首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Goal, Scope and Background  Situated in the transboundary belt between Montenegro and Albania, Lake Skadar is the largest freshwater reservoir in Southeastern Europe. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Skadar and its extensive adjacent wetlands are internationally recognised as a site of significance and importance (Ramsar site). Within the last 10 to 20 years, Lake Skadar was exposed to intensive pollution. For the assessment of the ecotoxic load of the sediments sampled in Lake Skadar, a triad approach was recently applied. Overall, a complex spectrum of ecotoxic loads was elucidated. The aim of the present study was to use plant-based bioassays for assessing the sediment quality of Lake Skadar in order to facilitate and complement the triad test battery. The newly developed sediment contact test with Myriophyllum aquaticum and the aquatic growth inhibition test with Lemna minor were applied to native sediments and pore water, respectively, allowing the investigation of different toxicity-effects caused by particle-bound pollutants as well as pollutants in the interstitial water. This investigation is the first application of the novel sediment contact test with Myriophyllum aquaticum to lake sediments. Methods  Sediment samples were taken from nine selected sites at Lake Skadar and investigated by the sediment contact assay with Myriophyllum aquaticum. The pore water was extracted from these sediment samples to be analysed in the aquatic growth inhibition test with Lemna minor. The results of the sediment contact tests were compared with each other and with those of the aquatic growth inhibition test. Results and Discussion  Both applied macrophyte biotests revealed distinct changes in the growth behaviour of the two macrophytes subsequent to the exposure to the investigated natural sediments of Lake Skadar. The Myriophyllum sediment contact test revealed significant toxicity in the sediment samples from Radus and Kamenik, whereas the aquatic Lemna test showed inhibition effects for the samples from Sterbeq, Plavnica and Kamice. Data obtained with the newly developed Danio rerio contact test and the Arthrobacter globiformis contact test confirmed the Myriophyllum results. Analyses of the heavy metal content in the sediments revealed low or moderate contamination levels. Correlation analyses between the content of heavy metals in the sediments and growth inhibition of Myriophyllum aquaticum showed a significant correlation between Cr concentrations and growth inhibition. Comparable findings are available for a German river system. In contrast, no significant correlation between inhibition rates and concentration of metals could be observed with Lemna minor. Conclusions  It was shown that the newly developed sediment contact test with Myriophyllum aquaticum is applicable to lake sediments. In both the sediment contact test with Myriophyllum aquaticum on whole sediments and the aquatic growth inhibition test with Lemna minor on pore water, plant growth was influenced by the natural sediments and its components. Therefore, both test systems were found to be suitable for the detection of phytotoxic effects upon exposure to sediments. Myriophyllum aquaticum as test organism of the contact test grows directly in the sediment without an additional water-layer. Thus, it is able to detect toxicity caused by particle-bound phytotoxic substances as well as pore water-related contamination, while the floating Lemna minor can only detect effects emanating from pore water. Significant differences of the results were observed between these two test systems and, accordingly, the two different exposure scenarios. Hence, none of the tests can replace the other one and, as a consequence, both should be included into a test battery for the assessment of sediment toxicity. Recommendations and Perspectives  Both plant assays were shown to be reliable tools for the evaluation of the eco-toxicological risk potentials of pore water and solid-phase sediment. They should become a complement to the standardised test battery generally used for comprehensive hazard assessment. ESS-Submission Editor: Dr. Ulrike Kammann (ulrike.kammann@ifo.bfa-fisch.de)  相似文献   

2.
Intention, Goal and Background  Contaminated sediments represent a significant, worldwide environmental problem since they contain a mixture of different xenobiotics and heavy metals. The presence of mixed contamination presents a unique set of obstacles for remediation efforts. Often sediment remediation occurs as an ex-situ application (i.e., after dredging) in an attempt to minimize some of the problems. However, dredging poses it’s own issues. It does not address contaminated water and often material is not completely removed thereby leaving a long-term residual contamination source in the waterway. Objective  The potential of bio remediation to treat sediments contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and heavy metals was addressed. The primary objective was to assess two delivery mechanisms for microbial inoculation to facilitate in-situ remediation of PAH contaminated sediments. Methods  Simulated river beds were constructed to mimic the Mahoning River. Contaminated sediment from the river was added to each reactor at a uniform depth, followed by the addition of river water. Fifteen inoculation points were used in each simulated river bed to ensure adequate microbial populations. One tank was inoculated with an acclimated bacteria solution as a free suspension. The other tank was inoculated with an attached growth biofilm system. Sediment samples were taken throughout the experiment and the percent PAH degradation determined. Water characteristics (DO, pH, bacterial activity, etc.) were also tracked as corroborating evidence. Results and Discussion  The monitoring sites indicated that an attached growth system was more effective, and achieved a 99% PAH degradation efficiency at some of the sampling sites. Tracking individual PAH compounds also indicated a higher overall microbial activity with the attached growth system. This activity was evident by the formation and subsequent biodegradation of lower molecular weight degradation byproducts. However, more of the sediment area was treated by the free suspension inoculum due to the ease of microbial migration. Conclusions  The applicability of using an aerobic microbial consortium composed ofMycobacterium sp., Pseudomonas aeruginosa, andPseudomonas flourescens to treat contaminated sediment was demonstrated. In addition, it was found that introducing the consortium as an attached growth was more effective than when delivered as a free suspension. Recommendation and Outlook  The results demonstrated that the consortium was effective at treating the PAHs present in the contaminated soil. An additional study to evaluate the consortium’s effectiveness at remediating the PCB present in the sediment is warranted. Optimization of the consortium-nutrient combination could enable a treatment approach to effective for all the organic contaminants present. Although this would not address the heavy metals present in the sediment, it would afford a great opportunity at remediating a severely contaminated sediment system.  相似文献   

