首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
针对现有稻田株间除草装置除草率低、伤苗率高的问题,对已设计的倒V型稻田株间除草装置进行有限元虚拟仿真。采用ALE多物质单元体算法建立土壤—水耦合模型,运用罚函数法,对除草爪与土壤—水模型进行流固耦合。采用二次正交旋转组合试验设计方法选取机器前进速度、除草爪转速与水层厚度进行虚拟仿真试验与分析,得到各因素及其一级交互作用对除草爪与土壤—水模型扰动率的影响规律,影响扰动率因素为除草爪转速>水层厚度>机器前进速度。通过对虚拟仿真试验结果进行优化设计,得到倒V型株间除草装置最佳因素参数组合为机器前进速度为053 m/s,除草爪转速为180 r/min,水层厚度为0.01 m。通过对仿真优化设计结果室内试验验证可知,倒V型稻田株间除草装置在最佳因素参数组合下进行除草作业平均除草率85.04%、平均伤苗率3.62%,满足稻田机械株间除草农艺要求。  相似文献   

2.
悬挂式水田单侧修筑埂机数值模拟分析与性能优化   总被引:3,自引:0,他引:3  
为提高水田机械田埂修筑质量,探索各工作参数对悬挂式水田单侧修筑埂机作业性能的影响,依据离散元法建立机械部件-土壤间作用模型,运用EDEM软件对机具旋耕切削集土和镇压筑埂成型阶段进行仿真分析,研究机具作业质量和功耗的动态变化规律,分析影响筑埂性能的主要因素。结合正交试验设计和数值模拟技术,以机具前进速度、旋耕工作转速和旋耕入土深度为试验因素,田埂坚实度和作业功耗为试验指标,采用多目标变量优化方法建立因素与指标间数学模型,运用Design-Expert 6.0.10软件进行数据处理优化。结果表明,影响机具综合作业性能的主次因素为机具前进速度、旋耕入土深度、旋耕工作转速;当机具前进速度、旋耕工作转速和旋耕入土深度分别为0.3 m/s、470 r/min和200 mm时,机具作业性能较理想,田埂坚实度和作业功耗分别为1 890.0 kPa和30.07 kW,其功耗较优化前降低9.93 kW。经土槽台架试验验证,台架试验结果与仿真优化结果基本一致,田埂坚实度和作业功耗相对误差分别为4.26%和5.11%,满足水田修筑埂农艺要求。  相似文献   

3.
杂草去除是农业生产中不可避免的问题,因此设计了一种跨行自走式除草机器人,能够同时实现行间和株间除草,且行间除草的同时能够起到深松土壤的作用。通过曲柄摇杆机构实现除草刀的摆动,来避开农作物。利用EDEM软件对固定除草深度和速度下不同入土角度的除草过程进行仿真分析,结果表明:相同除草深度和速度下,除草刀具受力随着入土角度的增大而先减小后增大;行间除草刀具选取45°入土角为最优工作参数,株间除草刀具选取60°入土角为最优工作参数;通过仿真计算土壤蓬松度和土壤扰动系数,得到的结果是土壤蓬松度在10%~40%之间、土壤扰动系数大于50%,符合松土壤扰动效果的评价指标。  相似文献   

4.
稻田株间除草机构除草过程中伤秧影响的试验研究   总被引:1,自引:0,他引:1  
稻田杂草是影响大米产量和质量的一个重要因素。鉴于化学除草的负面影响,机械除草技术一直是国内外科研攻关的重点,但如何降低除草过程中工作装置对秧苗的损伤和影响成为研究的难点。为此,对稻田机械式株间除草机构的主要因素的秧苗损伤情况进行了试验研究。试验在机插稻田进行,稻苗行间距28~31cm,株间距14~15cm。试验在秧苗移栽后7天左右进行,该时间为稻田第一个出草高峰期,试验采用二次旋转正交试验方法,应用Design-Expert进行试验分析,获得了株间除草主要工作因素机器前进速度、除草盘转速、除草深度之间单因子及交互作用对伤秧率的影响。移栽7天时,田间试验在保证除草率的前提下确定了低伤秧率株间除草机构的工作参数为机器前进速度为0.38m/s,除草盘转速162.75r/min,除草深度为43.9mm,此时除草率为80.5%、伤秧率为3.8%。  相似文献   

