首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo investigate the influence of l–methadone on medetomidine–induced changes in arterial blood gases and clinical sedation in dogs.Study designProspective experimental cross–over study (Latin square design).AnimalsFive 1–year–old purpose bred laboratory beagle dogs of both sexes.MethodsEach dog was treated three times: medetomidine (20 μg kg?1 IV), l–methadone (0.1 mg kg?1 IV) and their combination. Arterial blood was collected for blood gas analysis. Heart and respiratory rates were recorded, and clinical sedation and reaction to a painful stimulus were scored before drug administration and at various time points for 30 minutes thereafter.ResultsArterial partial pressure of oxygen decreased slightly after medetomidine administration and further after medetomidine/l–methadone administration (range 55.2–86.7 mmHg, 7.4–11.6 kPa, at 5 minutes). A slight increase was detected in arterial partial pressure of carbon dioxide after administration of l–methadone and medetomidine/l–methadone (42.6 ± 2.9 and 44.7 ± 2.4 mmHg, 5.7 ± 0.4 and 6.0 ± 0.3 kPa, 30 minutes after drug administration, respectively). Arterial pH decreased slightly after administration of l–methadone and medetomidine/l–methadone. Heart and respiratory rates decreased after administration of medetomidine and medetomidine/l–methadone, and no differences were detected between the two treatments. Most dogs panted after administration of l–methadone and there was slight sedation. Medetomidine induced moderate or deep sedation, and all dogs were deeply sedated after administration of medetomidine/l–methadone. Reaction to a noxious stimulus was strong or moderate after administration of methadone, moderate or absent after administration of medetomidine, and absent after administration of medetomidine/l–methadone.Conclusions and clinical relevanceAt the doses used in this study, l–methadone potentiated the sedative and analgesic effects and the decrease in arterial oxygenation induced by medetomidine in dogs, which limits the clinical use of this combination.  相似文献   

2.
ObjectiveTo determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine–tiletamine–zolazepam in red deer (Cervus elaphus).Study design and animalsA total of 10 healthy red deer were included in a randomised, controlled, experimental, crossover study.MethodsDeer were administered a combination of 0.1 mg kg–1 medetomidine hydrochloride and 2.5 mg kg–1 tiletamine–zolazepam intramuscularly, followed by 0.1 mg kg–1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (Pe′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p < 0.05).ResultsMaximal (81 ± 10 beats minute–1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute–1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute–1) with the saline treatment, whereas MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. Pe′CO2, fR and SpO2 showed no significant differences between treatments, whereas RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan.Conclusions and clinical relevanceVatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilised with medetomidine–tiletamine–zolazepam.  相似文献   

3.
ObjectiveTo investigate the sedative and cardiorespiratory effects of intranasal atomization (INA) of alfaxalone using a mucosal atomization device in Japanese White rabbits.Study designRandomized, prospective, crossover study.AnimalsA total of eight healthy female rabbits, weighing 3.6–4.3 kg and aged 12–24 months.MethodsEach rabbit was randomly assigned to four INA treatments administered 7 days apart: Control treatment, 0.15 mL 0.9% saline in both nostrils; treatment INA0.3, 0.15 mL 4% alfaxalone in both nostrils; treatment INA0.6, 0.3 mL 4% alfaxalone in both nostrils; treatment INA0.9, 0.3 mL 4% alfaxalone in left, then right, then left nostril. Sedation was scored 0–13 using a composite measure scoring system for rabbits. Simultaneously, pulse rate (PR), respiratory rate (fR), noninvasive mean arterial pressure (MAP), peripheral hemoglobin oxygen saturation (SpO2) and arterial blood gases were measured until 120 minutes. The rabbits breathed room air during the experiment and were administered flow-by oxygen when hypoxemia (SpO2 <90% or PaO2 <60 mmHg; 8.0 kPa) developed. Data were analyzed using the Fisher's exact test and the Friedman test (p < 0.05).ResultsNo rabbit was sedated in treatments Control and INA0.3. All rabbits in treatment INA0.9 developed loss of righting reflex for 15 (10–20) minutes [median (25th–75th percentile)]. Sedation score significantly increased from 5 to 30 minutes in treatments INA0.6 and INA0.9 with maximum scores of 2 (1–4) and 9 (9–9), respectively. fR decreased in an alfaxalone dose-dependent manner and one rabbit developed hypoxemia in treatment INA0.9. No significant changes were observed in PR and MAP.Conclusions and clinical relevanceINA alfaxalone resulted in dose-dependent sedation and respiratory depression in Japanese White rabbits to values considered not clinically relevant. Further investigation of INA alfaxalone in combination with other drugs is warranted.  相似文献   

