short review was to present evidence that growth hormone (GH), locally produced insulin-like growth factors (IGFs), and IGF-binding proteins (IGFBPs) may have an important role in the control of ovarian function. There is clear evidence for a distinct GH-receptor mRNA expression and protein production in follicles (oocytes and granulosa-cumulus cells) and corpus luteum (CL). In hypophysectomized ewes, GH and LH are necessary for normal CL development. IGF-1 mRNA in the follicles is expressed in theca interstitial cells (TIC) and granulosa cells (GC) with already higher levels in the TIC before follicle selection. In contrast, IGF-2 is mainly expressed in the TIC. The IGFR-1 mRNA is expressed in both the TIC and GC, with increasing levels in GC during the final development of dominant follicles. IGF-1 is a very potent stimulator of progesterone and oxytocin release in GC. IGFBP-1, -2, -3, -4, -5, and -6 have been isolated from follicular fluid or ovarian tissue. Studies indicate that IGFBP expression and production in the developing follicle is dependent on both cell type and follicle size and is regulated by IGF-1 and gonadotropins. The highest expression of IGF-1 and IGFR-1 mRNA was demonstrated during the early luteal phase. Distinct receptors for IGF-1 and IGF-2 were present in CL membrane preparations at all stages investigated. Intense immunostaining for IGF-1 was observed mainly in bovine large and small luteal cells and in a limited number of endothelial cells. In contrast, IGF-2 protein was localized in perivascular fibroblast and pericytes of the capillaries. With the use of a microdialysis system, we found that in vitro and in vivo IGF-1, IGF-2, and GH stimulated the release of progesterone in cultures of luteal cells or intact tissues. In conclusion, there is clear evidence for a central role of the IGFs, IGFBPs, and GH in follicular development and CL function.  相似文献   

3.
The corpus luteum (CL) is a transient reproductive gland that produces progesterone (P), required for the establishment and maintenance of pregnancy. Although the regulation of bovine luteal function has been studied for several decades, many of the regulatory mechanisms involved are incompletely understood. We are far from understanding how these complex mechanisms function in unison. The purpose of this overview is to stress important steps of regulation during the lifetime of CL. In the first part, the importance and regulation of angiogenesis and blood flow during CL formation is described. The results underline the importance of growth factors especially of vascular endothelial growth factor A (VEGF A) and basic fibroblast growth factor (FGF-2) for development and completion of a dense network of capillaries. In the second part, the regulation of function by endocrine/paracrine- and autocrine-acting regulators is discussed. There is now more evidence that besides the main endocrine hormones LH and GH local regulators as growth factors, peptides, steroids and prostaglandins are important modulators of luteal function. During early CL development until mid-luteal stage oxytocin, prostaglandins and P itself stimulate luteal cell proliferation and function supported by the luteotropic action of a number of growth factors. The still high mRNA expression, protein concentration and localization of growth factors [VEGF, FGF-1, FGF-2, insulin-like growth factors (IGFs)] in the cytoplasm of luteal cells during mid-luteal stage suggest maintenance (survival) functions for growth factors. In the absence of pregnancy regression (luteolysis) of CL occurs. Progesterone itself regulates the length of the oestrous cycle by influencing the timing of the luteolytic signal prostaglandin F2alpha (PGF2alpha) from the endometrium. The cascade of mediators afterwards is very complex and still not well-elucidated. Evidence is given for participation of blood flow, inflammatory cytokines, vasoactive peptides (angiotensin II and endothelin-1), reactive oxygen species, angiogenic growth factors (VEGFs, FGFs, IGFs) and decrease of the classical luteotropic components as LH-R, GH-R, P450(scc) and 3beta-HSD. Despite of differences in methodology and interpretations, progress has been made and will continue to be made.  相似文献   

