首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A 15‐wk study was conducted to evaluate the effect of supplemental menhaden fish oil levels and feeding duration on growth performance and tissue proximate and fatty acid (FA) compositions of juvenile channel catfish, Ictalurus punctatus. Dietary fish oil levels had no effect on final weight gain, feed efficiency, and survival of channel catfish. Tissue lipid contents were directly correlated to dietary lipid levels, while moisture contents were inversely related to dietary lipid levels. Fillet moisture contents progressively decreased, whereas fillet lipid increased with increasing feeding duration. Significant increase in saturated and total n‐3 FAs and decrease in monoenoic and total n‐6 FA in whole body and fillet were observed at each incremental level of dietary fish oil. Percentages of n‐3 and n‐3 highly unsaturated fatty acids in fillet of fish fed the control and 3% fish oil diets decreased with increasing feeding periods, whereas those of fish fed 6 or 9% added fish oil diets remained stable or increased. Ratios of n‐3/n‐6 were statistically comparable throughout the 15‐wk feeding. When expressed in terms of mg/g of fillet, the highest concentration of n‐3 was obtained in fillets of fish fed the 9% added fish oil diet for 15 wk.  相似文献   

2.
Juvenile channel catfish Ictalurus punctatus (average initial weight, 6.5 g/fish) were fed twice daily to apparent satiation with practical-type diets containing 0, 50, 150, or 250 mg supplemental vitamin C/kg from L-ascorbyl-2-polyphosphate for 10 wk under laboratory conditions. At the end of the feeding period, one half of the fish were stressed for 2 h by confinement and both stressed and nonstressed fish were exposed to a virulent strain of Edwardsiella ictaluri. Weight gain and feed conversion efficiency were lower for fish fed the basal diet than those fed diets containing supplemental vitamin C. No differences were observed in weight gain and feed conversion among fish fed diets containing supplemental vitamin C. There were no differences in feed consumption and survival (prior to experimental infection) among treatments. No vitamin C deficiency signs except reduced weight gain were observed in fish fed the basal diet. Serum cortisol concentrations were higher in stressed fish than in non-stressed fish. Dietary vitamin C level had no effect on serum cortisol concentration. As dietary vitamin C increased, ascorbate concentration in serum and liver increased. Confinement stress had no effect on serum and liver ascorbate concentrations. Cumulative mortality of channel catfish 21 d subsequent to experimental infection with E. ictaluri was higher for stressed fish than for nonstressed fish. Regardless of stress or nonstress, overall mortality for fish fed the basal diet was lower than the fish fed diets containing supplemental vitamin C. There were no differences in post-infection antibody levels among treatments or between stressed and nonstressed fish. Results from this study indicate that channel catfish require no more than 50 mg/kg dietary vitamin C for normal growth, stress response, and disease resistance.  相似文献   

3.
Dietary supplementation of yeast or yeast subcomponents (YYS) as commercial preparations of β‐glucan (MacroGard®; Biotec‐Mackzymal, Tromsø, Norway; and Betagard A®; Aqua‐In‐Tech, Inc., Seattle, WA, USA), mannan oligosaccharide (Bio‐Mos? Aqua Grade; Alltech, Nicholasville, KY, USA), or whole‐cell Saccharomyces cerevisiae (Levucell SB20®; Lallemand Animal Nutrition, Milwaukee, WI, USA) at the manufacturer’s recommended levels was evaluated on the physiological performance of juvenile channel catfish, Ictalurus punctatus. Fish were fed YYS diets for 4 wk, followed by 2 wk of control diet. Fish were sampled at the end of each feeding period (4 and 6 wk) to measure hematological and immune parameters and growth and to determine the effects of dietary β‐glucan on resistance to Edwardsiella ictaluri infection and to low‐water stress (6 wk). Supplementation of YYS in diets did not affect growth performance, hematology, or immune function. Survival from E. ictaluri infection was from 5 to 17.5% higher in fish fed YYS diets than in the control group, but the increases were not significant. Some improvement in stress resistance was observed in YYS‐fed catfish after exposure to low‐water stress. Stress reduction in fish fed diets supplemented with yeast subcomponents has been reported previously, but thus far, no explanation has been proposed for this effect. The present study and the previously published research suggest that dietary YYS supplementation does not appear to improve resistance of channel catfish to E. ictaluri.  相似文献   