4.
ObjectiveTo evaluate the effects of intravenous (IV) or intramuscular (IM) hyoscine premedication on physiologic variables following IV administration of medetomidine in horses.Study designRandomized, crossover experimental study.AnimalsEight healthy crossbred horses weighing 330 ± 39 kg and aged 7 ± 4 years.MethodsBaseline measurements of heart rate (HR), cardiac index (CI), respiratory rate, systemic vascular resistance (SVR), percentage of patients with second degree atrioventricular (2oAV) block, mean arterial pressure (MAP), pH, and arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) were obtained 5 minutes before administration of IV hyoscine (0.14 mg kg?1; group HIV), IM hyoscine (0.3 mg kg?1; group HIM), or an equal volume of physiologic saline IV (group C). Five minutes later, medetomidine (7.5 μg kg?1) was administered IV and measurements were recorded at various time points for 130 minutes.ResultsMedetomidine induced bradycardia, 2oAV blocks and increased SVR immediately after administration, without significant changes in CI or MAP in C. Hyoscine administration induced tachycardia and hypertension, and decreased the percentage of 2oAV blocks induced by medetomidine. Peak HR and MAP were higher in HIV than HIM at 88 ± 18 beats minute?1 and 241 ± 37 mmHg versus 65 ± 16 beats minute?1 and 192 ± 38 mmHg, respectively. CI was increased significantly in HIV (p ≤ 0.05). Respiratory rate decreased significantly in all groups during the recording period. pH, PaCO2 and PaO2 were not significantly changed by administration of medetomidine with or without hyoscine.Conclusion and clinical relevanceHyoscine administered IV or IM before medetomidine in horses resulted in tachycardia and hypertension under the conditions of this study. The significance of these changes, and responses to other dose rates, requires further investigation.  相似文献   

5.
6.
ObjectiveTo compare the sedative and cardiopulmonary effects of intranasal (IN) and intramuscular (IM) administration of dexmedetomidine and midazolam combination in New Zealand White rabbits.Study designA randomized, crossover experimental study.AnimalsA total of eight healthy New Zealand White rabbits, aged 6–12 months, weighing 3.1 ± 0.3 kg (mean ± standard deviation).MethodsThe animals were randomly assigned to administration of dexmedetomidine (0.1 mg kg–1) with midazolam (2 mg kg–1) by either IN or IM route separated by 2 weeks. The electrocardiogram, pulse rate (PR), peripheral haemoglobin oxygen saturation (SpO2), mean noninvasive arterial pressure (MAP), respiratory frequency (fR) and rectal temperature were measured before drug administration (baseline), T0 (onset of sedation) and at 5 minute intervals until recovery. The onset of sedation, duration of sedation and sedation score (SS) were also recorded.ResultsThe PR was significantly lower in treatment IM than in treatment IN over time (p = 0.027). MAP < 60 mmHg developed in two and four rabbits in treatments IN and IM, respectively. SpO2 progressively decreased over time in both treatments. fR was lower than baseline at several time points in both treatments. Onset of sedation was shorter in treatment IN (90 ± 21 seconds) than in treatment IM (300 ± 68 seconds) (p = 0.036). Duration of sedation was longer in treatment IM (55.2 ± 8.7 minutes) than in treatment IN (39.6 ± 2.1 minutes) (p = 0.047). No significant difference in SS was observed between treatments (p > 0.05).Conclusions and clinical relevanceCombination of dexmedetomidine (0.1 mg kg–1) and midazolam (2 mg kg–1) decreased fR, PR and SpO2 regardless of the administration route in New Zealand White rabbits. A more rapid action and shorter duration of sedation were observed after treatment IN than after treatment IM administration.  相似文献   