3.
Background, Goal and Scope  To date, standardised bioassays for the assessment of the ecotoxicological potential in sediments and dredged material use test organisms like bacteria, algae and crustaceae. This paper presents the development and application of a novel sediment contact test (whole sediment) withMyriophyllum aquaticum, a representative of rooted aquatic macrophytes. The aim of the present study is to demonstrate the value of a sediment contact test with rooted macrophytes as a supplement to existing test batteries in order to improve the assessment of sediment toxicity. Methods  The newly developed sediment contact test withMyriophylhim aquaticum was applied to natural whole sediments. For performing the test, whorls ofMyriophyllum aquaticum were directly planted in the native sediment and incubated in the light at 24°C (cf. section results and discussion). The end points of the test were the number of the shoots and the fresh weight of the whole plants. The duckweed growth inhibition test withLemna minor according to ISO/DIS 20079 was performed in pore waters from sediment samples. The results of the sediment contact test withMyriophyllum aquaticum were compared with each other and with those of the aquatic duckweed test. Results and Discussion  A test protocol for the new plant-based sediment contact test using the aquatic plantMyriophyllum aquaticum as an indicator was developed. The best control sediment proved to be the OECD sediment (OECD 207). A test period of 10 days appeared to be sufficient for the test. The increase of biomass and the derived growth rate were found to be the most suitable evaluation parameters. The growth behaviour ofMyriophyllum aquaticum differed depending on the origin of sediments. Therefore, plant-affecting contamination, that is bound in sediments, was indicated. Conclusions  The novel sediment contact test withMyriophyllum aquaticum can indicate phytotoxic effects in sediments. Therefore, it allows a better assessment of the overall-toxicity in whole sediments. Recommendations and Outlook  The sediment contact test withMyriophyllum aquaticum is a valuable tool for the evaluation of the ecotoxicological risk potential of waters and sediments. It should become a complement to a standardised test battery generally used for the assessment of sediment toxicity.  相似文献   

4.
Goals, Scope and Background  While water quality strongly improved over decades in the Rhine River, sediments still reflect elapsed contaminations of organic pollutants and heavy metals. In comparing genotoxic effects induced by both sediment extracts and whole sediments, a ratio of bioavailable toxicity and total extractable toxicity is obtained. Since contaminated sites whose contaminants are toxic and as well bioavailable present an elevated risk to the ecosystem, such ratios may be used as a warning signal to identify sites of primary concern. Methods  Accordingly, two different exposure scenarios were compared to reveal the genotoxic potential of 18 sediment samples derived from 9 sample sites along the River Rhine. For assessment of effects on genome integrity, DNA fragmentation was measured using the comet assay with primary cells isolated from zebrafish embryos previously exposed to either organic sediment extracts or freeze-dried sediments at sublethal concentrations. Additionally, chemical data were used to determine responsible pollutants and correlate them with biological effects. Results  Whereas 17 out of 18 sediment extracts caused significant DNA damage to the embryo cells, only 4 native sediments showed a genotoxic potential. Thus, under field-like exposure conditions, a major part of potentially genotoxic compounds seem to remain particle-bound and ineffective, as shown for whole sediment exposure. Conversely, the organic extracts seem to contain enriched concentrations even of hardly soluble substances. Hence, organic extracts may be used as a screening tool to address potentially polluted sites, even though the relevance of these results for the field situation may be questionable. Investigations on native sediments determined few sites with bioavailable and therefore ecologically most relevant genotoxic sediment compounds. Discussion  However, these results may underestimate the total hazard potential of sample sites with hardly bioavailable substances. Chemical data revealed a variety of anthropogenic pollutants, ranging from PAHs to heavy metals. Nevertheless, chemical data on the measured priority pollutants did not fully explain the pollution pattern of the bioassays but clearly determined substances of concern (e.g., HCB, heavy metals) in particular sample sites. Conclusions  There is a striking advantage in assessing the genotoxicity by means of different exposure scenarios that focus on either bioavailable or extractable fractions, as the combination of the results allows obtaining information on specific properties of the genotoxicants and their bioavailability. An additional correlation with chemical data should be required to identify priority pollutants, as long as the responsible contaminant is known a priori. As many studies revealed inherent failures of such a correlation, an effect-driven analysis of pollutants is recommended as a promising tool to identify even non-priority pollutants by means of their ecotoxicological effectiveness.  相似文献   