4.
Abstract

Three experiments were conducted. In Experiment 1, the acceptance time of pelleted diets sprayed with fresh palm fruit extract (FPFE), commercial palm oil (COM), or a control diet to African catfish, Clarias gariepinus, fingerlings was investigated. In Experiment 2, the effects of five diets on growth and survival of African catfish larvae were determined: (1) bambara nut waste-based (BW) diet; (2) bambara nut waste-based diet with 5% of diet formula of FPFE (BWP); (3) bambara nut waste-based diet with 5% of diet formula of FPFE plus 1.5% of diet formula of Spirulinapowder (BWPS); (4) fish waste-based diet (FWP); and (5) brine shrimp, Artemiasp., nauplii (control). In the BWP, BWPS, and FWP diets, fresh palm fruit extract was sprayed on the diets as a feed attractant. The Spirulinapowder was included in BWPS as an additional attractant. In Experiment 3, the effects of seven diets on growth and survival of the African catfish larvae were investigated: (1) BW; (2) BWP; (3) FWP; (4) a bambara waste-based diet with 5% COM (BWC); (5) a fish waste-based diet with 5% of formula as COM (FWC); (6) a fish waste-based diet with neither FPFE nor COM, and (7) brine shrimp nauplii (control). African catfish finger-lings accepted the pellets containing FPFE in significantly less time (P < 0.01) than they did the other pelleted diets. Inclusion of FPFE as 5% of diet formula significantly (P<0.05) improved the growth and survival of African catfish larvae fed formulated diets. Inclusion of Spirulinaat 1.5% of diet formula had no effect. Brine shrimp was nutritionally superior to the formulated diets for the African catfish larvae during the first 28 days of feeding. The results indicate that FPFE can be added to a diet for African catfish at 5% of diet formula. However, brine shrimp nauplii fed to larvae had the highest percentage survival and highest growth rates of any of the treatments.  相似文献   

5.
Juvenile channel catfish, Ictalurus punctatus (Rafinesque), blue catfish, I. furcatus (Lesueur), and their reciprocal Fl hybrids were fed practical diets containing 25% and 45% protein during a 10-week trial to determine the effects of genotype, dietary protein level and genotype X diet interactions on growth, feed conversion ratio (FCR), fillet proximate composition and resistance to the bacterium Edwardsiella ictaluri. Rankings of genotypes (best to worst) for absolute weight gain, percentage weight gain and FCR were: channel, channel female X blue male, blue, and blue female X channel male for the 25% protein diet; and channel, channel X blue, blue X channel, and blue for the 45% diet. Diet did not affect growth or FCR of channel catfish, but growth and FCR were better for blue catfish and both hybrids fed the 25% diet compared to those fed the 45% diet. Channel catfish additive genetic and maternal effects were favourable, and heterosis was negative for growth and FCR. After adjusting for effects of fish size, genotype had no effect on fillet composition. Fillet protein was higher for all genotypes, and fillet lipid was lower for blue catfish and hybrids fed the 45% diet than for fish fed the 25% diet. Genotype X diet interactions observed for growth, FCR and fillet lipid appeared to be a result of poor palatability of the 45% diet to blue catfish and hybrids. Survival (76-93%) and antibody levels (0.10-0.24 OD) after exposure to E. ictaluri at the end of the feeding trial were not affected by genotype or diet. Hybridization of blue catfish and channel catfish would not be an effective method for improving the traits measured for the fish strains and diets used in this study.  相似文献   