7.
ObjectiveTo investigate the effect of medetomidine on plasma glucose and insulin concentrations in dogs with insulinoma and in healthy dogs undergoing anesthesia and surgery.AnimalsTwenty–five dogs with insulinoma and 26 healthy dogs.MethodsIn dogs with insulinoma, medetomidine (5 μg kg?1) was randomly included (n = 12) or omitted (n = 13) from the pre–anesthetic medication protocol, which typically contained an opioid and an anticholinergic. Healthy dogs received medetomidine (5 μg kg?1; n = 13) or acepromazine (0.04 mg kg?1; n = 13) plus an opioid (morphine 0.5 mg kg?1) and an anticholinergic (atropine 0.04 mg kg?1) as pre–anesthetic medications. Pre–anesthetic medications were given intramuscularly. Plasma glucose and insulin concentrations were measured before (sample 1) and 30 minutes after pre–anesthetic medication (sample 2), and at the end of surgery in dogs with insulinoma or at 2 hours of anesthesia in healthy dogs (sample 3). Glucose requirement to maintain intra–operative normoglycemia in dogs with insulinoma was quantified and compared. Data were analyzed with anova and Bonferroni post–test, t–tests or chi–square tests as appropriate with p < 0.05 considered significant. Data are shown as mean ± SD.ResultsMedetomidine significantly decreased plasma insulin concentrations and increased plasma glucose concentrations in healthy dogs and those with insulinoma. These variables did not change significantly in the dogs not receiving medetomidine. In the dogs with insulinoma, intra–operative glucose administration rate was significantly less in the animals that received medetomidine compared to those that did not.ConclusionsPre–anesthetic administration of medetomidine significantly suppressed insulin secretion and increased plasma glucose concentration in dogs with insulinoma and in healthy dogs undergoing anesthesia and surgery.Clinical relevanceThese findings support the judicious use of medetomidine at low doses as an adjunct to the anesthetic management of dogs with insulinoma.  相似文献   

8.
ObjectiveTo evaluate the sedative effects of a combination of sufentanil and midazolam administered intramuscularly (IM) or intranasally (IN) prior to induction of anesthesia with propofol in New Zealand White rabbits.Study designProspective, randomized, crossover, experimental study.AnimalsA total of 11 adult New Zealand White rabbits.MethodsSufentanil (0.5 μg kg–1) and midazolam (2 mg kg–1) were administered to rabbits via IM or IN route. The righting reflex was assessed, and sedation was scored. Heart rate, respiratory rate (fR) and temperature were recorded prior to treatment administration and after loss of the righting reflex.ResultsMeasured variables remained within normal physiologic ranges for all rabbits. The only statistically significant change was for fR, which was significantly lower after sedation for both routes. The time to loss of righting reflex was 14.8 ± 6.5 and 12.5 ± 7.4 minutes and sedation scores were 6 (4–8) and 7 (6–8) for IM and IN routes, respectively, with no difference between treatments. No adverse effects were observed during the experimental period.Conclusions and clinical relevanceSufentanil combined with midazolam administered either IM or IN resulted in moderate to deep sedation in New Zealand White rabbits at the dose rates studied.  相似文献   