5.
Background, Aim and Scope  Sediments act as a sink for toxic substances (heavy metals, organic pollutants) and, consequently, dredged materials often contain pollutants which are above safe limits. In polluted anaerobic sediments, the presence of sulphides and redox potential changes creates a favorable condition for sulphide oxidation to sulphate, resulting in potential toxic metal release. The oxidation reaction is catalyzed by several microorganisms. Some clean up measures, such as dredging, can initiate the process. The aim of the present work is to assess the acidification and metal release risk in the event of sediment dredging and also to compare two different acid base account techniques with the resuspension results. The oxidation mechanism by means of inoculation with an Acidithiobacillus ferrooxidans strain was also evaluated. Methodology  The sediments were chemically characterized (pH; organic oxidizable carbon; acid volatile sulphides; total sulphur; moisture; Cr, Cu and Zn aqua regia contents). A metal sequential extraction procedure (Community Bureau of Reference, BCR technique) was applied to calculate the Acid Producing Potential (APP) and Acid Consuming Capacity (ACC) of the sediment samples through Fe, Ca2+ and SO4 2− measurements. The acid base account was also performed by the Sobek methodology (Acid producing potential — AP — calculated with total sulphur and neutralization potential — NP — by titration of the remaining acid after a reaction period with the sample). Fresh sediments were placed in agitated shake flasks and samples were taken at different times to evaluate pH, SO4 2− and Cr, Cu, Zn and Fe2+ concentration. Some of the systems were inoculated with an Acidithiobacillus ferrooxidans strain to assess the biological catalysis on sulphide oxidation. Results  Sediment chemical characterization showed high organic matter content (5.4–10.6%), total sulphur (0.36–0.86%) and equivalent CaCO3 percentages (4.5–8%). pH was neutral-alkaline for all of the samples. AVS content was high except for sample 5. The acid base account obtained with the two methods gave different results for the acid generating risk of the samples. A decrease of 0.4 to 3.1 pH units was measured in the agitated shake flasks. In all of the systems, sulphate concentration increased (2,100–2,200 mg L−1 to 2,500–3,000 mg L−1), and positively correlated with the initial total sulphur content of the samples in the inoculated flasks. Cu and Cr in solution were not detected in most of the sampling occasions (<0.5 mg Cu L−1 and <0.5 mg Cr L−1). Zn reached high concentrations (up to 11.8 mg L−1). For every system — except sediment 1 — the lowest pH registered was similar in comparison to inoculated and control systems. The inoculation effect was mostly evidenced in the systems by a higher sulphate release rate compared to the control systems. Discussion  The BCR method categorized all of the samples as potentially acid generating material. The Sobek method using NPR (NP/AP) criteria classified sample 3 as a possible acid generator and samples 1, 2 and 5 with a low acid generation potential. Despite this, all the samples acidified the media in the kinetic tests in at least one of the conditions employed in this work. It would seem that NPR and NNP (NP-AP) risk classification criteria should not be directly used with anaerobic sediments. Appropriate classification levels for sediments should be developed considering the different sulphide reactivity between rock and sediments. Sediment oxidation can cause acidification, which is partially explained by sulphide oxidation. In the samples studied, we found a positive correlation between sulphate increase in solution after oxidation and total sulphur content in the inoculated systems. Significant amounts of Zn could be released to solution while Cr and Cu remained insoluble despite the pH decrease observed. The low Cu and Cr mobility could be explained by the very low solubility of their hydroxides and high affinity for organic matter and iron oxides/hydroxides that might form during sediment oxidation. Dredged sediment management and disposal should be carefully planned. Conclusions  All of the sediment samples lowered the pH media in the laboratory batch resuspension experiments. However, both risk classification criteria (NNP, NPR) from Sobek acid base account were not able to predict the samples’ behavior as accurately as the BCR derived base account. The inoculation effect was mostly associated with a higher sulphate release and not to a lower pH due to acid base equilibrium. Recommendations and Perspectives  Appropriate risk classification levels for sediments should be developed considering the different sulphide reactivity between rock and sediments. ESS-Submission Editor: Dr. Sabine Ulrike Gerbersdorf (sug@st-andrews.ac.uk)  相似文献   