6.
A study was conducted to evaluate the effect of free gossypol from glanded‐cottonseed meal (G‐CSM) (natural free gossypol) or gossypol‐acetic acid on growth performance, body composition, haematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Soya bean meal‐based diets supplemented with 0, 100, 200, 400, and 800 mg kg?1 free gossypol from G‐CSM or gossypol‐acetic acid were fed to juvenile channel catfish in triplicate aquaria to apparent satiation twice daily for 12 weeks. Neither sources nor levels of dietary gossypol significantly influenced the final weight gain, feed intake, feed efficiency and survival of channel catfish. Similarly, whole‐body proximate composition, haematological parameters (red blood cell, white blood cell counts, haemoglobin and haematocrit), serum protein concentration, macrophage chemotaxis ratio, phagocytic activity and antibody production against E. ictaluri 21‐day postinfection were not significantly affected at either dietary sources or levels of gossypol. Gossypol concentrations of liver were linearly related to dietary level of gossypol but the retention rate varied dependent on sources of the dietary gossypol. At dietary gossypol levels of 400 or 800 mg kg?1, total gossypol concentrations in liver of fish fed dietary gossypol from G‐CSM were significantly higher than those of fish fed the corresponding levels of gossypol from gossypol‐acetic acid. The (+)‐isomer of gossypol was predominantly retained in liver regardless of dietary sources of gossypol. The ratio of (+) to (?) gossypol isomers in liver decreased with increasing dietary concentrations of gossypol. Serum lysozyme activity of fish fed dietary gossypol levels of 200 mg kg?1 or higher, either from G‐CSM or gossypol‐acetic acid, was significantly higher than that of the control. At a level of 800 mg kg?1 diet, gossypol from G‐CSM stimulated significantly higher lysozyme activity than gossypol from gossypol‐acetic acid. Fish fed diets containing 400 mg kg?1 gossypol or higher from G‐CSM or 800 mg kg?1 gossypol from gossypol‐acetic acid had significantly increased superoxide anion (O) production. However, neither the sources nor the levels of dietary free gossypol influenced the resistance of juvenile channel catfish to E. ictaluri challenge.  相似文献   

7.
Lipopolysaccharide (LPS), a component of Gram negative bacteria, was reported as important immunostimulant for fish. In this study, striped catfish were fed diets containing different Escherichia coli LPS concentrations (0%, 0.01% and 0.05%) for 2 weeks and then fed control feed (0% LPS) for 4 weeks. Plasma cortisol and glucose were rather low and did not differ significantly among treatments (P > 0.05). The respiratory burst activity, lysozyme, complement, total of antibody as well as mortality in fish challenged with Edwardsiella ictaluri were recorded every 2 weeks (W2, W4 and W6). The lysozyme activity significantly increased in fish treated with LPS (P < 0.05) in W2, W4 and W6. The highest values of respiratory burst activity were observed at week 4 in fish fed 0.01% LPS. There were significant differences in total of antibody between fish fed LPS (0.01%) and control in W2, W4. The challenge test with Edwardsiella ictaluri showed that fish fed 0.01% LPS had lower cumulative mortality (40%, 33% and 42%) compared with the fish fed 0.05% LPS (50%, 40% and 47%) and control fish (40%, 57% and 53%) in the three difference sampling times respectively. These results suggest that feed supplemented with 0.01% LPS could enhance immunity of striped catfish after 2 weeks of oral administration and fish could be protected against bacterial infection during the following 4 weeks.  相似文献   

8.
Channel catfish were fed practical corn‐soybean meal diets for 10 weeks that contained various weighed amounts of ground, dried field corn contaminated with 20 mg deoxynivalenol (DON) kg−1. Weighed amounts of DON corn were blended with weighed amounts of ground, clean corn that contained no DON (0 mg kg−1) to yield five diets that had 0, 2.5, 5.0, 7.5 and 10.0 mg DON kg−1 of diet. Results show that catfish fed diets that contained DON for 7 weeks did not experience lower weight gains or poorer feed conversion ratios that were significantly (P > 0.05) different from control‐fed fish. Mortality of catfish during the 21‐day post‐challenge period indicate that catfish fed diets containing DON‐contaminated corn that provided at least 5.0 mg DON kg−1 of diet had significantly (P < 0.05) lower mortality than catfish fed the control diet or the diet that provided 2.5 mg DON kg−1 of diet. The presence of DON‐contaminated corn in the experimental diets did not significantly (P > 0.05) alter fish body weight gains and appeared to provide a protective effect for channel catfish challenged with the pathogenic bacterium Edwardsiella ictaluri.  相似文献   