9.
ObjectiveTo develop a safe and effective immobilization protocol in rhesus monkeys, which is not based on dissociative anaesthetic agent.Study designProspective, randomised, experimental trial.AnimalsTwenty rhesus monkeys, weighing 2.6–8.0 kg, 1–3 years of age, of both sexes.MethodsThe monkeys received 50 μg kg?1 medetomidine, 0.25 mg kg?1 midazolam and 5 μg kg?1 fentanyl with 150 IU hyaluronidase intramuscularly (IM). The animals were closely observed for behavioural changes and reaction to sound stimulus. Pulse rate and oxygen saturation of haemoglobin (SpO2) were monitored every 5 minutes, for 20 minutes. After this period, 250 μg kg?1 atipamezole or a placebo was administered IM and behavioural changes were closely observed.ResultsFull immobilization was observed after mean 269 ± SD 116 seconds. Ten minutes after injection mean arterial oxygen saturation of haemoglobin was 94 ± 4%, but did not fall significantly further. The median pulse rate was 116 beats minute?1 5 minutes after the administration of the drug. This level further decreased to a median level of 108 beats minute?1 20 minutes after the drug's administration. The median time to recover from immobilization was significantly shorter after atipamezole administration when compared to placebo (2.7 versus 55 minutes). All animals awoke smoothly and no side effects such as vomiting or agitation were observed.ConclusionsShort term and reversible pharmacological immobilization was achieved using combination of midazolam, medetomidine, and fentanyl.Clinical relevanceThe present study demonstrates that 20-minute pharmacological immobilization with a combination of midazolam, medetomidine, and fentanyl is feasible in rhesus monkeys with minimal effect on heart rate.  相似文献   

10.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

11.
ObjectiveTo evaluate the clinical and physiologic effects of intramuscular (IM) administration of medetomidine with and without tramadol in dogs.Study designProspective experimental study.AnimalsA group of eight mixed breed dogs of both sexes, aged 1–2 years, weighing 16.0 ± 0.6 kg.MethodsEach dog was studied twice at ≥1 week interval. Medetomidine (5 μg kg–1; treatment M) was administered IM alone or with tramadol (4 mg kg–1; treatment MT). Sedation was scored by a system that included vocalization, posture, appearance, interactive behaviors, resistance to restraint and response to noise. Times from drug administration to ataxia, impaired walking, head drop, sternal and lateral position and standing were recorded. Sedation score, heart rate, respiratory rate, rectal temperature, end-tidal carbon dioxide (Pe′CO2), hemoglobin oxygen saturation and mean noninvasive blood pressure were recorded and compared 15 minutes before and 15, 30 and 45 minutes after drug administration.ResultsDogs administered MT had higher sedation scores than dogs administered M at 30 and 45 minutes after drug administration (p < 0.05). Times to ataxia, impaired walking, head drop and sternal recumbency were not different between the treatments. Time to lateral recumbency was longer in M than in MT (21.1 ± 1.0 versus 17.6 ± 0.7 minutes, respectively; p < 0.05). Time to standing was longer in MT than in M (67.9 ± 1.4 versus 54.5 ± 1.9 minutes, respectively; p < 0.001). Measured physiological variables did not differ between the treatments, with the exception of Pe′CO2, which was higher in MT than in M at all post-treatment evaluation times (p < 0.001).Conclusions and clinical relevanceTramadol combined with medetomidine resulted in greater sedation scores (deeper sedation) than medetomidine alone in dogs, and minimal adverse changes in the physiologic variables were measured.  相似文献   

12.
ObjectiveTo assess the effects of premedication with buprenorphine on the characteristics of anaesthesia induced with ketamine/medetomidine.Study designProspective crossover laboratory study.AnimalsSix female New Zealand White rabbits.MethodsRabbits received, on occasions separated by 7 days, either buprenorphine (0.03 mg kg?1) or saline subcutaneously (SC) as premedication, followed 1 hour later by SC ketamine (15 mg kg?1) and medetomidine (0.25 mg kg?1) (K/M). At pre-determined time points reflex responses and cardiopulmonary parameters were recorded and arterial blood samples taken for analysis. Total sleep time was the duration of loss of the righting reflex. Duration of surgical anaesthesia was the time of suppression of the ear pinch and pedal withdrawal reflexes. Wilcoxon signed-ranks tests were used to compare data before (T0) and 10 minutes after (T10) injection with K/M.ResultsAll animals lost all three reflex responses within 10 minutes of injection of K/M. The duration of loss of these reflexes significantly increased in animals that received buprenorphine. At induction, animals that had received buprenorphine tended to have a lower respiration rate but there were no significant differences in arterial PCO2, PO2 or pH between treatments. Hypoxaemia [median PaO2 < 6.0 kPa (45 mmHg)] developed in both treatments at T10 but there was no significant difference between treatments. Mean arterial pressure (MAP) was lower at T10 in animals that had received buprenorphine.Conclusion and clinical relevancePremedication with buprenorphine significantly increased the duration of anaesthesia induced by K/M, with no significant depression of respiration further to the control treatment within the first 10 minutes of anaesthesia. The MAP decreased but this was not reflected in a difference in other physiological parameters. These data show that premedication with buprenorphine, before K/M anaesthesia in the rabbit, has few negative effects and may provide beneficial analgesia.  相似文献   

