首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Giant sequoia latewood compression wood (CW) tracheids had pit canals that flared toward the lumen with extended poorly defined inner apertures that paralleled the fibrils in the S2 walls. Boiling and drying of CW and normal wood (NW) blocks induced split extensions at the CW pit aperture grooves but not at the NW pit apertures. These split extensions of the CW pit apertures were present also in longitudinal microsections. The mean fibril angle of 21 to 25 degrees of this well-defined CW was appreciably below the 45 degrees frequently reported. The CW tangential/radial shrinkage ratio of about 1 was distinetly lower than NW (1.6 and 2.1), and appeared to be the result of much lower tangential shrinkage. Both NW and CW specimens when dried quickly in an oven at 100° C had higher shrinkage (long., tang. and rad.) than when air-dried first at lower temperature and higher relative humidity.The SEM photographs were made in the Electronics Research Laboratory which is under the direction of Dr. T. E. Everhart who has a Cambridge Stereoscan Mark II SEM operated under NIH Grant No. G. M. 17523.  相似文献   

2.
Spicer R  Gartner BL 《Tree physiology》1998,18(11):777-784
Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) branch segments were used to test the hypothesis that compression wood reduces xylem transport efficiency. Whole 3-year-old segments were first measured for specific conductivity (k(s), m(2) s(-1) MPa(-1)), then split lengthwise into upper and lower halves, the latter containing all or most of the compression wood in the segment. Halves were then remeasured for k(s) using a new technique that prevents leakage of permeating fluid during measurements. Lower branch halves had significantly lower k(s) than upper halves (6.4 +/- 0.3 versus 9.3 +/- 0.3 m(2) s(-1) MPa(-1) x 10(-4), respectively; n = 36), and despite their larger size, significantly lower hydraulic conductivity (k(h), m(4) s(-1) MPa(-1)) than upper halves. Lower branch halves had higher specific gravity (0.51 +/- 0.01 versus 0.45 +/- 0.01; n = 36), lower water content (123 +/- 2% versus 155 +/- 3%; n = 36), and larger proportions of volume occupied by both cell wall and air than upper halves. Lower halves had more tracheids per annual ring than upper halves (73 +/- 3 versus 63 +/- 2 per radial transect, respectively; n = 36), but tracheids were shorter and had narrower lumens than those of upper branch halves. Differences in hydraulic properties between upper and lower halves suggest that compression wood does reduce xylem transport efficiency. In contrast, the amount of compression wood in each sample did not explain any variation in whole unsplit sample hydraulic properties.  相似文献   

3.
Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (k(s100)), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Psi(12), Psi(50)) and the percent loss of conductivity at 4 MPa applied air pressure (PLC(4MPa)). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure-function relationships. High k(s100) was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between k(s100) and PLC(4MPa), and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff.  相似文献   

4.
Summary The effects of air-drying and solvent-drying on the sapwood of Abies grandis have been investigated by a new method for the determination of the size and number of conducting tracheid lumina and pit membrane pores which involves the measurement of gaseous permeability at various mean pressures. Both earlywood and latewood tracheids (83% of the total) were found to be conducting in solvent-dried wood, but in air-dried wood only latewood tracheids (32% of the total) were conducting. In solvent-dried wood there were on average 27,000 pit membrane pores per conducting tracheid compared with only 600 in air-dried wood. In both, the average pit membrane pore radius was about 0.1 m.Liquid permeabilities have been predicted from the calculated radii and numbers. The liquid permeability of solvent-dried wood was 31 times greater than that of air-dried wood in which the lumina were responsible for 13% of the total resistance to flow. The lumina were responsible for 39% of the resistance in solvent-dried wood and it is suggested that in first-formed earlywood the lumina may cause more than half the total resistance.A new method is described for the cleaning of direct carbon replicas of wood. In this the cellulose is removed by cellulase instead of sulphuric acid, and no wax backing is required. This provides much cleaner replicas. Electron micrographs have been obtained of both earlywood and latewood dried by the two methods.The authors wish to thank Mr. A. R. Sayers for preparing the computer programme used in this work, Dr. R. Ph. C. Johnson for his help and advice regarding the electron microscopy and Professors Matthews and Weatherley for their advice and encouragement.  相似文献   