4.
The purpose of this overview is to highlight important steps of ovarian regulation during follicle development, ovulation and the life span of corpus luteum (CL) in ruminants. The ovarian cycle is central to reproductive function. It is characterized by repeating patterns of cellular proliferation, differentiation and transformation that encompass follicular development and ovulation as well as the formation, function and regression of the CL. In the first part, the importance and regulation of final follicle growth and especially of angiogenesis and blood flow during folliculogenesis, dominant follicle development and CL formation are described. Our results underline the importance of growth factors especially of insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) for development and completion of a dense network of capillaries (angiogenesis) during follicle growth and CL formation. In the second part, the regulation of CL function by endocrine/paracrine and autocrine acting regulators is discussed. There is evidence that besides the main endocrine hormones luteinizing hormone (LH) and growth hormone (GH) local regulators as growth factors, peptides, steroids and prostaglandins are important modulators of luteal function. During early CL development until midluteal stage oxytocin (OT), prostaglandins and progesterone (P) itself stimulate luteal cell proliferation and function supported by the luteotropic action of a number of growth factors. The still high mRNA expression, protein concentration and localization of VEGF, FGF and IGF family members in the cytoplasm of luteal cells during midluteal stage suggest that they play pivotal role in the maintenance (survival) of this endocrine tissue. The major function of the CL is to secrete P. Progesterone itself regulates the length of the estrous cycle via influencing the timing of the luteolytic PGF2alpha signal from the endometrium. At the end of a nonfertile cycle, the regression of CL commences, steroidogenic capacity is lost (functional luteolysis), cell death is initiated, and tissue involution as well as resorption occurs within a few days (structural luteolysis). The cascade of mediators during luteolysis is very complex and still awaits elucidation. Evidence is given for participation of blood flow, inflammatory cytokines, vasoactive peptides (angiotensin II and endothelin-1), and decrease of the classical luteotropic mediators.  相似文献   

5.
Prostaglandin F2alpha (PGF2alpha) is the primary luteolysin in the cow. During the early luteal phase, the corpus luteum (CL) is resistant to the luteolytic effect of PGF2alpha. Once mature, the CL becomes responsive to PGF2alpha and undergoes luteal regression. These actions of PGF2alpha coincide with changes in luteal blood flow (BF): PGF2alpha has no effect on BF in the early CL, but acutely increases BF in the peripheral vasculature of the mature CL within 30 min of PGF2alpha injection. During spontaneous luteolysis, luteal BF increases on Days 17-18 of the estrous cycle, prior to any decrease in plasma progesterone (P). The increase in luteal BF is synchronous with an increase in plasma PGFM levels, suggesting that pulsatile release of PGF2alpha from uterus stimulates the increase in luteal BF. Serial biopsies of these CL showed that mRNA expression for endothelial nitric oxide synthase (eNOS) together with endothelin-1 (ET-1) and angiotensin converting enzyme (ACE) increases on Days 17-18 when the luteal BF is elevated. On Day 19 when plasma P level firstly decreases, eNOS mRNA returns to the basal level whereas ET-1 and ACE mRNA remains elevated. Cyclooxygenase-2 (COX-2) mRNA expression increases on Day 19. In support of these data, an in vivo microdialysis study revealed that luteal ET-1 and angiotensin II (Ang II) secretion increases and precedes PGF2alpha secretion during spontaneous luteolysis. In conclusion, we show for the first time that an acute increase of BF occurs in the peripheral vasculature of the mature CL together with increases in eNOS expression and ET-1 and Ang II secretion in the CL during the early stages of luteolysis in the cow. We propose that the increase in luteal BF may be induced by NO from large arterioles surrounding the CL, and simultaneously uterine or exogenous PGF2alpha directly increases ET-1 and Ang II secretion from endothelial cells of microcapillary vessels within the CL, thereby suppressing P secretion by luteal cells. Taken together, our results indicate that an acute increase in luteal BF occurs as a first step of luteolysis in response to PGF2alpha. Therefore, local BF plays a key role to initiate luteal regression in the cow.  相似文献   