5.
八爪除草机构的设计与实验-基于虚拟样机技术   总被引:2,自引:0,他引:2  
为了实现田间株间精确机械除草,设计了一种八爪式智能除草机构,并重点研究了在实现不同株距株间除草时所需的前进速度和转速,进行了ADAMS动力学仿真实验和土槽中的物理样机实验.仿真和实验结果表明:该结构的设计能使工作爪端的割刀伸入株间进行除草,仿真实验中的割刀中心轨迹能够有效完成株间除草,并在样机试验中得到了验证.  相似文献   

6.
针对水田株间除草作业劳动强度大、株间除草率低、易损伤秧苗等问题,提出一种水射流除草方法,以此设计了一种射流式株间除草装置。首先通过理论分析与参数计算确定了射流倾角为31°,喷嘴直径为0.004mm,运用动量守恒定理、粘性流体力学和土力学原理进行分析,建立了喷嘴临界破土压力模型,得出喷嘴临界破土压力为0.53MPa。进行水稻根系抗冲断极限水压试验,确定了喷嘴出口压力上限为1.5MPa。进行台架试验,选取装置前进速度和喷嘴出口压力为试验因素,以除草率为试验指标,采用二次正交旋转组合设计,建立了试验指标与影响因素回归模型。运用Design-Expert 8.0.6软件对试验数据分析并进行验证试验,结果表明,当装置前进速度为0.3m/s,压力为1.5MPa时,除草率为90.62%。满足水田机械除草作业农艺和技术要求。  相似文献   

7.
3ZCF-7700型多功能除草机能够满足玉米、大豆等作物株间、行间松土除草农艺要求,但不适合在作物残茬、茎秆多的田间进行除草作业。为了解决除草机作业单体机构结构复杂、适应性差、前后梳齿驱动盘横向间距不能调整等问题,对作业单体机构进行了改进设计。针对株间除草作业过程中梳齿易缠草、堵塞和入土能力弱等问题,设计了行星轮梳齿式株间除草机构,确定了除草机构的主要参数。以除草率和伤苗率为评价指标,在自制的室内试验台架上进行了单因素试验,获得影响其作业性能的主要因素及各因素的取值范围。以梳齿入土角、梳齿最深入土位置和梳齿最深入土深度为试验因素,在大豆田间进行L9(34)正交试验,考察试验因素对除草机构作业性能的影响。试验结果表明,各因素对除草率影响的主次顺序依次为梳齿最深入土深度、梳齿最深入土位置、梳齿入土角;各因素对伤苗率影响的主次顺序依次为梳齿入土角、梳齿最深入土深度、梳齿最深入土位置;最优水平组合为:梳齿入土角10°、梳齿最深入土位置80 mm、梳齿最深入土深度47. 5 mm。以最优水平组合进行了田间验证试验,结果表明,株间除草率平均值为86. 3%,伤苗率平均值为2. 66%,作业性能稳定。  相似文献   

8.
为了有效去除水稻行间、株间杂草,提高机械除草的作业效率,研制了一种高效型水田行-株间同步机械除草装置。该装置与水田插秧机底盘配套,分别配备株间和行间除草部件,可同时对株间、行间杂草及土壤进行剪切、翻耕,并采用二级仿形机构配合除草部件完成作业。田间试验结果表明:影响除草率和伤苗率的主次顺序均为前进速度除草轮类型;随着机具前进速度增加,除草率和伤苗率均先降后升。综合试验结果表明:伞状除草轮(A)平均除草率最高,在0.7m/s和1.0m/s前进速度下,株间平均除草率为74.6%,整机平均除草率为83.6%,平均伤苗率为1.6%,符合水稻田机械除草作业的技术指标。  相似文献   