13.
ObjectiveTo compare physiological effects of sufentanil-midazolam with sevoflurane for surgical anaesthesia in medetomidine premedicated rabbits.Study designProspective, randomized controlled experimental study.AnimalsEighteen female Himalayan rabbits, weight 2.1 ± 0.1 kg.MethodsPremedication with 0.1 mg kg−1 medetomidine and 5 mg kg−1 carprofen subcutaneously, was followed by intravenous anaesthetic induction with sufentanil (2.3 μg mL−1) and midazolam (0.45 mg mL−1). After endotracheal intubation, anaesthesia was maintained with sufentanil-midazolam (n = 9) or sevoflurane (n = 9). Ovariohysterectomy was performed. Intermittent positive pressure ventilation was performed as required. Physiological variables were studied perioperatively. Group means of physiologic data were generated for different anaesthetic periods. Data were compared for changes from sedation, and between groups by anova. Post-operatively, 0.05 mg kg−1 buprenorphine was administered once and 5 mg kg−1 carprofen once daily for 2–3 days. Rabbits were examined and weighed daily until one week after surgery.ResultsSmooth induction of anaesthesia was achieved within 5 minutes. Sufentanil and midazolam doses were 0.5 μg kg−1 and 0.1 mg kg−1, during induction and 3.9 μg kg−1 hour−1 and 0.8 mg kg−1 hour−1 during surgery, respectively. End-tidal sevoflurane concentration was 2.1% during surgery. Assisted ventilation was required in nine rabbits receiving sufentanil-midazolam and four receiving sevoflurane. There were no differences between groups in physiologic data other than arterial carbon dioxide. In rabbits receiving sevoflurane, mean arterial pressure decreased pre-surgical intervention, heart rate increased 25% during and after surgery and body weight decreased 4% post-operatively. Post-operative problems sometimes resulted from catheterization of the ear artery.ConclusionSevoflurane and sufentanil-midazolam provided surgical anaesthesia of similar quality. Arterial blood pressure was sustained during sufentanil-midazolam anaesthesia and rabbits receiving sevoflurane lost body weight following ovariohysterectomy. Mechanical ventilation was required with both anaesthetic regimens.Clinical relevanceAnaesthesia with sufentanil-midazolam in medetomidine premedicated healthy rabbits is useful in the clinical and the research setting, as an alternative to sevoflurane.  相似文献   

14.
ObjectiveTo compare the cardiopulmonary effects of intravenous (IV) and intramuscular (IM) medetomidine and butorphanol with or without MK-467.Study designProspective, randomized experimental cross-over.AnimalsEight purpose–bred beagles (two females, six males), 3–4 years old and weighing 14.5 ±1.6 kg (mean ± SD).MethodsAll dogs received four different treatments as follows: medetomidine 20 μg kg?1 and butorphanol tartrate 0.1 mg kg?1 IV and IM (MB), and MB combined with MK-467,500 μg kg?1 (MBMK) IV and IM. Heart rate (HR), arterial blood pressures (SAP, MAP, DAP), central venous pressure (CVP), cardiac output, respiratory rate (fR), rectal temperature (RT) were measured and arterial blood samples were obtained for gas analysis at baseline and at 3, 10, 20, 30, 45 and 60 minutes after drug administration. The cardiac index (CI), systemic vascular resistance index (SVRI) and oxygen delivery index (DO2I) were calculated. After the follow-up period atipamezole 50 μg kg?1 IM was given to reverse sedation.ResultsHR, CI and DO2I were significantly higher with MBMK after both IV and IM administration. Similarly, SAP, MAP, DAP, CVP, SVRI and RT were significantly lower after MBMK than with MB. There were no differences in fR between treatments, but arterial partial pressure of oxygen decreased transiently after all treatments. Recoveries were uneventful following atipamezole administration after all treatments.Conclusions and clinical relevanceMK-467 attenuated the cardiovascular effects of a medetomidine-butorphanol combination after IV and IM administration.  相似文献   