5.
Tangential pitting in black spruce tracheids   总被引:1,自引:0,他引:1  
Tangential pit features were studied in a 55-year old black spruce (Picea mariana (Mill) B.S.P.) tree by means of light and electron microscopy.It was found that tangential pitting is lacking from the greatest part of the growth ring, except for the last four tangential rows of latewood tracheids and the first row of early wood tracheids. The average number of pits per tangential wall of a 3.55-mm-long tracheid is 234, 144, 28, 4 and zero, respectively, in the last 5 tangential rows of latewood tracheids, starting at the growth-ring boundary.On the average, tangential pits measure 5.4 m in diameter, possess oval to elliptical apertures, and are randomly distributed uniformly over the tangential tracheid wall. All tangential intertracheid pits are bordered and in that respect are similar to those in the radial walls. Although most of the pits contain membranes with tori, some at the growth-ring boundary lack tori and exhibit randomly oriented microfibrillar structure.  相似文献   

6.
Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s)?=?2.0?×?10(-4) m(2) MPa(-1) s(-1)) and safety (P(50)?=?-?1.5 MPa) than stem xylem (k(s)?=?7.7?×?10(-4) m(2) MPa(-1) s(-1); P(50)?=?-?3.6 to?-?3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was?-?0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to?-?3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.  相似文献   

7.
The model of West, Brown and Enquist (1999) shows that hydraulic resistance in trees can be independent of path length, provided that vascular conduits widen sufficiently from tree top to base. We demonstrate that this result does not depend theoretically on branching architecture or cross-sectional conductive area of the stem. Previous studies have shown that pit membrane resistance, encountered when water moves between either tracheids or vessels, accounts for up to 60% of the total resistance in stem segments. When pit membrane resistance, which is neglected by most whole-tree hydraulic models, was incorporated in hydraulic models in three different ways, the near invariance of hydraulic resistance was preserved. If relative pit resistance was independent of tracheid size or if tracheid dimensions were scaled to minimize wood resistivity, the minimum conduit taper required for path length independence equaled that in the original model of West et al. (1999). Under the most realistic model, in which relative pit resistance increased with tracheid radius, this value was doubled. Such taper is not possible within the typical size range of tracheids over the entire length of moderately tall trees, but it might be possible for vessel-bearing trees. Preliminary results indicated that although tracheid radius in the outer growth ring initially increased basipetally from the top of an 18-m tall Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), it stabilized at mid-trunk. Also, conduit taper was not constant in this species, violating a key assumption of the model of West et al. (1999), on which the invariance of hydraulic resistance depends.  相似文献   

8.
Summary It is shown that to calculate the rate of gaseous diffusion through an isolated capillary of radius a an end correction of a/2 must be added to the physical length of the capillary. This correction is applicable to diffusion through pit apertures in conifer wood. Mutual interference between diffusion through closely spaced capillaries reduces the end correction. Two approaches to the calculation of this effect are discussed. The pores in many bordered pit membranes are so closely spaced that the end correction becomes negligible. It is shown theoretically that when the end correction is taken into account the tracheid lumen/cell wall pathway provides the path of least resistance for transverse moisture diffusion through conifer wood.  相似文献   

9.
Aumann CA  Ford ED 《Tree physiology》2006,26(3):285-301
A tracheid-level model was used to quantify the effects of differences in wood microstructure between coastal and interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii and var. glauca) wood on larger scale properties like hydraulic conductivity. The model showed that tracheid length, the ease of flow through a bordered pit and effective tracheid diameter can all limit maximum hydraulic conductivity. Among the model parameters tested, increasing bordered pit conductivity and tracheid length resulted in the greatest increase in maximum conductivity in both the inland and coastal ecotypes. A sensitivity analysis of the uncertainty between parameters governing flow through the bordered pit and air-seeding potential showed that, although decreased pit flow resistance increased maximum hydraulic conductivity, increased cavitation led to lower conductivity over time. The benefits of increasing the number of bordered pits depended on the intensity of the meteorological driving function: in drier environmental conditions, wood with fewer pits was more conductive over time than wood with more pits. Switching the bordered pit characteristics between coastal and interior wood indicated that the conductivity time course of coastal and interior wood was primarily governed by differences in the number of bordered pits and not differences in tracheid dimensions. The rate at which tracheids refilled had little effect on the conductivity time course of either coastal or interior wood during the first two summers when the wood was highly saturated, but had a marked influence in subsequent years once the cavitation profile stabilized. Our work highlights the need for more empirical work on bordered pits to determine whether variation in their number and properties is related to changing environmental conditions. In addition, a detailed simulation model of a bordered pit is needed to understand how variation in pit properties affects the relationship between ease of flow through a bordered pit and its potential for facilitating air-seeding.  相似文献   