6.
Prostaglandin F(2α) (PGF(2α)) induces luteolysis via a specific receptor, PTGFR. Although PTGFR mRNA expression in the bovine corpus luteum (CL) has been studied previously, changes in PTGFR protein and its localization are not fully understood during the life span of the CL. In addition to full-length PTGFR, several types of PTGFR isoforms, such as PTGFRα (type I) and PTGFRζ (type II), were reported in the bovine CL, suggesting isoform-specific luteal action. Full-length PTGFR mRNA in the bovine CL increased from the early to the mid-luteal phase and decreased during luteolysis, whereas PTGFR protein remained stable. PTGFR protein was localized to both luteal and endothelial cells and was expressed similarly during the life span of the CL. Like full-length PTGFR mRNA, PTGFRα and PTGFRζ mRNA also increased from the early to mid-luteal phases, and mRNA of PTGFRζ, but not PTGFRα, decreased in the regressing CL. During PGF(2α)-induced luteolysis, the mRNAs of full-length PTGFR, PTGFR,α and PTGFRζ decreased rapidly (from 5 or 15 min after PGF(2α) injection), but PTGFR protein decreased only 12 h later. Silencing full-length PTGFR using small interfering RNA prevented PGF(2α)-stimulated cyclooxygenase-2 (PTGS2) mRNA induction. By contrast, PGF(2α) could stimulate vascular endothelial growth factor A (VEGFA) mRNA even when full-length PTGFR was knocked down, thus suggesting that PGF(2α) may stimulate PTGS2 via full-length PTGFR, whereas VEGFA is stimulated via other PTGFR isoforms. Collectively, PTGFR protein was expressed continually in the bovine CL during the estrous cycle, implying that PGF(2α) could function throughout this period. Additionally, the bovine CL expresses different PTGFR isoforms, and thus PGF(2α) may have different effects when acting via full-length PTGFR or via PTGFR isoforms.  相似文献   

7.
The objectives of the study were to monitor the detailed pattern for mRNA expression (RT-PCR and RPA) of IGFs, IGFR-1, IGFBPs, GHR and localization of protein (immunohistochemistry) for IGF-1 and IGFR-1 in bovine follicle classes during final maturation and different corpus luteum (CL) stages during estrous cycle and during pregnancy. A relative high expression of IGF-1 in theca interna (TI) was observed before selection (E<0.5ng/mL). In GC, mRNA expression increased after selection. In contrast, IGF-2 was mainly expressed in the TI. The IGFR-1 mRNA was present in the TI and GC with increasing levels during final development. The expression results were confirmed by localization of IGF-1 and IGFR-1 proteins in GC and TI. There is clear evidence for the local expression of IGFBPs in TI and GC compartment with clear regulatory differences. In CL, the highest mRNA expression of IGF-1, IGF-2 and IGFR-1 was observed during early luteal phase, followed by a decrease, and then by a tendency of an increase during the mid and late luteal phases of the cyclic CL. This level remained low during pregnancy. Intense immunostaining for IGFR-1 in CL was observed mainly in large luteal cells. Evidence for a mRNA for all six IGFBPs were obtained with distinct differences for BP-3, -4 and -5. In conclusion, this comprehensive study gives clear evidence for an important role of the IGFs and IGFBPs in bovine follicular development and CL function. The relative amounts of IGFBPs may ultimately determine ovarian IGF action.  相似文献   

8.
Although prostaglandin (PG) F2alpha is known to be a principal luteolytic factor, its action on the bovine corpus luteum (CL) is mediated by other intra-ovarian factors. Tumor necrosis factor-alpha (TNFalpha) and its specific receptors are present in the bovine CL with the highest expressions at luteolysis. TNFalpha in combination with interferon-gamma reduced progesterone (P4) secretion, increased PGF2alpha and leukotriene C4 (LTC4) production, and induced apoptosis of the luteal cells in vitro. Low concentrations of TNFalpha caused luteolysis, which resulted in a decreased level of P4, and increased levels of PGF2alpha, LTC4 and nitrite/nitrate (stable metabolites of nitric oxide-NO) in the blood. Inhibition of local NO production counteracts spontaneous and PGF2alpha-induced luteolysis. Therefore, NO is a likely candidate for the molecule that mediates PGF2alpha and TNFalpha actions during luteolysis. Both PGF2alpha and TNFalpha increase NO concentrations in blood, and stimulate NO synthase expression on protein level in the bovine CL cells. NO stimulates PGF2alpha and LTC4 secretion, inhibits P4 production and reduces the number of viable luteal cells. TNFalpha and NO induce apoptotic death of the CL by modulating expression of bcl-2 family genes and by stimulating expression and activity of caspase-3. The above findings indicate that TNFalpha and NO play crucial roles in functional and structural luteolysis in cattle.  相似文献   