6.
Estuarine sediments are the repository for a wide range of contaminants. Anthropogenic impacts and variations in the belowground biomass of salt marsh plants potentially select for different sediment microbial communities with different functional capabilities, including the ability to biotransform anthropogenic contaminants. There are large differences in both root morphology and the amount of fine root biomass of Spartina alterniflora and Phragmites australis; Spartina is the species commonly used to replace Phragmites in northeastern US salt marsh restoration projects. Our study compared the effect of these two macrophyte species on sediment microbial communities responsible for the biotransformation of the halogenated flame retardant tetrabromobisphenol A (TBBPA). Sediments were obtained from contaminated and uncontaminated salt marsh field sites in New Jersey. Anaerobic methanogenic sediment microcosms were established and incubated for up to 130 days. TBBPA was reductively dehalogenated resulting in the transient formation of two intermediates, identified as tribromobisphenol A and dibromobisphenol A, and the formation and accumulation of bisphenol A (BPA) as the end product. Spartina sediments from both sites were found to dehalogenate TBBPA more rapidly than the Phragmites or unvegetated sediments, resulting in greater production of BPA. Microbial community diversity as measured by in situ sediment phospholipid fatty acid (PLFA) composition prior to TBBPA exposure, was found to be higher in the uncontaminated sediments; differences in microbial PLFA diversity were not seen in contaminated sediments associated with either the different plant species or unvegetated sediment. The results of this study demonstrate that these two plant species affected sediment microbial community function with respect to dehalogenation capabilities, even though the disturbed and undisturbed sediments varied in microbial community composition.  相似文献   

7.
Background, aim, and scope  Earthworms make a major contribution to decomposition in ecosystems where they are present, mainly acting in the drilosphere, that is, galleries, burrows, casts, and middens. Earthworm middens are hot-spots of microbial activity and nutrient dynamics and represent a suitable model for studying earthworm-mediated influences on soil microbial communities by alteration of the patch structure of the microbial environment. We studied the structure and activity of the microbial communities in the soil system formed by middens of Lumbricus terrestris and the soil below and surrounding them and the role of earthworms in maintaining these structures through time. Material and methods  We set up an experiment in which middens were either left (control) or removed from their original place (translocated) and left in a nearby area free of earthworm activity for 2 months. After 1 and 2 months we sampled middens, soil below them, and surrounding soil. We analyzed the phospholipid fatty acid (PLFA) profiles and measured respiratory fluxes of CO2 and CH4. Results  Microbial communities of middens clearly differed from those of soil below and surrounding soil samples, showing higher bacterial and fungal PLFAs (p < 0.0001 and p < 0.01, respectively); furthermore, changes in microbial communities were stronger in control middens than in translocated middens. Moreover, gram positive and negative bacterial PLFAs were greater in translocated than control middens (p < 0.0001 and p < 0.001, respectively), as well as total organic carbon (p < 0.001). Microbial activity was higher in middens than in soil below and surrounding soil samples both for CO2 (p < 0.0001) and CH4 (p < 0.0001). Discussion  Soil bioturbation by the earthworm L. terrestris was strong in their middens, but there was not any effect on soil below and surrounding soil. Microbial communities of middens maintain their biomass and activity when earthworms were not present, whereas they decreased their biomass and increased their activity when earthworms were present. Conclusions  Earthworms strongly enhanced microbial activity measured as CO2 production in middens, which indicates that there are hot spots for soil microbial dynamics and increasing habitat heterogeneity for soil microorganisms. Moreover, our data strongly support the fact that the impact of this earthworm species in this soil is restricted to their middens and increasing soil heterogeneity. Recommendations and perspectives  Our data indicate that it is not clear if earthworms enhance or depress microbial communities of middens since the microbial activity increased, but did not modify their biomass and this was not dependent on soil organic C content. These results indicate no competence for C pools between this anecic earthworm and microorganisms, which has been found for other earthworm species, mainly endogeics. Conversely, they suggest some type of facilitation due to the release of additional nutrient pools in middens when earthworms are present, through the digestion of middens' material or the addition of casts produced from other food sources.  相似文献   

8.
Background, aim and scope  Unresolved complex mixtures (UCMs) of aromatic hydrocarbons are widespread, but often overlooked, environmental contaminants. Since UCMs are generally rather resistant to bacterial degradation, bioremediation of UCM-contaminated sites by bacteria is a challenging goal. Branched chain alkyltetralins are amongst the individual classes of components of aromatic UCMs which have been identified in hydrocarbon-contaminated sediments and a number of synthetic alkyltetralins have proved toxic in laboratory studies. Thus, alkyltetralins should perhaps be amongst the targets for UCM bioremediation strategies. The slow degradation of several alkyltetralins by a microbial consortium has been reported previously; however, the bacteria involved remain unidentified and no single strain capable of alkyltetralin biodegradation has been isolated. The present project therefore aimed to enrich and identify bacterial consortia and single strains of bacteria from a naturally hydrocarbon-contaminated site (Whitley Bay, UK), which were capable of the degradation of two synthetic alkyltetralins (6-cyclohexyltetralin (CHT) and 1-(3’-methylbutyl)-7-cyclohexyltetralin (MBCHT)). Materials and methods  Bacteria were enriched from sediment collected from Whitley Bay, UK by culturing with CHT and MBCHT for a period of 4 months. Biodegradation experiments were then established and degradation of model compounds monitored by gas chromatography–mass spectrometry. Internal standards allowed the generation of quantitative data. 16S rRNA gene clone libraries were constructed from individual enrichments to allow assessment of microbial community structure. Selective media containing MBCHT were used to isolate single bacterial strains. These strains were then tested in liquid culture for their ability to degrade MBCHT. Results  The consortia obtained through enrichment culture were able to degrade 87% of CHT and 76% of MBCHT after only 46 days compared with abiotic controls. The 16S ribosomal RNA gene clone libraries of these bacteria were dominated by sequences of Rhodococcus spp. Using selective media, a strain of Rhodococcus was then isolated that was also able to biodegrade 63% of MBCHT in only 21 days. Discussion  The present report describes the isolation of a single bacterial strain able to degrade the resistant MBCHT. Although significant losses of MBCHT were observed, putative metabolites were not detectable. Rhodococcus sp. have been reported previously to be able to biodegrade a range of hydrocarbon compounds. Recommendations and perspectives  Due to their environmental persistence and toxicity, aromatic UCMs require bioremediation. The culturing and identification of such bacteria capable of rapid degradation of alkyltetralins may be an important step toward the development of bioremediation strategies for sites contaminated with toxic UCMs.  相似文献   