9.
针对现有稻田株间除草漏除率大、除草率低和除草装置因无法确定秧苗位置而导致伤苗率高等问题,基于除草执行部件往复式开合运动思想,设计了一种用于去除稻田中耕期株间杂草的弧齿式自动避苗除草装置。根据中耕除草期稻株生长状态,通过理论分析设计了对置株间除草齿,并确定了除草弧齿的主要结构参数。利用光电传感器和电动直线推杆的协同作用,设计了自动避苗控制系统,当该装置执行避苗除草作业时,系统根据前进速度控制除草弧齿张开一定间距,以躲避秧苗。基于显式动力学仿真软件LS-DYNA进行了虚拟试验,以地表下0~40mm内土壤扰动率为试验指标,当除草齿入土深度为32mm时,土壤扰动率达到最大值,为90.02%。通过田间试验验证了该株间除草装置和自动避苗控制系统的作业性能,在前进速度为0.5~0.9m/s时,该装置平均除草率为86.51%、平均伤苗率为0.20%,除草和避苗作业性能稳定,可满足稻田除草农艺要求和株间“避苗除草”作业要求。  相似文献   

10.
水田株间立式除草装置的设计   总被引:2,自引:0,他引:2  
机械除草是解决除草剂大量使用而造成环境严重污染、杂草抗药性增强等危害的最佳方法。针对株间杂草难以控制的问题,设计了一种水田株间立式除草装置,并对其结构及工作原理进行了阐述。运用Pro/E软件建立了三维模型,并通过ADAMS软件对株间立式除草刀盘进行运动学仿真,获得株间立式除草弹齿的除草轨迹。对仿真结果进行分析,得出了最佳速比为1.65、齿数k=8时最接近各参数要求的结论,为水田除草机整机关键部件的研制提供了理论依据。  相似文献   

11.
弹齿式苗间除草装置关键部件设计与试验   总被引:7,自引:1,他引:6  
设计了一种水田苗间除草作业的弹齿式除草装置,采用钢丝软轴传动,除草盘为弧形。分别在秧苗生长到第7天和第14天时采用二次旋转正交设计进行土槽试验,利用Design-Expert软件分析,获得除草盘转速、机器前进速度、耕作深度之间交互作用及对除草率和伤苗率的影响。最终确定第7天作业时除草装置的最佳工作参数为:除草盘转速230r/min、机器前进速度1.02m/s、耕作深度18mm,此时除草率73%及伤苗率0.13%;第14天作业的最优组合为:除草盘转速230r/min,机器前进速度0.48m/s,耕作深度27mm。根据第7天试验最佳工作参数组合进行验证试验,结果表明此参数组合能满足除草率要求,且伤苗率最小。  相似文献   

12.
玉米根茬破碎还田装置设计与试验   总被引:1,自引:0,他引:1  
分析了玉米根茬破碎还田装置中直刀、旋耕刀、月牙刀的破茬原理,试验验证了月牙刀滑切破茬具有土壤扰动小、功耗低、破碎能力强的特点.以刀辊转速、机器前进速度、切刀入土深度为试验因素,以功耗、破茬合格率为试验指标,分别建立了表征月牙刀破茬性能的数学模型,确定最佳参数为:切刀入土深度48 ram,机器前进速度0.77 m/s,刀辊转速266 r/min.在试验范围内,切刀入土深度对功耗的影响最大;刀辊转速和机器前进速度对破茬合格率影响最大.  相似文献   

