首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
菠菜主根离散元建模方法与试验验证   总被引:1,自引:0,他引:1  
研究根土复合体铲切过程可以获得铲切力并优化铲切结构等参数。为准确仿真根系的切割过程,利用离散元法建立了颗粒粘结的蔬菜根简化模型。以成熟期的菠菜主根为试验材料,利用WDW-5E型微机控制电子式万能试验机进行菠菜主根的物理特性试验,得到菠菜主根的力学性能参数,即峰值剪切力为31.2N、轴向峰值压缩力为113.8N。结合离散元颗粒接触模型本构方程,得出相关粘结参数值,即法向刚度系数为5.7×10~6N/m、切向刚度系数为3.6×10~6N/m,临界法向应力为1.95 MPa,临界切向应力为4.2MPa,粘结半径为0.8mm。利用上述参数建立了根系离散元粘结模型,进行虚拟试验与实际物理试验对比分析,结果表明:两者在根系剪切力的变化趋势和压缩表观特征参数上具有一致性。因此,证明本文方法可以应用于菠菜根模型建立,对根土复合模型的建立及铲刀的优化设计等具有一定的参考意义。  相似文献   

2.
玉米秸秆粉料致密成型离散元模型参数标定   总被引:5,自引:0,他引:5  
为了提升秸秆粉料致密成型过程中离散元仿真所需参数的准确性,以玉米秸秆粉料为研究对象,利用EDEM软件中的Hertz-Mindlin with JKR粘结接触模型进行玉米秸秆粉料致密成型离散元仿真模型参数标定研究.首先,以接触参数的物理试验结果作为仿真参数选择依据,应用Plackett-Burman试验对初始参数进行筛选...  相似文献   

3.
果荚初期饲料油菜茎秆离散元接触模型参数标定   总被引:2,自引:0,他引:2  
针对饲料油菜与不同材料的接触参数实测难度大、机械化收获离散元仿真模拟缺乏接触模型参数的问题,以果荚初期饲料油菜为对象,基于EDEM开展了饲料油菜茎秆颗粒离散元接触模型参数标定。测定了果荚初期饲用油菜茎秆本征参数,茎秆平均直径为20.4mm,密度为809kg/m3,茎秆弹性模量、剪切模量和泊松比平均值分别为115.73MPa、47.04MPa和0.23;以休止角为评价指标,应用Hertz-Mindlin基本模型和圆筒提升堆积法开展了饲料油菜茎秆颗粒堆积的虚拟二水平因子试验,结果表明饲料油菜茎秆与钢之间的碰撞恢复系数和滚动摩擦因数以及茎秆之间的碰撞恢复系数对休止角的影响较小,其值分别为0.60、0.10和0.60;通过最陡爬坡试验和响应面分析,确定了饲料油菜茎秆颗粒间静摩擦因数、滚动摩擦因数和饲料油菜茎秆-钢静摩擦因数的取值范围,建立了颗粒休止角的回归模型,以实测休止角与仿真试验休止角之间相对误差最小进行响应面分析和优化求解,确定其参数值分别为0.36、0.03和0.23。在接触参数最优组合条件下,根据回归模型计算得出的休止角理论值与实测值误差为2.15%,仿真试验得出休止角模拟值与实测值误差为1.83%,表明标定方法正确,标定参数准确。研究可为饲料油菜机械化收获过程的离散元仿真分析提供基本参数。  相似文献   

4.
田辛亮  丛旭  齐江涛  郭慧  李茂  范旭辉 《农业机械学报》2021,52(10):100-108,242
由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆-土壤混料为研究对象,构建玉米秸秆-土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用Hertz-Mindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆-土壤混料的实际堆积角,利用Design-Expert软件中Plackett-Burman试验筛选出对堆积角有显著影响的参数为:土壤-土壤滚动摩擦因数、土壤-钢静摩擦因数、秸秆-土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据Box-Behnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆-土壤滚动摩擦因数0.16、土壤-土壤滚动摩擦因数0.24、土壤-钢静摩擦因数0.75、土壤JKR表面能0.67J/m2。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆-土壤混料的离散元仿真提供理论参考。  相似文献   