9.
Goal, Scope and Background. Based on a bioassay battery covering only primary producers and consumers as well as degraders, the potential ecological hazard of sediments to vertebrates cannot be estimated comprehensively. Therefore, there is an urgent need to develop and standardize integrated vertebrate-based test systems for sediment investigation strategies. Whereas vertebratebased in vitro systems have frequently been used for the investigation of aqueous samples, there is a significant lack of whole sediment assays. Thus, the purpose of the present study was: (1) to develop a rapid and reliable, but comprehensive method to investigate native sediments and particulate matters without preceding extraction procedures; (2) to compare the hazard potential of solid phase sediments to the effects of corresponding pore waters and organic extracts in order to characterize the bioavailability of the particle-bound pollutants; and (3) to relatively evaluate the embryotoxic effects of sediments from the catchment areas of the rivers Rhine, Neckar and Danube. Methods (or Main Features).  To investigate the toxicity of sediment samples on vertebrates, the standard embryo toxicity test with the zebrafish (Danio rerio; Hamilton-Buchanan 1922) according to DIN 38415-6 was modified with respect to exposure scheme and toxicological endpoints. Sediments from the catchment area of the Neckar River were assessed using pore waters, acetonic extracts and native sediments in order to get inside into the potential bioavailability of particle-bound pollutants. A comprehensive test protocol for the investigation of native sediments in the embryo toxicity test with the zebrafish is presented. Results and Discussion.  The fish embryo assay with Danio rerio can be carried out with both aqueous and organic sediment extracts as well as native (whole, solid phase) sediment samples. Elongation of exposure time from 48 to up to 196 h significantly increased the mortality. Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, including clear-cut dose-response curves for the embryotoxic effects of contaminated sediments; in contrast, absence of embryotoxic effects could be demonstrated even for the highest test concentrations of unpolluted sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that — at least for fish eggs — the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The relative ranking of sediment toxicity was identical using both native sediments and sediment extracts, EC20 values of the latter, however, being eight time lower higher than with the native sediments. A comparison of the embryo toxic effects of samples from the Neckar area with locations along the Rhine and Danube rivers elucidated a broad range of results, thus indicating different levels of contamination. Conclusions.  A modified protocol of the zebrafish embryo test allows the assessment of sediment toxicity in both aqueous extracts and native sediments. The isolated investigation of pore waters may result in a clear-cut underestimation of the bioavailability of lipophilic particle-bound substances (as determined by native sediments). Recommendations and Perspectives.  The zebrafish embryo test with native (whole, solid phase) sediments appears very promising for the evaluation of the bioavailable fraction of lipophilic particle-bound substances and can therefore be recommended for the evaluation of vertebrate toxicity in tiered sediment test strategies and dredging directives such as the HABAB-WSV. Whereas acetone extracts may be tested as a rough estimation of embryotoxicity, native sediment samples will provide a more comprehensive and realistic insight into the bioavailable hazard potential  相似文献   

10.
11.
Microorganisms (e.g., prokaryotes, fungi) are food sources for soil nematodes, but they can also be potential mutualists or pathogens. Understanding the linkages between microorganism and invertebrate diversity in soils requires the ability to distinguish between these microbial roles. We tested the potential of a taxon-specific fluorescent in situ hybridization (FISH) procedure for identifying and localizing microbial rRNA within the bodies of soil nematodes. Our objective was to determine whether the rate of digestion permitted detection and identification of food-source nucleic acids within the nematode digestive system (i.e., pharynges, intestines) before their breakdown. First, using laboratory cultures of Caenorhabditis elegans maintained on Escherichia coli, we were able to localize bacterial rRNA throughout the nematode pharynx with the universal bacterial-probe EUB338, although never in the intestines. Second, we applied the fungal rRNA probe FR1 to Aphelenchus avenae cultured on the fungus Rhizoctonia solani. We were unable to detect fungal rRNA within these nematodes, and it appears that this material may be digested rapidly. Next, we applied our technique to nematodes extracted directly from soils. We were able to localize bacterial rRNA within the pharynges of bacterial-feeding species of nematodes from desert soils. We also localized archaeal rRNA using the probe ARC344. Finally, application of EUB338 to desert soil nematodes revealed the presence of bacteria in the intestines of some nematodes and within the ovary of a single nematode. This technique has great potential for use in understanding the feeding behavior of bacterial-feeding soil nematodes and in studies of nematode:bacterial relationships.  相似文献   