13.
基于Abaqus的缺口圆盘刀开沟作业有限元仿真及分析   总被引:1,自引:0,他引:1  
为分析免耕播种机破茬开沟部件开沟作业时圆盘刀与土壤之间的相互作用情况,在Abaqus有限元分析软件中建立了圆盘刀——土壤侵彻的三维动态有限元模型,在Explicit动态显示模块下进行仿真试验分析。搭建了基于室内土槽的圆盘刀牵引平台,通过土槽试验对有限元模型的正确性、有效性进行验证,结果表明:该有限元模型能准确模拟圆盘刀在土壤上进行开肥沟作业的过程。选取机组前进速度、圆盘刀入土深度和圆盘刀刀面与前进方向之间偏角等作为试验因素进行基于上述有限元仿真的正交试验,得到各因素及其一阶交互作用对模型中肥沟深度和宽度的影响规律。同时得到:在机组前进速度为1.67 m/s、圆盘刀入土深度为12cm、圆盘刀面偏角为6°时,破茬开沟部件所开肥沟质量最佳。  相似文献   

14.
立式螺旋开沟器土槽试验装置   总被引:2,自引:0,他引:2  
为了研究立式螺旋开沟器在不同前进速度、转速、开沟深度以及开沟角度组合工况下进行作业的功率消耗情况,设计了一套试验装置.该装置以上位机和数据采集卡为控制系统核心,利用LabVIEW编写的测控软件实现了开沟器转速、转矩等参数的采集、显示以及土壤切削功耗的处理和分析,以获得不同前进速度、转速、开沟深度以及开沟角度组合作用下土壤功耗的变化情况.利用该试验装置在转速为250 r/min,开沟角度为0°,开沟深度为250 mm的情况下,进行了前进速度分别为3,4,5 m/min的单因素土壤切削试验,并将试验参数代入切削功耗的理论计算公式中,从而对试验结果加以计算验证.单因素试验结果表明:该装置能模拟开沟器在不同前进速度、转速、开沟深度以及开沟角度组合作用下的土壤切削全过程,并且以前进速度为单因素变量的试验测得的土壤切削功耗与理论计算的最大误差为11.05%.  相似文献   

15.
针对水田机械除草作业效率低、除草过程中伤苗率高、化学除草容易引起的环境污染及水稻品质下降等问题,研制了一款六行水田除草机。该机由3.8kW汽油机提供动力,工作幅宽为1.8m,一次作业可覆盖6行栽植行宽为0.3m的水稻,并配备了执行机构摆动块。作业前,根据操作者身体情况调节摆动块,使机器重心达到适宜的位置,并可根据杂草高度利用摆动块调节浮筒高度,使整机满足除草深度的农艺要求。此外,根据水田土壤特性和现有除草部件的特点,除草机构旋转时对土壤及杂草根部的剪切作用、翻耕作用使杂草脱离土壤,在碾压轮的作用下完成压碎与掩埋,从而实现中耕除草作业。以除草率和伤苗率为试验指标开展田间试验,结果表明:新型六行水田除草机在前进速度为0.9m/s、除草深度为6cm的条件下,除草率可达94.4%,伤苗率仅为3.6%,满足水田中耕除草的农艺要求,可为水田机械除草提供一种新方法。  相似文献   

16.
复合式水稻田除草机的设计与试验   总被引:1,自引:0,他引:1  
为了有效灭除行、株间杂草,减少伤苗率,降低化学除草剂的投入量,研制了一种复合式水稻田除草机。该机与12k W水田拖拉机后悬挂配套,分别配备行间机械除草部件与株间除草剂喷施系统,通过机械除草部件对土壤及杂草的剪切、翻耕作用以及喷施选择性除草剂共同完成除草作业。田间试验结果表明:除草效果最佳组合为机具前进速度为0.6m/s,除草轮入土深度为6cm。由综合试验结果可知:该机平均除草率为86.7%,单位面积雾滴沉积数为35.1滴/cm2,符合机械除草与喷雾除草作业质量的要求。  相似文献   