9.
The aim of this study was to evaluate mRNA expression, protein concentration and localization of the assumedly important lymphangiogenic factors VEGFC and VEGFD and the receptor FLT4 in bovine corpora lutea (CL) during different physiological stages. In experiment 1, CL were collected in a slaughterhouse and stages (days 1–2, 3–4, 5–7, 8–12, 13–16, >18) of oestrous cycle and month <3, 3–5, 6–7 and >8 of pregnancy. In experiment 2, prostaglandin F2α (PGF)‐induced luteolysis was performed in 30 cows, which were injected with PGF analogue on day 8–12 (mid‐luteal phase), and CL were collected before and 0.5, 2, 4, 12, 24, 48 and 64 h after PGF injection. The mRNA expression was characterized by RT‐qPCR. All three factors were clearly expressed and showed significant changes during different groups and periods examined in both experiments. Protein concentrations of VEGFD and FLT4 measured by ELISA were not detectable in early cyclic CL but increased to higher plateau levels during pregnancy. After PGF‐induced luteolysis FLT4 protein showed an increase within 2–24 h after the injection. FLT4 localization by immunohistochemistry in the cytoplasm of luteal cells was relatively weak in early CL. It increased in late CL and especially in CL during pregnancy. During pregnancy, a positive FLT4 staining in both the nucleus and cytoplasm of lymphatic endothelial cells in peripheral tissue was observed. In conclusion, our results lead to the assumption that lymphangiogenic factors are produced and regulated in CL and may be involved in mechanisms regulating CL function, especially during pregnancy.  相似文献   

10.
Cell-to-cell interaction via cell contact-dependent pathway is essentially important for maintenance and regulation of corpus luteum (CL) integrity and its physiological actions. The objective of the present study was to evaluate the mRNA expression of the cell adhesion molecules (CAMs) that are constituent factors of gap junctions [connexin (Cx) 43] and adherence junctions (VE-, E-, N-cadherin) in two types of endothelial cells from the mid CL and in CL tissue during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. Specific mRNA expression for Cx43 and N-cadherin was detected in cytokeratin-positive (CK+) and cytokeratin-negative (CK-) luteal endothelial cells (EC) and fully luteinized granulosa cells (LGC). E-cadherin mRNA was expressed in CK+EC and LGC, but not in CK-EC. VE-cadherin mRNA was expressed in both CK+ and CK-EC. During the estrous cycle, Cx43 mRNA expression was significantly lower in the regressing CL. VE-cadherin expression also tended to increase in the mid CL and increased significantly in the regressing CL. E-cadherin mRNA expression was higher in the early and late CL than in the mid- and regressing CL. N-cadherin mRNA expression gradually increased from the early to late CL followed by a decrease in the regressing CL. During PGF(2alpha)-induced luteolysis, Cx43 mRNA expression appeared to increase, and VE-cadherin and E-cadherin mRNA significantly increased at 24 h. N-cadherin mRNA expression decreased 2 and 4 h after PGF(2alpha) administration. Collectively, expression of the mRNAs for CAMs was different in the two types of luteal endothelial cells and fully luteinized granulosa cells and changed independently in the CL during the estrous cycle and PGF(2alpha)-induced luteolysis in the cow. The results suggest that CAMs play physiological roles in cell-to-cell communication to regulate both gap and adherence junctions during CL development and regression in the cow.  相似文献   

