首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present report describes the clinical, pathological, serological and virological findings in calves from 2 larger Danish beef herds experiencing outbreaks of pneumonia. The calves had been vaccinated with an inactivated bovine respiratory syncytial virus (BRSV) vaccine 2 months prior to the outbreak. The clinical signs comprised nasal discharge, pyrexia, cough and increased respiratory rates. A total of 28 calves died in the 2 herds. The laboratory investigations revealed that BRSV was involved and probably initiated both outbreaks. Furthermore, the serological results suggested that the vaccine induced only sparse levels of antibodies probably due to the presence of maternally derived antibodies at the time of vaccination. Necropsy findings in 5 calves revealed changes typical for infectious pneumonia with involvement of BRSV. In conclusion, vaccination of calves against BRSV in 2 Danish beef herds failed to protect the calves against severe or even fatal BRSV mediated respiratory disease 2 months later.  相似文献   

2.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

3.
Serum samples were collected from early weaned fall calves shortly after the onset of respiratory tract disease. Antibody titers to infectious bovine rhinotracheitis (IBR) virus, parainfluenza type 3 (PI-3) virus, bovine viral diarrhea (BVD) virus, bovine adenovirus type 3 (BAV-3), and bovine respiratory syncytial virus (BRSV) were determined on paired (acute and convalescent) serums. Seroconversion rate (a fourfold or greater rise in antibody titer) for IBR virus was 4.3%, PI-3 virus--16.3%, BVD virus--9.6%, and BAV-3--2.2%. Seroconversion for BRSV was 45.4%. An increased rate of seroconversion for IBR, PI-3, and BVD viruses and BAV-3 was observed in the presence of BRSV seroconversion. These results suggest that BRSV may facilitate infection by other viruses. Results of virus isolation procedures from these calves were negative.  相似文献   

4.
The mean arterial PO2 value measured in blood obtained by puncture of the brachial artery of 20 calves with acute clinical signs of a bovine respiratory syncytial virus (BRSV) infection was 8.4 +/- 1.9 kPa. The values differed significantly from arterial PO2 values of eleven healthy calves (mean 14.2 +/- 1.5 kPa). A disease scoring system is presented based on the type of respiration and the findings on auscultation. A high correlation (r = -0.87) was found between disease scores and arterial PO2 values. This indicates that the described disease scoring system can be a useful tool in the evaluation of the severity and course of BRSV infections in calves, and could be used for evaluating the efficacy of BRSV vaccines in the field. The course of disease was studied in 127 calves with clinical signs of serologically proven BRSV infection. Animals with mild respiratory signs during the acute phase of disease remained free of severe respiratory problems until the end of a 35-day examination period. Mean disease scores indicated that animals with severe signs in the acute phase often developed persistent respiratory problems.  相似文献   

5.
OBJECTIVE: To determine whether an inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from infection with virulent BRSV. DESIGN: Randomized controlled trial. ANIMALS: 27 nine-week-old calves seronegative for BRSV exposure. PROCEDURE: Group-1 calves (n = 9) were not vaccinated. Group-2 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing a minimum immunizing dose of antigen. Group-3 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing an amount of antigen similar to that in a commercial vaccine. All calves were challenged with virulent BRSV on day 42. Clinical signs and immune responses were monitored for 8 days after challenge. Calves were euthanatized on day 50, and lungs were examined for lesions. RESULTS: Vaccination elicited increases in BRSV-specific IgG and virus neutralizing antibody titers and in production of interferon-gamma. Virus neutralizing antibody titers were consistently less than IgG titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, whereas vaccinated calves had less severe signs of clinical disease and less extensive pulmonary lesions. The percentage of vaccinated calves that shed virus in nasal secretions was significantly lower than the percentage of control calves that did, and peak viral titer was lower for vaccinated than for control calves. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus and decreased the severity of pulmonary lesions. Efficacy was similar to that reported for modified-live BRSV vaccines.  相似文献   