17.
凸轮摇杆式摆动型玉米株间除草装置设计与试验   总被引:5,自引:0,他引:5  
为满足我国北方玉米苗间机械除草作业需求,设计了一种凸轮摇杆式摆动型玉米株间除草装置,阐述了除草装置的总体结构与工作原理,对其关键部件凸轮摇杆机构和除草刀进行参数化设计,通过对除草装置避苗过程的运动和受力分析,得到影响其作业效果的主要因素及各因素的取值范围。以前进速度、弹簧刚度和除草刀转速为试验因素,以除草率、伤苗率为试验指标,在室内土槽中进行L9(34)正交试验,以考察试验因素对除草装置工作性能的影响。结果表明,各因素对指标影响的主次顺序为弹簧刚度、前进速度、除草刀转速;最优水平组合为弹簧刚度60 N/mm、前进速度0.6 m/s、除草刀转速130 r/min。以最优水平组合进行验证试验,结果为除草率89.8%,伤苗率2.1%,证明其具有较优的作业性能。  相似文献   

18.
为实现铺膜插秧种植方式的有机水稻全程绿色无污染化作业,解决地膜两侧单行内杂草难以根除的问题,根据农艺要求,设计了一种针对铺膜插秧后除草作业的3SCJ-1型单行水田除草机。阐述了基本结构组成和工作原理,分析了除草部件的运动学与动力学特征,建立了除草部件、机架与仿形浮漂整体的力学模型,推导出除草机的驱动扭矩。田间试验以机器前进速度和除草深度为试验影响因素,除草率作为评价指标,对除草性能进行单因素试验,并运用Design-Expert8.0.6软件对试验数据进行分析,得到影响因素与评价指标之间的数学模型。试验结果表明:当机器前进速度从0.3m/s增大至0.6m/s时,除草率先增大后减小,并在前进速度为0.45m/s时,除草率达到最大值(78.52%);当除草深度从50mm增大至110mm时,除草率持续增大,但考虑到除草机的功耗,最佳除草深度取为50~100mm,在除草深度为100mm时,除草率为79.26%。除草机平均除草率为78.02%,满足铺膜插秧种植方式水田除草的农艺要求。  相似文献   

19.
为实现铺膜插秧种植方式的有机水稻全程绿色无污染化作业,解决地膜两侧单行内杂草难以根除的问题,根据农艺要求,设计了一种针对铺膜插秧后除草作业的3SCJ-1型单行水田除草机。阐述了基本结构组成和工作原理,分析了除草部件的运动学与动力学特征,建立了除草部件、机架与仿形浮漂整体的力学模型,推导出除草机的驱动扭矩。以机器前进速度和除草深度为试验影响因素,除草率作为评价指标,对除草性能进行单因素田间试验,并运用Design-Expert 8.0.6软件对试验数据进行分析,得到影响因素与评价指标之间的数学模型。试验结果表明:当机器前进速度从0.3 m/s增大至0.6 m/s时,除草率先增大后减小,并在前进速度为0.45 m/s时,除草率达到最大值(78.52%);当除草深度从50 mm增大至110 mm时,除草率持续增大,但考虑到除草机的功耗,最佳除草深度取为50~100 mm,在除草深度为100 mm时,除草率为79.26%。除草机平均除草率为78.02%,满足铺膜插秧种植方式水田除草的农艺要求。  相似文献   

20.
针对我国现状设计了一种适用于果园矮砧密植栽培模式的除草机器人,采用Pro/E建立了机器人各零部件的三维实体模型并完成了整机结构的约束装配,通过ADAMS软件对模型运动进行仿真验证了割刀运动规律理论分析的正确性。利用非线性显式动力学有限元软件LS-DYNA建立了割刀实体、土壤材料及切削有限元模型,并进行了割刀切削土壤过程的动力学仿真,得到了切削过程割刀等效应力、能量消耗、切削阻力的变化规律和特性,由仿真结果对比分析得出了平面圆弧型割刀为设计时优先考虑的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号