5.
目前,菊芋机械化收获过程中的清选及输送等环节作业参数设定缺乏适用的理论依据,以收获期菊芋根-块茎为研究对象,基于离散元方法建立了一种能反映根须柔性和块茎脱落力学特性的粘结模型并对其相关参数进行了标定。首先通过物理试验确定了菊芋根-块茎本征参数、基本接触参数及相关力学参数,然后在此基础上利用Hertz-Mindlin with bonding V2接触模型构建了菊芋根-块茎粘结模型,并通过单因素试验和响应曲面试验,分别标定了菊芋根颗粒之间和根与块茎颗粒之间法向粘结刚度、切向粘结刚度、临界法向应力、临界切向应力等粘结模型参数。菊芋根须三点弯曲及根-块茎拉伸试验结果表明,根须弯曲弹性模量仿真结果与实际测量值相对误差为4.29%;菊芋根-块茎抗拉力仿真结果与实际测量值相对误差为7.72%;菊芋块茎脱落试验结果表明,仿真试验与菊芋收获机实际田间作业相比,滚筒筛转速对菊芋块茎脱落率影响趋势一致,筛内物料筛分规律相符。所构建的菊芋根-块茎模型可用于菊芋机械化收获相关环节的分析研究。  相似文献   

6.
为获取玉米田耕层不同土壤的各项参数,本文将玉米田耕层典型土壤分为未与玉米根茬接触的普通土壤(PT)和与玉米根茬结合形成根土复合体的土壤(GT),采用物理试验与离散元仿真相结合的方法,分别对离散元参数进行标定。基于Hertz-Mindlin(no slip)接触模型,采用中心组合试验设计方法,以土壤堆积角为目标值,进行了四因素五水平仿真试验。基于Hertz-Mindlin with bonding接触模型,采用Design-Expert软件,应用Plackett-Burman设计敏感性分析试验、最陡爬坡试验、Box-Behnken试验,以土壤硬度为目标值,对显著性参数进行寻优,得到PT最优解组合为:粘结键法向刚度4.37×107 N/m3、粘结键切向刚度1.46×107 N/m3、切向极限应力3.24×105 Pa; GT最优解组合为:粘结键法向刚度5.19×107 N/m3、粘结键切向刚度4.25×107 N/m...  相似文献   

7.
在CFD-DEM气固耦合仿真中,粘结颗粒模型被广泛用于排种器大颗粒种子模型建立,但该模型受建模方法的限制,与传统球面填充法相比,其表面粗糙度与真实种子的差距更为明显。在应用响应面法对颗粒接触参数进行标定时,会存在因因素零水平值选取不当造成仿真标定参数失真的问题,影响气固耦合仿真精度。针对此问题,本文建立因素标定时零水平值与实测值的线性函数,选取6组不同修正系数求解标定时零水平值,并应用响应面优化法对玉米颗粒粘结模型的种间静摩擦因数和滚动摩擦因数两个关键因素进行标定。将不同修正系数下标定的玉米种子接触参数输入EDEM中进行提升仿真试验,拟合不同修正系数取值时堆积角正切值的线性函数,通过拟合方程求得修正系数取值为0.1977时标定的玉米种间接触参数值最为准确,且标定参数的最佳组合为玉米-玉米静摩擦因数0.031、玉米-玉米滚动摩擦因数0.0039。将最佳参数组合输入EDEM中进行抽板仿真试验和排种过程仿真试验,试验结果分别与真实试验对比,发现标定参数后的仿真试验与真实试验种群分布相近,二者无显著性差异,表明标定后的玉米离散元接触参数是可信的。研究结果可为后续气力式排种器仿真过程标定参数范围选取提供参考。  相似文献   

8.
为提高离散元法对指导香蕉秸秆粉碎还田装备设计与优化的准确性与可靠性,本文利用Hertz-Mindlin with bonding接触模型建立香蕉秸秆离散元粘结模型并进行参数标定。运用高速摄影技术开展碰撞恢复试验、静摩擦及滚动摩擦台架试验,确定了香蕉秸秆碰撞恢复系数、静摩擦因数和滚动摩擦因数等基本离散元模型接触参数。开展香蕉秸秆物理与仿真剪切试验,获得破坏香蕉秸秆外皮的力学特征曲线,确定物理最大剪切力为122.41N;通过中心组合设计(Central composite design, CCD)响应面法确定香蕉秸秆粘结模型的法向接触刚度、切向接触刚度、临界法向应力与临界切向应力的最佳参数组合为5.89×107N/m、2.49×106N/m、1.39×105Pa、1.34×105Pa。以参数标定结果进行仿真验证,结果表明,仿真剪切力结果与物理剪切力相对误差仅为2.34%,验证了该粘结参数标定方法的可行性,可为香蕉秸秆粉碎还田机设计与研究提供理论参考。  相似文献   