11.
12.
Luteolytic capacity is defined as the ability of corpora lutea (CL) to undergo luteolysis after prostaglandin (PG) F2alpha treatment. The mechanisms causing acquisition of luteolytic capacity are not yet identified but CL without luteolytic capacity have PGF2alpha receptors and respond to PGF2alpha with some changes in gene expression. Inhibition of progesterone biosynthesis is a key feature of luteolysis and therefore we postulated that genes involved in progesterone biosynthesis would be regulated by PGF2alpha differently in CL with or without luteolytic capacity. Gilts on day 9 after estrus (lack luteolytic capacity) or day 17 of pseudopregnancy (with luteolytic capacity) were treated with saline or a PGF2alpha analog (cloprostenol) and CL were collected 0.5 (Experiment I) or 10 h (Experiment II) later. In Experiment III, large luteal cells from CL on day 9 or 17 were cultured for 1, 12 and 24h with or without PGF2alpha. PGF2alpha decreased LDL receptor mRNA (27%), steroidogenic acute regulatory protein (StAR) mRNA (41%), StAR protein (75%), LH receptor mRNA (55%), and LH receptor protein (45%) at 10 h after treatment in day 17 but not day 9 CL. PGF2alpha increased DAX-1 mRNA at 0.5 h (43%) and 10 h (46%) after PGF2alpha in day 17 but not day 9 CL but decreased 3betaHSD mRNA ( approximately 20% at 10 h) in both days 9 and 17 CL. In vitro, PGF2alpha decreased StAR mRNA at 12 h only in day 17 luteal cells; however, continuous treatment with PGF2alpha for 24 h decreased StAR mRNA in both days 9 and 17 luteal cells. Thus, luteolytic capacity involves a critical change in responsiveness of DAX-1, StAR, and LH receptor to PGF2alpha that results in inhibition of luteal progesterone biosynthesis.  相似文献   

13.
Involvement of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied during the last decade. In all mammalian species, IGF-I stimulates granulosa cell proliferation and steroidogenesis. The concentrations of IGF-I and -II do not vary during terminal follicular growth and atresia. In contrast, the levels of IGFBP-2 and -4, as well as IGFBP-5 in ruminants, dramatically decrease and increase during terminal follicular growth and atresia, respectively. These changes are responsible for an increase and a decrease in IGF bioavailability during follicular growth and atresia, respectively. They are partly explained by changes in ovarian expression. In particular, expression of IGFBP-2 mRNA decreases during follicular growth in ovine, bovine and porcine ovaries, and expression of IGFBP-5 mRNA dramatically increases in granulosa cells of bovine and ovine atretic follicles. Changes in IGFBP-2 and -4 levels are also due to changes in intrafollicular levels of specific proteases. Recently, we have shown that the pregnancy-associated plasma protein-A (PAPP-A) is responsible for the degradation of IGFBP-4 in preovulatory follicles of domestic animals. Expression of PAPP-A mRNA is restricted to the granulosa cell compartment, and is positively correlated to expression of aromatase and LH receptor. From recent evidence, the bone morphogenetic protein (BMP) family would also play a key role in ovarian physiology of domestic animals. In particular, we and others have recently shown that a non-conservative substitution (Q249R) in the bone morphogenetic protein-receptor type IB (BMPR-IB) coding sequence is fully associated with the hyperprolific phenotype of FecB(B)/FecB(B) Booroola ewes. BMP-4 and GDF-5, natural ligands of BMPR-IB, strongly inhibit secretion of progesterone by ovine granulosa cells in vitro, but granulosa cells from FecB(B)/FecB(B) ewes are less responsive than those from FecB(+)/FecB(+) to the action of these peptides. It is suggested that in FecB(B)/FecB(B) ewes, Q249R substitution would impair the function of BMPR-IB, leading to a precocious differentiation of granulosa cells and of follicular maturation. Interestingly, recent findings have described mutations in BMP-15 gene associated with hyperprolific phenotypes in Inverdale and Hanna ewes, suggesting that the BMP pathway plays a crucial role in the control of ovulation rate.  相似文献   