10.
Summary The cross-sectional view of pitting between various cell types inPinus banksiana Lamb. was studied at the ultrastructural level. Cell types inPinus banksiana include longitudinal tracheids, ray tracheids, ray parenchyma cells, buffer cells and epithelial cells. Two common characteristic features of bordered pit-pairs between longitudinal tracheids are an initial pit border and a thickened torus at the center of the pit membrane. The shape and size of the pit border and torus of bordered pit-pairs between two compression wood cells, and between the last-formed latewood longitudinal tracheid and first-formed earlywood longitudinal tracheid were different from those in the earlywood and latewood longitudinal tracheids. The pit border on the ray tracheid side varied in size and shape due to wall dentation. No initial pit border was found on the pit border of the ray tracheid side. The shape of bordered pit-pairs between two ray tracheids varied considerably due to irregularity of the dentate cell wall. The size of bordered pit-pairs in longitudinal tracheids was between 16 m to 20 m, which was twice the diameter of bordered pit-pairs in ray tracheids. Bordered pitpairs at the end wall of two ray tracheids appeared to be the smallest at 5 m, Pit aspiration occurred in the bordered pit-pairs with or without a torus. In the heartwood zone, some half-borders pit-pairs between tracheary and ray parenchyma cells showed an additional secondary wall on the ray parenchyma cell side. Plasmodesmata were found in the half-bordered pit-pairs as well in the simple pit-pairs. Blind pits were observed between a ray tracheid and a longitudinal tracheid. Bordered pit-pairs between two buffer cells were also observed. The possible functions of buffer cells were discussed.Use of transmission electron microscope provided by the Science Instrumentation Lab, Lakehead University and the technical assistance provided by Mr. A. MacKenzie, Director of Science Instrumentation Lab are gratefully appreciated  相似文献   

11.
Domec JC  Gartner BL 《Tree physiology》2002,22(2-3):91-104
We do not know why trees exhibit changes in wood characteristics as a function of cambial age. In part, the answer may lie in the existence of a tradeoff between hydraulic properties and mechanical support. In conifers, longitudinal tracheids represent 92% of the cells comprising the wood and are involved in both water transport and mechanical support. We used three hydraulic parameters to estimate hydraulic safety factors at several vertical and radial locations in the trunk and branches: vulnerability to cavitation; variation in xylem water potential (psi); and xylem relative water content. The hydraulic safety factors for 12 and 88 percent loss of conductivity (S(H12) and S(H88), representing the hydraulic safety factors for the air entry point and full embolism point, respectively) were determined. We also estimated the mechanical safety factor for maximum tree height and for buckling. We estimated the dimensionless hydraulic and mechanical safety factors for six seedlings (4 years old), six saplings (10 years old) and six mature trees (> 110 years old) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Over the natural range of psi, S(H12) decreased linearly from treetop to a minimum of 0.95 at the tree base. Young and mature trees had S(H12) values 1.4 and 1.3 times higher, respectively, at their tips (juvenile wood) than at their bases (mature wood). Modeling analyses indicated that if trees were made entirely of mature wood, S(H12) at the stem base would be only 0.7. The mechanical safety factor was 1.2 times higher for the base of the tree than for the rest of the tree. The minimum mechanical safety factor-1.6 for the critical buckling height and 2.2 for the critical buckling load-occurred at the base of the live crown. Modeling analysis indicated that if trees were made only of mature wood, these values would increase to 1.7 and 2.3, respectively. Hydraulic safety factors had values that were less than half those for mechanical safety factors, suggesting that wood structure in Douglas-fir has evolved primarily as a result of selection for hydraulic safety rather than mechanical safety. The results suggest that forest managers must consider the role of juvenile wood in tree physiology to avoid producing plantations vulnerable to drought.  相似文献   

12.
The development of anatomical, hydraulic and biomechanical properties in Scots pine (Pinus sylvestris L.) stems aged 7 to 59 years was followed. The hydraulic diameter and length of tracheids increased with age to a maximum at 15 and 35 years, respectively. Number of tracheids per unit of sapwood area decreased with age to a minimum of 500-600 tracheids mm(-2). Variations in specific hydraulic conductivity and Young's modulus of stems were associated with variation in anatomical properties. Over the time sequence considered, hydraulic and mechanical properties were positively related to each other and followed a similar developmental pattern, with no suggestion of a trade-off between the two. For most of the tree's life-cycle, heartwood made only a small contribution to whole-section mechanical stiffness because of its location close to the flexural neutral axis, and because of the presence of juvenile wood.  相似文献   

13.