12.
Peng  Weihua  Li  Xiaomin  Lin  Manli  Fan  Wenhong 《Journal of Soils and Sediments》2020,20(1):584-593
Purpose

Sulfate-reducing bacteria (SRB) have received particular attention in the bioremediation of sediments contaminated with heavy metals. In this study, indigenous SRB were used to stabilize Cd in sediments spiked with different Cd concentrations (≤ 600 mg kg?1).

Materials and methods

The study investigated the Cd leaching efficiency from sediments after 166 days (d) of biotreatment and assessed the bacterial community and bacteria relationship in sediments during SRB biostabilization.

Results and discussion

The study found that the Cd leaching efficiency of sediments was reduced by 18.1–40.3% (29.4 ± 8.7%) after 166 days of biotreatment. During the biostabilization, the bacterial community in sediments significantly changed, particularly after 61 days of biotreatment. At the family level, the identified dominant bacteria (mean abundance > 3%) included Bacillaceae, norank Nitrospira, Anaerolineaceae, Nitrospinaceae, Streptococcaceae, and Hydrogenophilaceae. The study also speculated the complex relationships between these bacteria. The relative abundance of Desulfobacteraceae and Desulfobulbaceae in sediments was enhanced after biotreatment. Bacillaceae and Streptococcaceae may play a negative role in Cd biostabilization and inhibited SRB biological activity. However, Anaerolineaceae and Hydrogenophilaceae may have commensalism and mutualism relationships, respectively, with typical SRB. The presence of Nitrospinacea and norank Nitrospira may reduce the inhibitive effect of denitrifying bacteria on SRB, thereby exhibiting a positive effect on biologic sulfate reduction and Cd biostabilization.

Conclusions

Indigenous SRB treatment increased Cd stability in sediments and changed bacterial community. During SRB biostabilization, complex relationships between bacteria in sediments were speculated, including competition, syntrophism, and antagonism. These results provide insights for better regulating and controlling SRB biostabilization.

  相似文献   

13.
The effects of soil management on some microbiological properties and soil bacterial community structure were evaluated. Two field sites with the same soil type, located on the same geographic area adjacent to one other, have received different soil management practices and cultivation. One site has been subjected for 20 years to intensive horticulture under conventional tillage and irrigation with low quality salt-rich water; the second field site has been uncultivated for a long period and was turned to organic farming practices over the last 5 years and is currently cultivated with fruit orchard. Total bacterial counts, microbial ATP, microbial community metabolic (BIOLOG®) profiles, and DNA fingerprinting by PCR-DGGE were determined. Two-way ANOVA revealed that total bacterial counts were not significantly (P>0.3) affected by the two different management practices; ATP content was consistently and significantly (P<0.001) lower in salt-water irrigated soil than in organic soil at the three sampling times. The cluster analysis of community level physiological profiles indicated that microbial communities were much more uniform in organic soil than in irrigated one, suggesting that salt-water irrigation could have affected the size of the microbial population, its metabolic activities, as well as its composition. Molecular patterns fitted the BIOLOG® profile diversity. In particular, at any sampling time, PCR-DGGE patterns of bacterial DNA, extracted by an indirect method, significantly discriminated irrigated from organic soil samples. The PCR-DGGE patterns of total soil DNA, extracted by a direct method, showed a moderate to significant variation among irrigated and organic soil samples. Biochemical, microbiological and molecular data contributed to evidence a significantly different response of indigenous microflora to soil management by using saline water or organic farming.  相似文献   