15.
ObjectiveTo evaluate the effects and utility of tiletamine–zolazepam–medetomidine (TZM) and ketamine–medetomidine (KM) for anesthesia of Amur leopard cats (Prionailurus bengalensis euptailurus).Study designProspective, randomized experimental trial.AnimalsA total of six female (3.70 ± 0.49 kg) and six male (5.03 ± 0.44 kg; mean ± standard deviation) Amur leopard cats aged 2–6 years.MethodsEach animal was administered four protocols separated by ≥3 weeks. Each protocol included medetomidine (0.05 mg kg–1) combined with tiletamine–zolazepam (1 mg kg–1; protocol MTZLO); tiletamine–zolazepam (2 mg kg–1; protocol MTZHI); ketamine (2 mg kg–1; protocol MKLO); or ketamine (4 mg kg–1; MKHI) administered intramuscularly. At time 0 (onset of lateral recumbency) and 30 minutes, heart rate (HR), respiratory rate (fR), rectal temperature, noninvasive mean arterial pressure (MAP) and hemoglobin oxygen saturation (SpO2) were recorded. Times to onset of lateral recumbency, duration of anesthesia and time to standing were recorded.ResultsOverall, animals were anesthetized with all protocols within 10 minutes, anesthesia was maintained ≥57 minutes, and recovery (time from the first head lift to standing) was completed within 5 minutes. During anesthesia with all protocols, HR, fR, rectal temperature, SpO2 and MAP were 99–125 beats minute–1, 33–44 breaths minute–1, 37.6–39.4 °C, 90–95% and 152–177 mmHg, respectively. No adverse event was observed.Conclusions and clinical relevanceTZM and KM at various dosages resulted in rapid onset of anesthesia, duration of >57 minutes and rapid recovery without administration of an antagonist. Accordingly, all these combinations are useful for anesthetizing Amur leopard cats and for performing simple procedures. However, the low doses of the anesthetic agents are recommended because there was no difference in duration of anesthesia between the dose rates studied.  相似文献   

16.
ObjectiveTo evaluate a combination of acepromazine, dexmedetomidine and ketamine (ADK) on induction and recovery from anaesthesia, and on physiological parameters in hares undergoing non‐invasive procedures.Study designProspective clinical study.AnimalsSixteen European hares (Lepus europaeus), seven males and nine females, aged (mean ± SD) 3.25 ± 0.9 months and weight 2.1 ± 0.6 kg.MethodsAcepromazine 1% (A), dexmedetomidine 0.05% (D) and ketamine 5% (K) were mixed and given intramuscularly (IM) at 0.25 mL kg?1, representing 10 mg kg?1 K, 0.25 mg kg?1 A, 12.5 μg kg?1 D. If the righting reflex was present after four minutes, a second injection of 0.15 mL kg?1 (6 mg kg?1 K, 0.15 mg kg?1 A, 7.5 μg kg?1 D) was administered IM. Surgical anaesthesia was judged as present when righting, palpebral, ear‐pinch and pedal withdrawal reflexes were absent. Anaesthetized hares were tagged, and underwent blood sampling and ocular ultrasound examination. Physiological parameters were recorded every ten minutes, and were compared by Kruskal‐Wallis tests.ResultsA single dose induced loss of righting reflex in 11/16 (69%) hares within four minutes; the second dose was effective in the remaining hares. Ten minutes after the loss of the righting reflex, a surgical plane of anaesthesia was present in all hares. Sleep time to regaining righting reflex was 34 ± 11 (range 21–62) minutes and recovery was calm. Although there were some statistical differences over time, cardiovascular parameters remained within an acceptable range but there was respiratory depression and hares were hypoxemic.Conclusions and clinical relevanceThe ADK mixture produced a smooth and rapid induction of anaesthesia, a low incidence of untoward side effects and full recovery after four hours. Supplementary oxygen might be advisable if a deeper plane of anaesthesia was required. Chemical restraint was adequate to perform non‐invasive procedures.  相似文献   