14.
In the present study, we evaluated the dynamic changes of intra‐ovarian blood flow, by real‐time colour‐coded and pulsed Doppler ultrasonography, as well as the immunopresence of prostaglandin F2α (PGF2α) receptor (FP) and peripheral plasma progesterone concentrations in pseudopregnant rabbit after PGF2α treatments at either early‐ (4 days) and mid‐luteal (9 days) stages. During the pre‐treatment observation interval of one hour, the ovarian blood flows showed a fluctuating pattern. Independently of luteal stage, PGF2α administration caused a fourfold decline in the blood flow within 40 min that was followed 50 min later by a reactive hyperaemia that lasted several hours, while the resistive index showed an opposite trend. Twenty‐four hour later, the blood flow was one half that measured before PGF2α injection. At day 4 of pseudopregnancy, PGF2α did not affect peripheral plasma progesterone concentrations, but at day 9, it caused functional luteolysis as progesterone levels declined 6 hr later to reach basal values after 24 hr. The changes in the ovarian blood flows of pseudopregnant rabbits receiving PGF2α were accompanied by simultaneous changes in the resistance index. This biphasic response in the blood flow and vascular resistances likely reflects reactive hyperaemia following vasoconstriction. By immunohistochemistry, strong positive immune reaction for FP was detected in the cytoplasm of endothelial cells of ovarian arteries, veins and capillaries. In conclusion, these results suggest that PGF2α could acutely regulate the ovarian blood flow of pseudopregnant rabbits, even if there is no evidence of a blood flow reduction anticipating luteolysis.  相似文献   

15.
Estrogen (E) exerts its function by binding to two intracellular estrogen receptors, ERalpha and ERbeta. Although ERs have been reported to be expressed in the bovine corpus luteum (CL), the mechanisms that control ER expression in the bovine CL are not fully understood. To determine the possible regulatory mechanisms of ERalpha and ERbeta that meditate distinct E functions, we examined 1) the changes in the protein expressions of ERs in the CL throughout the luteal phase and 2) the effects of prostaglandin (PG) F2alpha, tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) on the expressions of ERs in cultured bovine luteal cells. Western blot analyses revealed that ERalpha and ERbeta proteins were expressed throughout the luteal phase. The ERalpha protein level was high at the early luteal (Days 2-3 after ovulation) and mid-luteal stages (Days 8-12) and was extremely low at the regressed luteal stage (Days 19-21). The ERbeta protein level increased from the early to developing luteal stage, remained at the same level at the mid-luteal stage and decreased thereafter. The ratio of ERbeta to ERalpha was higher in the regressed stage than in the other stages. Luteal cells obtained from mid-stage CLs (Days 8-12) were incubated with PGF2alpha (0.01-1 microM), TNFalpha (0.0145-1.45 nM) or IFNgamma (0.0125-1.25 nM) for 24 h. PGF2alpha and TNFalpha inhibited ERa and ERbeta mRNA expressions. IFNgamma suppressed ERbeta mRNA expression but did not affect the expression of ERalpha mRNA. However, the ERalpha and ERbeta protein levels were not affected by any of the above treatments. These data indicate that PGF2alpha, TNFalpha and IFNgamma regulate ERalpha and ERbeta mRNA expressions in bovine luteal cells. Moreover, the changes in the ERbeta/ERalpha ratio throughout the luteal phase suggest that ERalpha is associated with luteal maintenance. Therefore, a dramatic decrease in ERalpha at the regressed luteal stage could result in progression of structural luteolysis in the bovine CL.  相似文献   