14.
Afforestation and deforestation are key land-use changes across the world, and are considered to be dominant factors controlling ecosystem functioning and biodiversity. However, the responses of soil microbial communities to these land-use changes are not well understood. Because changes in soil microbial abundance and community structure have consequences for nutrient cycling, C-sequestration and long-term sustainability, we investigated impacts of land-use change, age of stand and soil physico-chemical properties on fungal and bacterial communities and their metabolic activities. This study was carried out at four sites in two geographical locations that were afforested on long-established pastures with Pinus radiata D. Don (pine). Two of the sites were on volcanic soils and two on non-volcanic soils and stand age ranged from 5 to 20 y. Microbial communities were analysed by biochemical (phospho-lipid fatty acids; PLFA) and molecular (multiplex-terminal restriction fragment length polymorphism; M-TRFLP) approaches. Both site and stand age influenced microbial properties, with changes being least detectable in the 5-y-old stand. Land use was a key factor influencing soil metabolic activities as measured by physiological profiling using MicroResp. Pasture soils had higher microbial biomass (P < 0.001), and metabolic activities (P < 0.001), and basal respiration rates were up to 2.8-times higher than in the pine soils. Microbial abundance analysis by PLFA showed that the fungal to bacterial ratio was higher in the pine soils (P < 0.01). Community analysis suggested that soil bacterial communities were more responsive to site (principal component 1; P < 0.001) than to land use (principal component 5; P < 0.001). In contrast, the fungal community was more affected by land-use change (principal component 1; P < 0.001) than by site, although site still had some influence on fungal community structure (principal component 2; P < 0.001). Redundancy analysis also suggested that bacterial and fungal communities responded differently to various soil abiotic properties, land-use change and location of sites. Overall, our results indicate that the change in land use from pasture to P. radiata stands had a direct impact on soil fungal communities but an indirect effect, through its effects on soil abiotic properties, on bacterial communities. Most of the changes in bacterial communities could be explained by altered soil physico-chemical properties associated with afforestation of pastures.  相似文献   

15.
This study aimed to access the structure of microbial communities in sediments in the root zone of the red mangrove (Rhizophora mangle) in three sites with an increasing distance from the sea inside a mangrove forest in two distinct periods (dry and wet seasons) using denaturing gradient gel electrophoresis (DGGE). These data were correlated to environmental variables and sediments characteristics by using redundancy analysis (RDA) which revealed that the distribution of the microbial communities is significantly (p < 0.05) influenced by the silt–clay percentages for both Bacteria and Archaea and organic matter content significantly influences the distribution of Archaea. The archaeal community also exhibited an annual clustering pattern. The sites had only 30% and 35% of similarity of bacterial and archaeal communities, respectively, and this could be interpreted as being the core microbiome of R. mangle. Thus the spatial distribution of microbial communities inside the red mangrove habitats seems to be primarily controlled by the abiotic variables of each habitat.  相似文献   

16.
Background, Aims, and Scope  More frequent occurrence of stronger floods in Europe as well as in other parts of the world in recent years raises major concern about the material damages, but also an important issue of contamination of the affected areas through flooding. The effects of major floods on levels and distribution of contamination with hydrophobic organic pollutants were examined from the continuous set of data for floodplain soils and sediments from a model industrial area in the Czech Republic where a 100-year flood occurred in 1997. The goal of this study was to evaluate the risk related to contamination associated with such extensive natural events and characterize the spatial and temporal distribution and dynamics of pollutants related to a major flooding shortly after the floods and also in the time period several years after floods. Methods  Sediments and alluvial soils from fourteen sites each were repeatedly sampled during the period from 1996 until 2005. The sampling sites represented five regions. Collected top-layer sediment and soil samples were characterized and analyzed for hydrophobic organic pollutants PCBs, OCPs and HCB using GC-ECD and PAHs using a GC-MS instrument. Spatial and temporal differences as well as the relative distribution of the pollutants were examined in detail by statistical analysis including multivariate methods with special emphases placed on the changes related to floods. Results  The organic pollutants levels in both alluvial soils and sediments exceeded the safe environmental limits at numerous sites. Pollutants concentrations and relative distribution as well as organic carbon content in both sediment and floodplain soils were significantly affected by the flooding, which resulted in a decrease of all studied contaminants in sediments and significant rise of the PAH pollution in the flooded soils. There was a unique and highly conserved PAH pattern in soils regardless of the floods and greater changes in PAH pattern in sediments related to floods. The relative distribution of individual PAHs reflected a combustion generated PAH profile. PAH levels in the river sediments rose again at the sites with continuous sources several years after floods. Discussion  The results showed different dynamics of PAHs and PCBs during the floods when PAHs were redistributed from the sediments to alluvial soils while PCBs have been washed out of the study regions. The data reveal longer contamination memory and consistent contamination pattern in soils, whereas sediments showed more dynamic changes responding strongly to the actual situation. The stable PAH pattern within the regions also indicates that a relative amount of all compounds is comparable across the samples and, thus, that the sources at different sites have similar character. Conclusions  Sediments have the potential to function as a secondary source of contamination for the aquatic ecosystem, but also for the floodplain soils and other flooded areas. The floods served as a vector of PAHs contamination from sediments to soils. The reloading of river sediments in time, namely with PAHs, due to present sources increases their risk as a potential source in the next bigger flood event both to the downstream river basin and affected alluvial soils. Recommendations and Perspectives  The results stress the importance of including the floodplain soil contamination in the risk assessment focused on flood effects. Floodplain soils have stable long-term environmental memory related to contamination levels, pattern and distribution, whereby they can provide relevant information on the overall contamination of the area. The sediments will continue to serve as a potential source of contaminants and alluvial soils as the catchment media reflecting the major flood events, especially until effective measures are taken to limit contamination sources. ESS-Submission Editor: Dr. Henner Hollert (Hollert@uni-heidelberg.de) This article is openly accessible!  相似文献   