9.
基于离散元的微型马铃薯仿真参数标定   总被引:22,自引:0,他引:22  
为系统全面地研究微型马铃薯种子离散元仿真物性参数,根据其物料特征创建微型薯模型,以此为基础建立微型薯离散元参数获取模型。利用试验测定及仿真模拟相结合的方法对微型薯颗粒离散元参数进行标定和校准,即以先后建立碰撞恢复系数测定模型、微型薯-钢板摩擦因数测定模型、微型薯颗粒间摩擦因数测定模型的方法,在EDEM中建立仿真试验模型并以所标定的相应离散元仿真参数为自变量,以仿真模型所测定的因素为评价指标,通过在仿真模型中改变自变量获取相应的评价指标值,建立曲线拟合方程,将真实试验模型中对各因素所测定的值作为仿真目标值代入拟合方程中得到微型薯离散元仿真参数并进行了仿真试验验证。求得微型薯种子离散元仿真参数:微型薯-钢板碰撞恢复系数为0.523,微型薯颗粒间碰撞恢复系数为0.478,微型薯-钢板静摩擦因数为0.644,微型薯-钢板滚动摩擦因数为0.022 1,微型薯颗粒间静摩擦因数为0.325,微型薯颗粒间滚动摩擦因数为0.030 0。对标定后的微型薯离散元物性参数进行仿真验证试验,结果表明标定后的微型薯仿真颗粒堆积角以及种子分布情况与真实试验条件相吻合,为微型薯相关播种机具设计和优化提供了理论依据。  相似文献   

10.
针对与油菜薹机械化收获中的切割、夹持输送、打捆等关键环节密切相关的油菜薹茎秆离散元仿真模型缺乏准确粘结参数的问题,以“油蔬两用”双低型油菜收获期油菜薹机械化夹持段茎秆为研究对象,利用EDEM仿真软件提出三轴空间坐标法构建油菜薹夹持中段茎秆双层粘结离散元仿真模型。采用Design-Expert软件依次设计了Plackett-Burman试验、最陡爬坡试验和Box-Behnken试验,完成油菜薹夹持中段茎秆仿真粘结参数标定。利用标定的参数优化解构建剪切和径向压缩模型进行相应仿真试验,通过与物理试验对比分析,对模型参数进一步优化。结果表明,内芯-内芯的法向/切向接触刚度、表皮-内芯法向/切向接触刚度,以及表皮-表皮法向接触刚度对茎秆力学性能影响显著,分别为1.94×107、9.56×108、6.28×109 N/m;所有力学模型的仿真值与实测值相对误差不大于3%,且茎秆受力变化趋势基本一致,表明标定优化后的参数具有可行性和准确性。所构建的油菜薹茎秆双层粘结离散元模型能表征其内部结构的力学特性差异,可为油菜薹茎秆相关系统的数值模...  相似文献   

11.
针对针形茶叶在理条机加工过程中离散元仿真缺少准确的模型参数,导致茶叶理条机离散元仿真过程中易出现失真问题,以单芽茶叶颗粒为研究对象,基于切片技术的近似法建立颗粒模型,采用离散元仿真与漏斗注入法堆积试验相结合的方法,对其仿真参数进行标定。以茶叶颗粒的休止角为响应值,设计Plackett-Burman试验得到对茶叶颗粒休止角有显著性影响的参数:茶叶颗粒间碰撞恢复系数、茶叶颗粒间静摩擦系数和茶叶颗粒间滚动摩擦系数;以仿真试验休止角和实际堆积试验休止角之间的相对误差为目标,进行最陡爬坡试验确定显著性参数的最优值范围,并通过Box-Behnken试验建立茶叶颗粒休止角与显著性参数之间的二次多项式方程,利用Design-Expert软件优化模块得出显著性参数最优值:茶叶颗粒间碰撞恢复系数0.28、茶叶颗粒间静摩擦系数0.15、茶叶颗粒间滚动摩擦系数0.10;并对标定的结果进行离散元仿真验证,结果表明:仿真得到的茶叶颗粒休止角均值为19.52°,与实际茶叶颗粒休止角20.23°相比,相对误差为3.51%,说明此参数标定结果合理有效。为茶叶理条机的优化设计及茶叶加工数值模拟过程提供一定的理论参考。  相似文献   