17.
ObjectiveTo assess the suitability of lingual venous blood (LBG) as an alternative to arterial blood (ABG) samples in determining acid–base balance and blood–gas status in dogs anesthetized for elective procedures and with medetomidine and isoflurane administration under experimental conditions.Study designProspective, randomized clinical and experimental study.AnimalsClinical population of 18 ASA I/II dogs for elective surgery and five healthy Beagles (3 females and 2 males) for the experimental study.MethodsBlood sampling was simultaneously performed at dorsal pedal arterial and lingual venous sites, generating paired data. Two paired samples were collected from each dog in the clinical part and four from each dog in the experimental part (two during isoflurane anesthesia and two during isoflurane plus medetomidine). A modified Bland and Altman method was used to examine data from the clinical part and the experimental data were subjected to a paired sign's test following transformation where appropriate.ResultsThe pH of LBG overestimated ABG, with limits of agreement of (?0.01, 0.02). The partial pressure of carbon dioxide (PCO2) of LBG overestimated ABG by 0.6 mmHg [0.1 kPa], with limits of agreement of (?3.5, 4.6) mmHg [?0.5, 0.6 kPa]. The partial pressure of oxygen (PO2) of LBG underestimated ABG by 86.3 mmHg [?11.5 kPa], with limits of agreement of (?199.8, 27.3) mmHg [?26.6, 3.6 kPa]. During medetomidine administration values for PO2 (p = 0.03) and lactate (p = 0.03) were lower for LBG when compared with ABG. The LBG value of PO2 was lower (p = 0.03) during medetomidine and isoflurane administration versus isoflurane alone.Conclusions and clinical relevanceThe pH and PCO2 of LBG samples provide clinically acceptable substitutes of ABG samples in the dog population studied. The wider limits of agreement for PO2 render it less reliable as a substitute for ABG. The difference in PO2 identified between LBG and ABG during medetomidine administration may not preclude the use of LBG as substitutes for ABG samples.  相似文献   

18.
ObjectiveTo compare the efficacy of a medetomidine constant rate infusion (CRI) with a detomidine CRI for standing sedation in horses undergoing high dose rate brachytherapy.Study designRandomized, controlled, crossover, blinded clinical trial.AnimalsA total of 50 horses with owner consent, excluding stallions.MethodsEach horse was sedated with intravenous acepromazine (0.02 mg kg–1), followed by an α2-adrenoceptor agonist 30 minutes later and then by butorphanol (0.1 mg kg–1) 5 minutes later. A CRI of the same α2-adrenoceptor agonist was started 10 minutes after butorphanol administration and maintained for the treatment duration. Treatments were given 1 week apart. Each horse was sedated with detomidine (bolus dose, 10 μg kg–1; CRI, 6 μg kg–1 hour–1) or medetomidine (bolus dose, 5 μg kg–1; CRI, 3.5 μg kg–1 hour–1). If sedation was inadequate, a quarter of the initial bolus of the α2-adrenoceptor agonist was administered. Heart rate (HR) was measured via electrocardiography, and sedation and behaviour evaluated using a previously published scale. Between treatments, behaviour scores were compared using a Wilcoxon signed-rank test, frequencies of arrhythmias with chi-square tests, and HR with two-tailed paired t tests. A p value <0.05 indicated statistical significance.ResultsTotal treatment time for medetomidine was longer than that for detomidine (p = 0.04), and ear movements during medetomidine sedation were more numerous than those during detomidine sedation (p = 0.03), suggesting there may be a subtle difference in the depth of sedation. No significant differences in HR were found between treatments (p ≥ 0.09). Several horses had arrhythmias, with no difference in their frequency between the two infusions.Conclusions and clinical relevanceMedetomidine at this dose rate may produce less sedation than detomidine. Further studies are required to evaluate any clinical advantages to either drug, or whether a different CRI may be more appropriate.  相似文献   