9.
Channel catfish, Ictalurus punctatus, 88.4 ± 2.6 g/fish, were fed a basal diet amended with 4% of three processed menhaden, Brevoortia tyrannus, oils. These were compared with basal diets amended with 4% corn oil or 4% canola oil. Three replicate aquaria of nine fish each were fed assigned diets twice daily. At 6 wk, fish were group weighed, fillets were collected for sensory evaluation, fatty acid analysis by gas chromatography (GC). In a second study, catfish, 118.8 ± 3.2 g/fish, were stocked into fifteen 0.04‐ha earthen ponds and fed once daily for 16 wk one of four diets containing 2 or 4% of either catfish offal oil or refined (RF) menhaden oil. At harvest, fillets were saved for sensory evaluation and fatty acid analysis. Results showed no significant (P > 0.05) differences among treatments for aquarium study and pond study variables such as weight gain, fillet proximate analysis, or pond production. GC analysis showed that levels of omega‐3 (n‐3) highly unsaturated fatty acids (HUFA) in fillet lipid were significantly (P < 0.05) elevated for fish fed menhaden oil diets. Sensory evaluation revealed that fillets from fish fed RF menhaden oil had satisfactory flavor and could be a source of n‐3 HUFA for humans.  相似文献   

10.
This study aimed to evaluate the effects of enriched Artemia by fish and soybean oils supplemented with vitamin E on growth performance, lipid peroxidation, lipase activity and fatty acid composition of Persian sturgeon (Acipenser persicus) larvae. For this purpose, five experimental diets including non‐enriched Artemia (control diet), Artemia enriched with soybean oil supplemented with 15% and 30% vitamin E (S15 and S30 diets) and fish oil supplemented with 15% and 30% vitamin E (F15 and F30 diets) were used. The larvae were fed to apparent satiation four times per day for 22 days. The results indicated that fish fed enriched Artemia had no significant differences compared with those fed non‐enriched Artemia in terms of growth and survival, but increase in vitamin E levels from 15 to 30% improved growth performance of larvae. Vitamin E content in fish fed S15 and S30 diets was significantly higher. Fish fed non‐enriched Artemia had significantly higher thiobarbituric acid and lower lipase activity. The highest HUFA and n‐3/n‐6 ratio were observed in fish fed F15 and F30 diets. Our results demonstrated that fish oil can completely replace with soybean oil in larval diets. Therefore, using S30 diet is recommended for feeding of Persian sturgeon larvae.  相似文献   