16.
The main function of the corpus luteum (CL) is production of progesterone (P4). Adequate luteal function to secrete P4 is crucial for determining the physiological duration of the oestrous cycle and for achieving a successful pregnancy. The bovine CL grows very fast and regresses within a few days at luteolysis. Mechanisms controlling development and secretory function of the bovine CL may involve many factors that are produced both within and outside the CL. Some of these regulators seem to be prostaglandins (PGs), oxytocin, growth and adrenergic factors. Moreover, there is evidence that P4 acts within the CL as an autocrine or paracrine regulator. Each of these factors may act on the CL independently or may modify the actions of others. Although uterine PGF is known to be a principal luteolytic factor, its direct action on the CL is mediated by local factors: cytokines, endothelin-1, nitric oxide. The changes in ovarian blood flow have also been suggested to have some role in regulation of CL development, maintenance and regression.  相似文献   

17.
A dense network of capillaries irrigates the corpus luteum (CL) allowing an intricate cross talk between luteal steroiodgenic and endothelial cell (EC) types. Indeed, luteal endothelial cells (LEC) play pivotal roles throughout the entire CL life-span. Microvascular endothelial cells are locally specialized to accommodate the needs of individual tissues, therefore unraveling the characteristics of LEC is imperative in CL physiology. Numerous studies demonstrated that endothelium-derived endothelin-1 (ET-1) is upregulated by the luteolytic hormone-prostaglandin F2alpha (PGF2alpha) and functions as an important element of the luteolytic cascade. To have a better insight on its synthesis and action, members of ET system (ET-1, ET converting enzyme -ECE-1 and ET(A) and ET(B) receptors) were quantified in LEC. The characteristic phenotype of these cells, identified by high ET-1 receptor expression (both ET(A), ET(B)) and low ET-1 and ECE-1 levels, was gradually lost during culture suggesting that luteal microenvironment sustains the selective phenotype of its resident endothelial cells. Proper vascularization and endothelial cell activity per se are essential for normal CL function. Therefore, factors affecting vascular growth are expected to play major role in the regulation of luteal function. Concomitantly with the angiogenic process, luteal PGF2alpha and its receptors (PGFR) are induced and maintained during most of the CL life-span, suggesting a possible role of PGF2alpha in LEC proliferation and function. Dispersed LEC expressed PGFR and incubation with the prostaglandin stimulated mitogen-activated protein kinase (MAPK) signaling cascade. PGF2alpha activated p42/44 MAPK phosphorylation also in long-term cultured LEC. In this cell type, PGF2alpha increased cell number, 3H-Thymidine incorporation and cell survival. Additionally, PGF2alpha rapidly and transiently stimulated the expression of immediate-early response genes, i.e. c-fos and c-jun mRNA, further suggesting a mitogenic effect for this prostaglandin in LEC. These data imply that PGF2alpha may assume different and perhaps opposing roles depending on luteal microenvironment.  相似文献   

18.
The corpus luteum (CL) undergoes regression by prostaglandin (PG)F(2alpha) from uterus and endothelin-1 (ET-1) plays an important role during luteolysis as a local mediator of PGF(2alpha) in the cow. Endothelial cells (EC) and luteal cells are main cell types making up the CL and their interactions are vital for CL function. We aimed to examine the relevance of interactions between EC and luteal cells on stimulation of genes which involved ET-1 synthesis by PGF(2alpha). We further focused the impact of maturity of luteal cells on the stimulation of the genes. To make a microenvironment which resembles the CL, we used bovine aortic endothelial cells (BAEC) and luteinizing or fully-luteinized granulosa cells (GC) and evaluated the effect of PGF(2alpha) on the expression for mRNA of ET-1 system by using real-time RT-PCR. PGF(2alpha) stimulated the expression of preproET-1 and endothelin converting enzyme-1 mRNA only in the co-cultures of BAEC with fully-luteinized GC, but not with luteinizing GC. The data suggest that interactions between BAEC and fully-luteinized GC enhance the capability of BAEC to produce ET-1 in response to PGF(2alpha). This mechanism may contribute to the local induction of luteolytic action of PGF(2alpha) which is dependent on the age/maturation of the CL.  相似文献   