19.
ObjectiveTo determine the efficacy of medetomidine for immobilisation of captive juvenile crocodiles over a range of temperatures, and its reversibility with atipamezole.Study designProspective experimental study.AnimalsForty male estuarine crocodiles (body weight 2.0 to 4.8 kg).MethodsEach crocodile was randomly assigned to one of four temperature groups: Group 1:32 °C; Group 2:27 °C; Group 3:22 °C; and Group 4:17 °C (n = 10 for each group). Medetomidine (0.5 mg kg?1) was administered intramuscularly (IM) into the thoracic limb of all crocodiles. After 50 minutes, all animals from each group received 2.5 mg kg?1 atipamezole IM in the opposite thoracic limb and time to recovery was documented. Heart and respiratory rates and the degree of immobilisation were monitored every 5 minutes until recovery, and behaviour monitored for 7 subsequent days.ResultsOnset of immobilisation occurred at 15 ± 10 minutes in Group 1, and at 30 ± 10 minutes in Groups 2 and 3. In Group 4, animals were not immobilised. Recovery following atipamezole was 10 ± 5 minutes at all temperatures. One-way analysis of variance (anova) demonstrated a significant difference in induction times between groups (p < 0.01) but not in recovery times following atipamezole administration (p < 0.25). Heart and respiratory rates decreased markedly following medetomidine administration and increased markedly following atipamezole reversal.Conclusions and clinical relevanceMedetomidine administered in the thoracic limb of juvenile captive estuarine crocodiles provides profound sedation or immobilisation at temperatures of 22 °C and above. Atipamezole administered in the contralateral thoracic limb results in consistent reversal of the effects of medetomidine and a return to normal behaviour within 15–20 minutes regardless of temperature. Even though immobilisation is not induced at 17 °C, profound reversible sedation does occur reliably and repeatably.  相似文献   

20.
ObjectiveTo assess the differences in the pharmacokinetic profiles of S-ketamine, R-ketamine and their metabolites, S-norketamine and R-norketamine, and to measure relevant physiologic variables after intravenous administration of racemic (RS) ketamine or S-ketamine alone in Beagle dogs sedated with medetomidine.Study designExperimental, blinded and randomized crossover study.AnimalsA total of six (three female and three male) adult Beagle dogs.MethodsMedetomidine (450 μg m–2) was administered intramuscularly, followed by either S-ketamine (2 mg kg–1) or RS-ketamine (4 mg kg–1) 20 minutes later, both administered intravenously. Blood samples were collected before medetomidine administration and at multiple time points 1–900 minutes following the ketamine administration. Plasma samples were analysed using liquid chromatography–tandem mass spectrometry. Heart rate, respiratory rate, noninvasive blood pressure, haemoglobin saturation with oxygen and body temperature were measured at baseline, before ketamine administration, and 1, 2, 5, 10, 15, 20 and 30 minutes after ketamine administration. All cardiovascular variables, blood glucose, haemoglobin and lactate concentrations were analysed using different linear mixed effects models; the significance was set at p < 0.05.ResultsS-ketamine showed a two-compartment kinetic profile; no statistically significant differences were observed between its concentrations or in the calculated pharmacokinetic parameters following S- or RS-ketamine. When the racemic mixture was administered, no differences were detected between R- and S-ketamine concentrations, but the area under the curve (AUC) for R-norketamine was significantly lower than that for S-norketamine. Clinically relevant physiologic variables did not show statistically significant differences following the administration of the racemic mixture or of S-ketamine alone.Conclusions and clinical relevanceThis study performed in dogs showed that RS-ketamine and S-ketamine combined with medetomidine showed enantioselective pharmacokinetics as S- and R-norketamine AUCs were different, but S-ketamine levels were identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号