11.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

12.
Juvenile channel catfish were fed purified diets supplemented with magnesium (Mg) from Mg sulfate at levels of 0, 200, 400, 600, 800, and 1,000 mg/kg and 0, 200, 400, 600, and 800 mg/kg in two separate feeding studies. In study I, the effect of dietary levels of Mg on growth response, vertebral mineral content, and macrophage chemotaxis were evaluated. Study II had similar objectives except that whole body mineral content was measured, and resistance of channel catfish to Edwardsiella ictaluri challenge was also determined. Fish with an average weight of 10.89 g were stocked at a rate of 50 fish/110‐L aquarium (study I). In study II, fish with an average weight of 4.14 g were stocked at rates of 40 fish/110‐L aquarium. Prior to stocking, each batch of fish was acclimated to laboratory conditions and fed the basal diet for 2 wk. The concentration of Mg in rearing water was 1.8 mg/L. Each diet was fed to fish in quadruplicate and triplicate aquaria to apparent satiation for 10 wk for studies I and II, respectively. Fish fed the basal diet started to die as early as 3 d after the study began (17 d of feeding the diet without Mg supplementation). In both studies, weight gain, survival, and feed efficiency were lowest for fish fed the basal diet but increased with increasing dietary levels of Mg. However, the differences between the values of each of these parameters for fish fed diets containing supplemental Mg were not always significant. Magnesium‐deficiency signs observed were anorexia, sluggishness, convulsions, deformed snout, vertebral curvature, muscle flaccidity, and high mortality. Vertebral and whole body ash concentrations were high, but Mg content was low for fish fed the basal and the 200‐mg Mg diets. Bone Ca content did not differ among fish fed different diets (study I), but whole body Ca tended to increase for fish fed the basal diet, suggesting the possibility of calcification of soft tissues. Macrophage chemotaxis in the presence of exoantigen was highest for fish fed diets supplemented with Mg at 400 and 200 mgkg for studies I and II, respectively. When expressed in terms of chemotaxis index, however, maximum or near maximum value was observed at a dietary Mg level of 400 mg/kg. Thus, a dietary level of Mg of 400 mg/kg from Mg sulfate was required for optimum growth and survival, maintaining high tissue levels of Mg, prevention of muscle flaccidity and skeletal deformity, and stimulating macrophage chemotaxis. Dietary levels of Mg had no effect on the resistance of juvenile channel catfish to Edwarsiella. ictaluri challenge.  相似文献   

13.
The role of dietary linolenic acid (LN), vitamin E (E) and vitamin C (C) in regulating fish growth and immune response was tested on juvenile darkbarbel catfish Pelteobagrus vachelli. Five dietary combinations were used (?E?LN, +E?LN, ?E+LN, +E+LN and ?C+E+LN; ‘+’ with addition and ‘?’ without addition) in triplicate. Weight gain was highest in the ?E+LN feeding group. Red blood cell in fish fed the +E+LN diet was highest. The haematocrit and haemoglobin of fish fed the ?E+LN diet was lowest. Superoxide dismutase, catalase, glutathione peroxidase and glucose‐6‐phosphate dehydrogenase activities in fish fed the ?E+LN diet were higher than those in fish fed other diets. Malondialdehyde in fish fed the ?C+E+LN diet was highest. Fish fed the +E+LN diet had higher levels of lysozyme activity, serum protein, complements C3 and C4, and immunoglobulin contents than fish fed other diets. Fish fed the +E+LN diet showed lower mortality and higher antibody titre than fish fed other diets after the fish were challenged with Aeromonas hydrophila for 14 day. This study suggests that the growth of darkbabel catfish is improved by increasing dietary linolenic acids. The diets with high linolenic acid, vitamin E and vitamin C can enhance the immune response and resistance in darkbarbel catfish challenged with A. hydrophila.  相似文献   

14.
A non-nutritive, ambient temperature-processed floating pellet (ATFP) was used as a medium to deliver apramycin (Eli Lilly and Co., Greenfield, Indiana), 52% active, and oxytetracycline hydrochloride (Pfizer, Inc., Lee's Summit, Missouri) (91% active) to channel catfish, Ictalurus punctatus, experimentally infected with Edwardsiella ictaluri. The drugs were fed at 50 mg of active antibiotic per kilogram of fish per day. Two medicated feeding trials were run for 10 consecutive days in troughs with channel catfish, beginning 24 hours after exposure to E. ictaluri. Mortality in the non-infected control population in Trial 1 was 7.6%, significantly (P < 0.05) lower than the 88.3% of the infected, non-medicated fish. Fish fed diets containing apramycin experienced 62.5% mortality, while fish fed diets containing oxytetracycline hydrochloride had 63.3% mortality. Mortality of the two medicated groups were significantly (P < 0.05) different from either control group. In Trial II, the 23% mortality in the non-infected group was significantly lower than the 48% mortality in the infected, non-medicated group and the 41% mortality in the oxytetricycline hydrochloride-medicated group, but not different than fish fed diets containing apramycin (28%). Mortality of the two medicated groups in Trial II were significantly different from each other. The presence of thc apramycin and oxytetracycline hydrochloride in the ATFP was demonstrated by the antibiotic diffusion method on agar plates swabbed with E. ictaluri.  相似文献   