Key message

Comparisons between compression and opposite wood formation in prostrating Pinus mugo indicate that the secondary meristem can produce more tracheids with thicker walls by also increasing the number of contemporaneously differentiating cells, rather than only increasing the duration or the rate of cell formation.

Context

Although cambium tissues within a stem experience the same climatic conditions, the resulting wood structure and properties can strongly differ. Assessing how meristem differently regulates wood formation to achieve different anatomical properties can help understanding the mechanisms of response and their plasticity.

Aims

We monitored the formation of compression (CW) and opposite (OW) wood within the same stems to understand whether achieved differences in wood structure are caused by modifications in the process of cell formation.

Methods

We collected weekly microcores of compression and opposite wood from the curved stem of ten treeline prostrating mountain pines (Pinus mugo Turra ssp. mugo) at the Majella massif in Central Italy.

Results

Results indicate that cambium formed approximately 1.5 times more cells in CW than OW, despite that CW cell differentiation only extended 2 weeks longer and the residence time of CW cells in the wall-thickening phase was only 20% longer. Differences in their formation were thus mainly related to both the rates and the width of the enlarging and wall-thickening zones (i.e., the number of cells simultaneously under differentiation) and less to duration of cell formation.

Conclusion

We conclude that to achieve such a different wood structures, the efficiency of the secondary meristem, in addition of altered rate of cell division and differentiation, can also modify the width of the developing zones. Thus, deciphering what rules this width is important to link environmental conditions with productivity.
  相似文献   

14.
Summary A study has been made of the histology and ultrastructure of opposite wood in Larix laricina, Picea rubens, and Pinus resinosa. The width of the growth rings varied considerably, in one case from 0.1–1.0 mm, with the wide rings containing a much higher proportion of latewood than the narrow ones. The earlywood tracheids were square in outline and more regularly arranged than in normal wood. In the latewood they were sometimes irregular and distorted. The S3 layer in the tracheids was 0.2 m thick in the earlywood and 0.4–0.8 m in the latewood, as compared to a thickness in normal wood of 0.1–0.2 m in both zones. The S3 was often buckled in the latewood and was terminated towards the lumen by a spiral thickening. The cell wall structure of the tracheid pit border was described. Normal coniferous wood might be regarded as an intermediate between opposite wood and compression wood.This paper is dedicated to Dean Edwin C. Jahn in honor of his 70th birthday.  相似文献   

15.
We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.  相似文献   

16.
Summary The distribution of lignin in normal and compression wood of loblolly pine (Pinus taeda L.) has been studied by the technique of lignin skeletonizing. Hydrolysis of the wood carbohydrates with hydrofluoric acid left normal wood tracheids with a uniform distribution of lignin in the S1 and S2 cell wall layers. However, the S3 region of both earlywood and latewood tracheids consistently retained a dense network of unhydrolyzable material throughout, perhaps lignin.Lignin content in compression wood averaged about 7% more than in normal wood and appears to be concentrated in the outer zone of the S2 layer. The inner S2 region, despite helical checking, is also heavily lignified. The S1 layer, although thicker than normal in compression wood tracheids, contains relatively little lignin.Ray cells, at least in normal wood, appear to be lignified to the same extent, if not more so in certain cases, than the longitudinal tracheids. Other locations where lignin may be concentrated include initial pit border regions and the membranes of bordered pits.This report is a detailed excerpt from the Ph. D. dissertation of R. A. P. Financial support provided by the College of Forestry at Syracuse University and the National Defense Education Act is hereby gratefully acknowledged.  相似文献   

17.
Summary The movements of branches or control stem girdled white pine (Pinus strobus L.) were analyzed using beam theory. The stresses generated in the compression wood (CW) produced bending moments to counter the added bending moments due to new branch growth. The branches on the treated trees produced additional CW after untreated trees stopped elongation and diameter growth. The intensity of the stresses in this additional CW was greater than in the other CW. Thus, branches on treated trees moved up vertically well beyond their initial orientation due to both more CW and more active CW. The branches on untreated trees all deflected downward as branch weight continued to increase after CW production stopped.  相似文献   