19.
We recently demonstrated that luteal cells flow out from the ovary via lymphatic vessels during luteolysis. However, the regulatory mechanisms of the outflow of luteal cells are not known. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix and basal membrane, and tissue inhibitors of matrix metalloproteinases (TIMPs) inhibit the activity of MMPs. To test the hypothesis that MMP expression in luteal cells is regulated by luteolytic factors, we investigated the effects of prostaglandin F2α (PGF), interferon γ (IFNG) and tumor necrosis factor α (TNF) on the mRNA expression of MMPs and TIMPs in cultured luteal cells. Luteal cells obtained from the CL at the mid-luteal stage (days 8–12 after ovulation) were cultured with PGF (0.01, 0.1, 1 μM), IFNG (0.05, 0.5, 5 nM) and TNF (0.05, 0.5, 0.5 nM) alone or in combination for 24 h. PGF and IFNG significantly increased the expression of MMP-1 mRNA. In addition, 1 μM PGF in combination with 5 nM IFNG stimulated MMP-1 and MMP-9 mRNA expression significantly more than either treatment alone. In contrast, IFNG significantly decreased the level of MMP-14 mRNA. The mRNA expression of TIMP-1, which preferentially inhibits MMP-1, was suppressed by 5 nM INFG. One μM PGF and 5 nM IFNG suppressed TIMP-2 mRNA expression. These results suggest a new role of MMPs: luteal MMPs stimulated by PGF and IFNG break down the extracellular matrix surrounding luteal cells, which accelerates detachment from the CL during luteolysis, providing an essential prerequisite for outflow of luteal cells from the CL to lymphatic vessels.  相似文献   

20.
Endothelin-1 (ET-1), a 21-amino acid peptide was initially identified as a potent vasoconstrictor, ET-1 plays an important role in the female reproductive cycle: its quick ascent during luteal regression, ability to inhibit steroidogenesis in vitro and in vivo, combined with the observation that the luteolytic effects of prostaglandin F2alpha (PGF2alpha) were delayed by pretreatment with ET-1 receptors type A (ETA) antagonists suggest that this peptide functions as an important element of the luteolytic cascade. The observation that ETA receptor expression was inversely correlated with steroidogenesis in luteal cells; namely factors which stimulated steroidogenesis inhibited ETA receptor levels is also in accord with the inhibitory role of ET-1 in corpus luteum (CL) function. Contrary to the mature mid cycle CL, the CL of early cycle is refractory to PGF2alpha-induced luteolysis. PGF2alpha administered at early luteal phase (day 4 of the cycle) failed to increase luteal ET-1 gene expression or its ETA receptors. In contrast, both genes were markedly induced in mid cycle CL exposed to PGF2alpha. ET-1 gene is transcribed as prepro ET-1 (ppET-1) and the active form of peptide is derived from the inactive intermediate big ET-1, by endothelin-converting enzyme-1 (ECE-1), therefore alterations in mature ET-1 levels can be achieved by modulating the expression of ppET-1 and/or ECE-1. Analysis using in situ hybridization and enriched luteal cell subpopulations showed that both steroidogenic and endothelial cells of the CL expressed high levels of ECE-1 mRNA. The ppET-1 mRNA, on the other hand, was only expressed by resident endothelial cells, suggesting that luteal parenchymal and endothelial cells cooperate in the biosynthesis of mature bioactive ET-1. A significant, four-fold elevation in ECE-1 expression (mRNA and protein levels) occurred during the transition of the CL from early to mid luteal phase. This increase was accompanied by a significant rise in ET-1 peptide. Surprisingly however, ppET-1 mRNA levels remained similar during early and mid luteal phase. Collectively, these studies demonstrate that: (a) the various components of ET-1 system (ET-1/ECE-1/ETA) are dynamically and independently regulated during bovine luteal life span. (b) The CL becomes PGF2alpha-responsive only when both ppET-1 and ECE-1 genes are expressed at a level which enable an uninterrupted ET-1 biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号