15.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

16.
Three feeding experiments were conducted to evaluate growth and body composition in blue caffish Ictalurus furcatus or channel caffish I. punctatus when fed diets containing 22% protein with or without supplemented methionine and/or lysine. All experiments were conducted in 110‐L aquaria that were part of a recirculating system. In Experiment 1,15 juvenile blue catfish (2.7 g) were randomly stocked into aquaria and fed one of three diets containing different (22%, 27%, and 32%) percentages of protein. Fish were fed twice daily to excess for 10 wk. In Experiment 2, juvenile blue catfish (5.4 g) were randomly stocked into aquaria and fed one of six diets containing either 22% (diet 1) or 32% (diet 2) protein. The diet containing 22% protein (diet 1) had either 0.3% crystalline L‐methionine (diet 3), 0.4% crystalline L‐lysine (diet 4), or 0.3% L‐methionine + 0.4% L‐lysine (diet 5) added. A sixth diet was formulated to contain 32% protein and 0.2% crystalline L‐methionine. Fish were fed in excess for 12 wk. In Experiment 3, juvenile channel caffish (10.3 g) were stocked and fed diets 14 from Experiment 2, twice daily in excess for 8 wk. In Experiment 1, after 10 wk, final individual weight, weight gain (%), and specific growth rate (SGR) of blue catfish fed diets containing three protein levels were not significantly different (P > 0.05) and averaged 12.9 g, 378%, and 2.2%/d, respectively. Fish fed the diet containing 27% protein had higher (P < 0.05) whole‐body protein (65.4%) compared to fish fed diets containing either 22% or 32% protein. In Experiment 2, final weight, weight gain (%) and SGR of blue catfish were not significantly (P > 0.05) different among diets and averaged 24.7 g, 355%, and 1.8%/d, respectively. Percentage whole‐body protein and lipid were not significantly (P > 0.05) different between fish fed diets containing 22% or 32% protein. In Experiment 3, channel caffish fed a diet containing 32% protein had significantly (P > 0.05) higher final individual weight, weight gain (%), and SGR compared to fish fed diets containing 22% protein, with and without supplemental methionine or lysine. Results indicate that blue catfish may be able to utilize a diet with 22% protein, and that addition of crystalline methionine and/or lysine did not improve growth. However, channel catfish grown in aquaria did not appear to have similar growth when fed a diet containing 22% protein compared to fish fed 32% protein, even when supplemental methionine or lysine was added. Further research on blue catfish and the use of a low‐protein diet (22% protein) needs to be conducted in ponds.  相似文献   

17.
Most microalgae evaluated in aquaculture diets have been produced autotrophically. In order to produce a cost‐efficient biomass at greater magnitudes for biofuel feedstock, heterotrophic production may be warranted. However, the chemical/nutritional attributes of these microalgae could differ from those grown autotrophically. An 8‐wk feeding trial was conducted to evaluate Chlorella spp. algae meal (AM) that had been cultured heterotrophically. The oil (lipid) was extracted to simulate biofuel production. Juvenile channel catfish, Ictalurus punctatus (5.7 ± 1.4 g; 8.9 ± 0.8 cm), were stocked at 10 fish/tank into fifteen 37.7‐L aquaria in a closed recirculating system and fed one of the five experimental diets to apparent satiation twice daily. Diets contained either 0 (control, CTL), 10, 20, or 40% AM and an additional diet containing 40% AM was supplemented with 2% lysine (40% AM+LYS). After 8 wk, there were no statistically significant differences in terms of survival, dressout percentages, whole‐body proximate composition, or fatty acid composition of the fillets among fish fed the diets containing varying levels of AM without added lysine. Feed consumption and weight gain for fish fed the 10, 40, and 40% AM+LYS diets were significantly greater than those fed the CTL diet. Feed conversion ratio was significantly lower for fish fed the 40% AM+LYS diet compared to those fed all other diets, which did not differ significantly from each other. These data indicate that channel catfish readily accept and can efficiently utilize heterotrophically produced AM at levels up to at least 40% of the total diet and that AM may enhance diet palatability.  相似文献   