6.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

7.
In a group of 60 Belgian White Blue calves less than 8 months old still housed in barns, a bovine respiratory syncytial virus (BRSV) outbreak was revealed on the basis of a direct diagnosis (immunofluorescence and virus isolation) performed on the lungs of dead animals, and the kinetics of BRSV neutralizing antibodies. Clinical signs, macroscopical and microscopical pulmonary lesions were also compatible with a BRSV infection. This outbreak is peculiar because the 35 oldest calves (204 +/- 29 days old) had been vaccinated 3-4 months before with an inactivated BRSV vaccine and 30% of these animals had died of respiratory distress. While they experienced a mild respiratory symptomatology, no death was recorded among the 25 youngest calves (69 +/- 29 days old) which had been left unvaccinated. Another peculiarity was found at the histological level where a massive infiltration of eosinophils was demonstrated in the pulmonary tissues of the dead animals. Together these data parallel the dramatic story described 30 years ago in children previously vaccinated with a formalin-inactivated human RSV (HRSV) vaccine upon a natural HRSV challenge. This illustrates that an immunopathological phenomenon also takes place after BRSV vaccination in cattle.  相似文献   

8.
The specificity of serum antibodies for the polypeptides of bovine respiratory syncytial virus (BRSV) was examined, using sera obtained from feedlot and range cattle. Test results in sera from feedlot cattle indicated a 60% rate of seroconversion and 95% seropositivity to BRSV, associated with lack of clinical signs indicative of respiratory tract disease. Exposure to other common respiratory tract viruses also was high (greater than or equal to 92% to bovine herpesvirus type 1, bovine viral diarrhea virus, and para-influenza virus type 3). Test results in sera from range cattle indicated BRSV seropositive rates of 28% in calves, 49% in yearling cattle, and 70% in mature cows; clinical signs of respiratory tract disease were not observed in these cattle. Antibodies to BRSV in sera from cattle in both environments reacted predominantly with polypeptides of molecular weight 80,000 through 85,000, 40,000, and 28,000. Reactivity to a glycoprotein of molecular weight between 43,000 and 44,000 and to several glycopolypeptides of smaller molecular weight increased in serum specimens obtained from feedlot cattle between time of entry into the feedlot and slaughter.  相似文献   

9.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

10.
OBJECTIVE: To evaluate the effect of infection with bovine respiratory syncytial virus (BRSV) on clearance of inhaled antigens from the lungs of calves. ANIMALS: Eleven 6- to 8-week-old Holstein bull calves. PROCEDURES: Aerosolized (99m)technetium ((99m)Tc)-labeled diethylene triamine pentacetate (DTPA; 3 calves), commonly used to measure integrity of the pulmonary epithelium, and (99m)Tc-labeled ovalbumin (OA; 8 calves), commonly used as a prototype allergen, were used to evaluate pulmonary clearance before, during, and after experimentally induced infection with BRSV or sham inoculation with BRSV. Uptake in plasma (6 calves) and lung-efferent lymph (1 calf) was examined. RESULTS: Clearance of (99m)Tc-DTPA was significantly increased during BRSV infection; clearance of (99m)Tc-OA was decreased on day 7 after inoculation. Clearance time was correlated with severity of clinical disease, and amounts of (99m)Tc-OA in plasma and lymph were inversely correlated with clearance time. Minimum amounts of (99m)Tc-OA were detected at time points when pulmonary clearance of (99m)Tc-OA was most delayed. CONCLUSIONS AND CLINICAL RELEVANCE: BRSV caused infection of the respiratory tract with peak signs of clinical disease at 7 or 8 days after inoculation. Concurrently, there was a diminished ability to move inhaled protein antigen out of the lungs. Prolonged exposure to inhaled antigens during BRSV infection may enhance antigen presentation with consequent allergic sensitization and development of chronic inflammatory lung disease. IMPACT FOR HUMAN MEDICINE: Infection of humans with respiratory syncytial virus early after birth is associated with subsequent development of allergic asthma. Results for BRSV infection in these calves suggested a supportive mechanism for this scenario.  相似文献   

11.
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves, of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor alpha (TNF-alpha) in the BAL fluids was detected and quantified by a capture ELISA. TNF-alpha was detected in 21 of the infected animals. The amount of TNF-alpha in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-alpha were detected on PID 6, maximum levels of TNF-alpha were reached on PID 7, and smaller amounts of TNF-alpha were seen on PID 8. The high levels of TNF-alpha appeared on the days where severe lung lesions and clinical signs were obvious and the amounts of BRSV-antigen were at their greatest. Although Pasteurellaceae were isolated from some of the BRSV-infected calves, calves treated with antibiotics before and through the whole period of the infection, as well as BRSV-infected calves free of bacteria reached the same level of TNF-alpha as animals from which bacteria were isolated from the lungs. It is concluded that significant quantities of TNF-alpha are produced in the lungs of the calves on PID 6-7 of BRSV infection. The involvement of TNF-alpha in the pathogenesis of, as well as the anti-viral immune response against, BRSV infection is discussed.  相似文献   