12.
为获取土壤离散元仿真模型的土壤颗粒物理参数和接触参数,本文采用试验与仿真相结合的方法,以桑园土壤为例,对土壤颗粒的接触参数进行了仿真标定。首先利用粉体仪、斜面仪、等应变直剪仪等,分析了试验地不同深度土壤的粒径分布,测量了试验地不同深度土壤休止角、滑动摩擦角、剪应力、内聚力、内摩擦角;然后,根据实测土壤粒径分布,利用EDEM软件建立了非等直径土壤球形颗粒模型。在此基础上,以土壤颗粒间及土壤与65Mn钢间的静摩擦因数、滚动摩擦因数、恢复系数为试验因素,土壤休止角、土壤-65Mn钢滑动摩擦角为目标值,建立了基于中心组合试验设计(CCD)方案,并利用Design-Expert软件对仿真试验结果进行了分析,得到了仿真标定的土壤-土壤间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为0.89、0.45和0.43;标定的土壤-65Mn钢间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为1.15、0.05和0.4。利用以上标定的最优参数对桑园土壤进行了休止角与滑动摩擦角仿真试验,试验结果表明,休止角仿真值与试验值相对误差为1.69%,土壤-65Mn钢的滑动摩擦角仿真值与试验值相对误差为2.88%。在此基础上,依据实测的土壤剪应力,采用试错法,以实测土壤内摩擦角为目标值,优化标定了土壤-土壤颗粒Hertz-Mindlin with Bonding接触模型中的粘结参数,标定法向粘结刚度、切向粘结刚度分别为1×108、5×107N/m3,临界法向应力和临界切向应力均为10kPa,接触半径为1.1倍颗粒半径,直剪仿真得到内摩擦角为30.24°,仿真值与直剪试验内摩擦角平均值相对误差为5.53%。本文提出的土壤颗粒建模方法、标定方法及其所标定的参数值,可用于砂质壤土桑园耕作机械触土部件与土壤相互作用的离散元仿真分析及其结构优化。  相似文献   

13.
基于离散元的土壤模型参数标定方法   总被引:25,自引:0,他引:25  
离散元法(EDEM)建立土壤模型过程中部分土壤颗粒参数直接测量难度较大,若基于间接测量的土壤参数值建立离散元土壤模型进行仿真,导致仿真结果误差较大。本文结合代理模型基本理论,提出一种离散元土壤模型的参数标定及优化方法,步骤如下:根据基本试验测定的参数建立离散元土壤模型;结合堆积角及剪切试验,利用模型仿真进行模型参数敏感性分析;以敏感性参数为变量,以真实试验测量值为目标值构造代理模型;通过高斯-牛顿迭代法进行参数优化。由敏感性分析结果知,代理模型自变量为土壤颗粒半径、颗粒间静摩擦因数及滚动摩擦因数,目标量为土壤堆积角、黏聚力、内摩擦角。以涿州保护性耕作试验站土壤(砂壤土)为原型,经优化建立的土壤模型变量参数值分别为:颗粒半径5.7 mm,颗粒间静摩擦因数0.45,滚动摩擦因数0.21。将建立的离散元土壤模型进行轮胎-土壤相互作用仿真模拟,分析轮胎-土壤接触面最大应力、平均应力,并通过田间试验进行验证,将接触面最大应力值、平均应力的仿真值与实际测量值进行比较,结果表明:虚拟仿真与实测值之间数值差异在5.1%以内,标定优化后的土壤模型能够近似代替真实土壤进行仿真。  相似文献   