18.
The effects of dietary lipid from four experimental diets on the fatty acid (FA) composition and cholesterol (CHOL) content of spermatozoa and spermatozoal plasma membranes and their consequences for sperm viability after cryopreservation were evaluated in rainbow trout Oncorhynchus mykiss (Walbaum). The four sources of lipid were herring oil (adequate n‐3 FA), menhaden oil (high n‐3 FA), safflower oil (high n‐6 FA) or tallow (high saturated FA), and they comprised 12% of the total diet. Spermatozoa from fish fed the tallow diet had significantly (P < 0.05) higher CHOL levels than spermatozoa from the fish fed the other diets. The spermatozoal plasma membranes from fish fed the tallow diet had significantly (P < 0.05) higher CHOL and monounsaturated fatty acid levels than those from fish fed the menhaden or safflower oil diets, but were not different from membranes of fish fed the herring oil diet. Cryopreserved spermatozoa from fish fed the tallow or herring oil diets exhibited less membrane damage (P < 0.05) and produced a higher percentage (P < 0.05) of eyed embryos compared with spermatozoa from the menhaden or safflower oil‐fed fish. Therefore, it would appear that high levels of CHOL and monounsaturated fatty acids provided the spermatozoa with increased resistance to cryopreservation damage.  相似文献   

19.
The effects of different dietary lipids on the growth, feed utilization and tissue fatty acid composition of a tropical bagrid catfish Mystus nemurus (Cuvier & Valenciennes) were investigated. Eight isonitrogenous and isoenergetic semi‐purified diets were fed to triplicate groups of M. nemurus fingerlings for 10 weeks. Diet lipid levels were fixed at 10%, with 1% coming from residual oil in fishmeal and the remainder from cod liver oil (CLO), corn oil (CORN), soybean oil (SBO), crude palm oil (CPO), refined, bleached and deodorized palm olein (RBDPO) or various combinations of these oils. Catfish fed diets supplemented with 9% RBDPO showed significantly (P < 0.05) higher growth rates compared with fish fed the other seven diets. No significant differences in growth performance or feed efficiency ratio were observed between M. nemurus fed 9% CLO, CORN or CPO or fish fed diets containing 4% CLO with either 5% CORN, SBO, CPO or RBDPO. Based upon these results, palm oil‐based diets can be used effectively for M. nemurus without compromising growth or feed utilization efficiency. Muscle and liver fatty acid composition of M. nemurus reflected that of the dietary oils added in pelleted diets fed to the fish. Considering the lower cost and availability of palm oil (compared with imported vegetable oils and fish oils) in many tropical countries, its use in dietary formulations for M. nemurus, and possibly other catfish species, will make these fish feeds less expensive.  相似文献   

20.
A study was conducted to examine the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth, body composition, hematology, immune response, and resistance of channel catfish, Ictalurus punctatus, to Edwardsiella ictaluri challenge. Five diets containing 0, 10, 20, 30, and 40% DDGS with supplemental lysine (Diets 1–5) as partial replacements of a combination of soybean meal and cornmeal on an equal protein basis were fed to juvenile catfish (13.33 ± 0.25 g) for 12 wk. Growth performance and feed utilization efficiency were similar for fish in all treatments. Body lipid and moisture increased and decreased, respectively, in fish feed DDGS‐containing diets relative to the control group. Dietary treatment had no effect on red and white blood cell counts. Hemoglobin and hematocrit were significantly higher in fish fed diets containing DDGS than in those fed the control diet. Fish fed 20–40% DDGS diets had increased serum total immunoglobulin, and those fed the 30% DDGS diet had significantly increased antibody titers 21 d following E. ictaluri challenge. Other immune variables evaluated were not affected by dietary treatments. Preliminary results on bacterial challenge showed an increased resistance against E. ictaluri in fish fed DDGS‐containing diets (Diets 2–5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号