17.
Oxygen availability in landfill cover soil is a major limitation to the growth and activity of methanotrophs as methane oxidation is an aerobic microbial process. Plants tolerant to high concentrations of landfill gas (LFG) may play an important role in improving methane oxidation within landfill cover soil and reducing emission of methane, a greenhouse gas, from it. In this study, the effect of an LFG tolerant plant Chenopodium album L. on methane oxidation activity (MOA) and bacterial community composition in landfill cover soil was investigated. Soil samples from four simulated lysimeters with and without LFG and plant vegetation were taken at 4 stages during the plant's development cycle. Results showed that the total number of culturable bacteria in soil could be significantly increased (P < 0.05) by the growth of C. album. The total number of methanotrophs and MOA in soils with LFG was significantly higher (P < 0.05) than in soils without LFG on sampling days 90, 150 and 210. The total number of methanotrophs and MOA in lysimeters with LFG added increased in the presence of C. album when the plant entered the seed setting stage. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) gel patterns of 16S rDNA gene fragment and band sequencing analyses showed apparent differences in soil bacterial communities in the presence of LFG and plant vegetation. Members of the genus Methylosarcina were found to be the active and dominant methanotrophs in rhizosphere soil of C. album with LFG, while Methylococcus, Methylocystis, and Methylosinus were the primary methanotroph genera in LFG soil without C. album. Thus, C. album appears to select for specific methanotrophic bacteria in the presence of LFG. Soil MOA and microbial diversity can also be significantly affected by the presence of this plant.  相似文献   

18.
The microbial activity and bacterial community structure were investigated in two types of peat soil in a temperate marsh. The first, a drained grassland fen soil, has a neutral pH with partially degraded peat in the upper oxic soil horizons (16% soil organic carbon). The second, a bog soil, was sampled in a swampy forest and has a very high soil organic carbon content (45%), a low pH (4.5), and has occasional anoxic conditions in the upper soil horizons due to the high water table level. The microbial activity in the two soils was measured as the basal and substrate-induced respiration (SIR). Unexpectedly, the SIR (μl CO2 g−1 dry soil) was higher in the bog than in the fen soil, but lower when CO2 production was expressed per volume of soil. This may be explained by the notable difference in the bulk densities of the two soils. The bacterial communities were assessed by terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA genes and indicated differences between the two soils. The differences were determined by the soil characteristics rather than the season in which the soil was sampled. The 16S rRNA gene libraries, constructed from the two soils, revealed high proportions of sequences assigned to the Acidobacteria phylum. Each library contained a distinct set of phylogenetic subgroups of this important group of bacteria.  相似文献   

19.
Behavioural changes are used as early warning systems for water quality monitoring or as rapid and sensitive endpoints in toxicity bioassays. In this study, the automated measurement of behavioural patterns of the thrichopteranHydropsyche angustipennis (Curtis 1834) has been recorded for the first time in sediment with the Multispecies Freshwater Biomonitor, MFB. The MFB recorded different types of behaviour in sediment with the same accuracy as in water. Behavioural differences of the larvae exposed to ‘water only’ and ‘sediment only’ have been described. In ‘choice’ experiments, the larvae preferred the ‘water only’ compartment.  相似文献   

20.
-  Dedicated to Prof. Dr. Ulrich Förstner on his 65th birthdayBackground   Sediments pose problems at their deposition sites when there is too little sediment (e.g. wetlands) or too much sediment (e.g. navigable waterways) and, additionally, when they are contaminated. These problems often have their origin upstream in the river catchment. Objective   Global aspects of changes concerning sediment quantity and quality, as they affect downstream areas, are reviewed. A case study of estuarine sediments demonstrates how a holistic approach helps in understanding and predicting their present and future quality. Results and Conclusions   Globally, large reservoirs intercept between 25 and 30% of the sediment and consequently supply the coast with impacts on wetlands and coastal morphology. In estuaries, the composition of sediments is determined by the mixing of marine sediments supplied from the coast and the supply by rivers. Natural tracers can be used to predict mixing ratios of marine to fluvial sediments in estuaries, and hence their contamination. Scenarios on implementation of pollution abatement, the implementation of regulations as well as climate change are needed to predict future sediment quality in downstream areas. The results show, even for a ‘green’ scenario, that sediment quality in the Rhine catchment will pose future problems due to the temporal storage of contaminants in soils and sediments.Recommendations and Outlook   The current methods applied make use of existing models linking sediment transport with point and diffuse sources in the river catchments and scenarios on the development of strength of point and diffuse sources. However, more effort is needed to come to a uniform framework which includes land use changes and links with more advanced scenario methodology for long to medium-term management of sediment quality and quantity in river catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号