14.
离散元法(EDEM)建立土壤模型过程中部分土壤颗粒参数直接测量难度较大,若基于间接测量的土壤参数值建立离散元土壤模型进行仿真,导致仿真结果误差较大。本文结合代理模型基本理论,提出一种离散元土壤模型的参数标定及优化方法,步骤如下:根据基本试验测定的参数建立离散元土壤模型;结合堆积角及剪切试验,利用模型仿真进行模型参数敏感性分析;以敏感性参数为变量,以真实试验测量值为目标值构造代理模型;通过高斯-牛顿迭代法进行参数优化。由敏感性分析结果知,代理模型自变量为土壤颗粒半径、颗粒间静摩擦因数及滚动摩擦因数,目标量为土壤堆积角、黏聚力、内摩擦角。本文以涿州保护性耕作试验站土壤(砂壤土)为原型,经优化建立的土壤模型变量参数值分别为,颗粒半径为5.7mm,颗粒间静摩擦系数为0.45,滚动摩擦系数为0.21。将建立的离散元土壤模型进行轮胎-土壤相互作用仿真模拟,分析轮胎-土壤接触面最大应力、平均应力,并通过田间试验进行验证,将接触面最大应力值、平均应力的仿真值与实际测量值进行比较,结果表明:虚拟仿真与实测值之间数值差异在5.10%以内,证明标定优化后的土壤模型能够近似代替真实土壤进行仿真。  相似文献   

15.
饲料油菜薹期收获茎秆破碎离散元仿真参数标定   总被引:6,自引:0,他引:6  
针对饲料油菜机械化收获中的切碎、抛送等关键环节离散元仿真缺乏准确模型的问题,以抽薹期饲料油菜茎秆为研究对象,利用EDEM仿真软件开展饲料油菜茎秆破碎离散元仿真模型参数标定研究。试验测定了饲料油菜本征参数,应用Hertz-Mindlin基本模型进行饲料油菜茎秆颗粒堆积仿真试验,通过二水平因子试验、最陡爬坡试验和响应曲面试验,确定了饲料油菜茎秆颗粒碰撞恢复系数、静摩擦因数和滚动摩擦因数等基本接触参数。在此基础上,应用Hertz-Mindlin with bonding接触模型进行饲料油菜茎秆弯曲破坏仿真试验,通过响应面分析确定了饲料油菜茎秆颗粒法向接触刚度、切向接触刚度、临界法向应力与临界切向应力等饲料油菜茎秆破碎离散元仿真模型的主要参数。以确定的参数进行堆积角仿真试验,结果表明,仿真结果与实测值相对误差为2. 27%;不同直径油菜茎秆破碎仿真试验表明,仿真结果与实测值相对误差不大于4. 21%,说明标定方法正确可行,标定参数准确可靠。  相似文献   

16.
青贮玉米饲料籽粒破碎装置仿真分析与试验   总被引:1,自引:0,他引:1  
籽粒破碎技术是提高青贮玉米饲料品质的关键技术,也是制约青贮玉米饲料机械化装置的瓶颈。采用SW三维建模、离散元法和田间试验相结合的方法,探究全株玉米离散元模型,模拟籽粒破碎作业过程中破碎对辊与玉米秸秆、玉米籽粒相互作业的过程;并对破碎对辊进行力学分析,用全株玉米粘结接触模型对对辊间破碎过程进行仿真试验,最后通过田间试验验证仿真结果的真实性。旨在研究青贮玉米籽粒破碎装置中不同工作参数对其运行质量及籽粒破碎率的影响,提高破碎装置的效率,进一步优化其结构。结果表明:在秸秆、玉米芯及籽粒的压缩和剪切试验中,设定加载速度为4 mm/min,对辊间隙为2 mm时,玉米秸秆和玉米芯轴向压缩最大临界破裂载荷均近似为2 360 N,玉米籽粒则近似为48 N,玉米秸秆和玉米芯径向最大临界剪切力分别为625 N和840 N,玉米籽粒则为23 N,破碎率达到最大值96%,仿真结果与试验结果保持一致,表明本文建立的三维离散元模型可应用于仿真青贮玉米籽粒破碎装置工作过程中的破碎情况,试验结果满足玉米籽粒破碎质量要求,为进一步研究籽粒破碎机理,分析籽粒破碎的影响因素提供理论依据和技术支持。  相似文献   