18.
Summary Western hemlock heartwood contains patches of tracheids with large amounts of cellular inclusions. Microscopic and chemical examination of the wood showed several types of deposits containing the lignans matairesinol, hydroxymatairesinol and conidendrin. The deposits, which were often relatively pure individual lignans, frequently assumed different physical forms and chemical composition. A check in the wood contained three distinct forms of deposits each of which was a different lignan. Rays contained deposits physically similar to those in adjacent tracheids but, while lignans were present in the tracheids, they were not detected in the rays. Lignans lined tracheid walls as surface films and often encrusted the bordered pits. The amount of lignans in the wood was not related to wet wood zones although surface films and pit encrustations should have an influence on physical properties. The location and physical nature of lignan deposits in western hemlock heartwood indicates their biosynthesis has probably taken place at the heartwood periphery in the vicinity of the half-bordered pit.Presented at the International Wood Chemistry Symposium, Seattle, U. S. A. September 1969.Requests for reprints should be sent to W. E. Hillis. We thank Miss J. Barratt for assistance with part of this work and Mr. C. J. Kozlik for collecting wood samples.  相似文献   

19.
Ultrasonic emission (UE) testing is used to analyse the vulnerability of xylem to embolism, but the number of UEs often does not sufficiently reflect effects on hydraulic conductivity. We monitored the absolute energy of UE signals in dehydrating xylem samples hypothesizing that (i) conduit diameter is correlated with UE energy and (ii) monitoring of UE energy may enhance the utility of this technique for analysis of xylem vulnerability. Split xylem samples were prepared from trunk wood of Picea abies, and four categories of samples, derived from mature (I: earlywood, II: 30-50% latewood, III: >50% latewood) or juvenile wood (IV: earlywood) were used. Ultrasonic emissions during dehydration were registered and anatomical parameters (tracheid lumen area, number per area) were analysed from cross-sections. Attenuation of UE energy was measured on a dehydrating wood beam by repeated lead breaks. Vulnerability to drought-induced embolism was analysed on dehydrating branches by hydraulic, UE number or UE energy measurements. In split samples, the cumulative number of UEs increased linearly with the number of tracheids per cross-section, and UE energy was positively correlated with the mean lumen area. Ultrasonic emission energies of earlywood samples (I and IV), which showed normally distributed tracheid lumen areas, increased during dehydration, whereas samples with latewood (II and III) exhibited a right-skewed distribution of lumina and UE energies. Ultrasonic emission energy was hardly influenced by moisture content until ~40% moisture loss, and decreased exponentially thereafter. Dehydrating branches showed a 50% loss of conductivity at -3.6 MPa in hydraulic measurements and at -3.9 and -3.5 MPa in UE analysis based on cumulative number or energy of signals, respectively. Ultrasonic emission energy emitted by cavitating conduits is determined by the xylem water potential and by the size of element. Energy patterns during dehydration are thus influenced by the vulnerability to cavitation, conduit size distribution as well as attenuation properties. Measurements of UE energy may be used as an alternative to the number of UEs in vulnerability analysis.  相似文献   

20.
The objectives of this study were to assess the range of genotypic variation in the vulnerability of the shoot and root xylem of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings to water-stress-induced cavitation, and to assess the trade-off between vulnerability to cavitation and conductivity per unit of stem cross-sectional area (k(s)), both within a species and within an individual tree. Douglas-fir occupies a broad range of environments and exhibits considerable genetic variation for growth, morphology, and drought hardiness. We chose two populations from each of two varieties (the coastal var. menziesii and the interior var. glauca) to represent environmental extremes of the species. Vulnerability curves were constructed for shoots and roots by plotting the percentage loss in conductivity versus water potential. Vulnerability in shoot and root xylem varied genetically with source climate. Stem xylem differed in vulnerability to cavitation between populations; the most mesic population, coastal wet (CW), was the most susceptible of the four populations. In the roots, the most vulnerable population was again CW; the interior wet (IW) population was moderately susceptible compared with the two dry populations, coastal dry (CD) and interior dry (ID). Root xylem was more susceptible to cavitation than stem xylem and had significantly greater k(s). The trade-off between vulnerability to cavitation and k(s), however, was not evident across populations. The most vulnerable population (CW) had a shoot k(s) of 0.534 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1), compared with 0.734 +/- 0.067 &mgr;mol m(-2) s(-1) MPa(-1) for the less vulnerable CD stems. In the roots, IW was more vulnerable than ID, but had the same k(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号