17.
探明藜麦秸秆的力学特性是进行藜麦相关机械研发与优化的前提。以藜麦秸秆为研究对象,借助离散元建模软件(Discrete Element Method,DEM)对藜麦秸秆进行离散元建模,并通过物理试验与虚拟试验相结合的方法对藜麦的粘结接触模型(Bonded Particle Model,BPM)进行了参数校核。结果表明:(1)以300 mm/min为加载速度,对含水率为59.61%的陇藜一号藜麦秸秆进行径向压缩试验时,最大临界载荷为173.67 N,抗压强度为0.116 MPa;(2)对bond粘结模型进行参数校核后,得到单位面积法向刚度、单位面积切向刚度、临界法向应力临界切向应力及粘结半径分别为2e+09 N/m3, 1.5e+09 N/m3, 3e+07 Pa, 2e+07 Pa, 0.96 mm,此时离散元模型力学特性与藜麦秸秆相接近;(3)经过计算得到藜麦秸秆模型的抗压强度为0.120 MPa,与试验结果的相对误差为6.0%。试验结果验证了此参数组的准确性,也为藜麦秸秆的其他仿真试验提供参考。  相似文献   

18.
为了探究气力输送中颗粒饲料的破损机理,针对当前缺乏颗粒饲料准确破损仿真模型的问题,利用EDEM仿真软件进行颗粒饲料破损离散元仿真参数标定研究。以粒径为2.50 mm混养成鱼颗粒饲料为研究对象,通过基础试验测定了颗粒饲料本征参数;通过颗粒饲料休止角试验、碰撞恢复系数标定试验和落料时间,结合试验优化设计方法,确定了饲料间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.58、0.23、0.12,饲料和软塑料(软PVC)间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.69、0.22、0.18;通过颗粒饲料单轴压缩破碎试验和仿真试验,结合响应面优化确定了单位面积法向刚度、单位面积切向刚度、临界法向应力、临界切向应力,分别为2.25×109 N/m3、8.05×108 N/m3、455 MPa、305 MPa。以确定的参数进行休止角仿真试验、单轴压缩仿真试验,结果表明,休止角、破碎力、落料时间的仿真值与实测值相对误差分别为0.35%、1.43%、2.81%;通过自由落料、斜面滑动、斜面滚动试验对粘结模型接触参数进...  相似文献   

19.
接触参数影响控释肥颗粒离散元仿真结果。为了精准模拟控释肥颗粒力学行为与运动规律,本文基于离散元法对控释肥颗粒的接触参数进行标定与试验。首先,建立控释肥离散元基础模型,并利用台架和仿真试验相结合的方法,在EDEM中对控释肥颗粒与PVC板之间接触参数进行标定。其次,通过碰撞弹跳试验、斜面滑移试验和斜面滚动试验测得控释肥颗粒与PVC板之间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.539、0.507和0.105。最后,通过堆积试验、最陡爬坡试验和正交旋转组合试验,得到控释肥颗粒间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.38、0.25和0.09,并通过无底圆筒提升试验和排肥台架试验进行验证。试验结果表明,堆积角实际值与仿真结果的相对误差为1.54%,排肥量实际值与仿真结果4种转速下的相对误差分别为4.38%、4.23%、4.41%、4.36%,所标定的控释肥接触参数精准有效,可为控释肥离散元仿真提供数据和模型支撑。  相似文献   

20.
针对畜禽粪肥含水率差异大等因素导致其离散元仿真参数标定方法通用性和实用性不强等问题,以堆积角为响应值对不同含水率的羊粪进行试验研究。通过圆筒提升法建立了含水率-堆积角模型,模型相关系数0.9999。基于羊粪粒度分布以Hertz-Mindlin with JKR为粘结模型建立4种不同粒径的EDEM颗粒模型;通过Plackett-Burman试验、爬坡试验和Box-Behnken试验从10项参数中筛选出JKR表面能、颗粒间滚动摩擦因数和静摩擦因数3项显著性参数,并建立了堆积角-离散元参数模型,模型P值小于0.0001,相对误差小于等于2.42%;基于含水率-堆积角模型和堆积角-离散元参数模型推导构建了含水率-离散元参数模型,以抽板法进行工程性验证,相对误差小于等于5.37%。表明通过含水率即可直接预测羊粪离散元参数,研究为施肥机械-羊粪仿真中离散元参数确定提供了通用、可靠的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号