12.
A prospective epidemiological survey on bovine respiratory syncytial virus (BRSV) infections in calves was carried out on 21 dairy farms during one BRSV epidemic season. Special attention was paid to the role of maternal antibodies. On 15 farms the spread of the virus was demonstrated during the investigation period and on eight farms this was accompanied by an outbreak of acute respiratory disease. Disease seldom occurred in calves younger than two weeks old and the most severe disease was observed in calves from one to three months old. Although maternal antibodies did not effectively prevent the disease, both the incidence and severity of disease were inversely related to the level of specific maternal antibodies. Two serodiagnostic techniques were compared. In calves older than three months from herds with disease outbreaks associated with bovine respiratory syncytial virus the diagnosis was established in 80 per cent of the animals by an increase in IgG titre against BRSV and in 77 per cent by the detection of BRSV specific IgM. In comparison, only 10 per cent of the calves younger than three months were positive by IgG serodiagnosis, and 51 per cent by IgM serodiagnosis. On farms where the spread of the virus was accompanied by an outbreak of clinical disease more calves were present, a higher proportion of the calves was younger than three months, and calves of all ages were more often housed together.  相似文献   

13.
Bovine respiratory syncytial virus (BRSV) is a primary agent of pneumonia in calves that causes damage to pulmonary epithelium and results in respiratory distress. This retrospective cumulative analysis of data from 681 calves experimentally infected with BRSV was undertaken to determine if there was an association of both the partial pressure of oxygen in arterial blood (PaO2) and the lactate concentration in arterial blood with lung lesion severity, as well as to estimate the potential predictive value of these 2 parameters in assessing disease progression. The PaO2 was highly significantly associated with the extent of lung lesions and was considered highly predictive of lesion severity. Although the arterial blood lactate concentration was also significantly associated with lung disease, the results were not consistent for all days after challenge. Also, the lactate level was usually within the reference interval. Thus, the usefulness of the arterial blood lactate concentration in predicting the course of BRSV-associated pneumonia is limited in the clinical setting.  相似文献   

14.
An indirect double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was developed for the detection and titration of serum antibodies to bovine respiratory syncytial virus (BRSV). The ELISA was compared with a complement fixation (CF) test and a test for virus neutralising antibody in serum (virus neutralisation [VN] test). Testing sera collected in dairy herds revealed the closest correlation between the results of the ELISA and the CF test with respect to BRSV antibody titres. The VN test detected BRSV antibodies in a higher percentage of acute phase sera compared to the other two tests in field samples and in early bleedings of experimentally infected calves. However, the VN test was less effective in making a diagnosis of BRSV infections on the basis of a significant titre increase in paired sera. For this purpose the ELISA was found to be the most sensitive test.  相似文献   

15.
Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible experimental infection model for BRSV in 2-5-month-old, conventionally reared Jersey calves. Thirty-four colostrum-fed calves were inoculated once by aerosol and intratracheal injection with BRSV. Respiratory disease was recorded in 91% of the BRSV-inoculated calves, 72% had an accompanying rise in rectal temperature and 83% exhibited >5% consolidation of the lung tissue. The disease closely resembled natural outbreaks of BRSV-related pneumonia, and detection of BRSV in nasal secretions and lung tissues confirmed the primary role of BRSV. Nine mock-inoculated control calves failed to develop respiratory disease. This model is a valuable tool for the study of the pathogenesis of BRSV and for vaccine efficacy studies.  相似文献   

16.
A severe outbreak of respiratory tract disease associated with bovine respiratory syncytial virus (BRSV) on a large beef-fattening farm is described. The outbreak started two days after five- to seven-month-old calves were vaccinated with a modified live BRSV vaccine. The disease ran a very severe course among five- to seven-month-old vaccinated calves, but disease was absent in eight-month-old an older non-vaccinated calves. The presence of IgM antibodies in sera of non-vaccinated calves indicated that BRSV was spreading on the farm between two to 15 days before the day of vaccination. The data indicate that vaccination with modified live vaccine during the course of a natural infection may enhance the severity of disease. The possible pathogenesis of the disease is discussed.  相似文献   

17.
18.
An investigation based on 2 studies was carried out to assess the involvement of bovine virus diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1), and bovine respiratory syncytial virus (BRSV) in calf respiratory disease in dairy farms in Venezuela. In the first study, 8 farms were selected and paired serum samples from 42 calves with respiratory disease were tested by ELISA for antibodies to the 3 viruses. Seroconversion to BVDV, BHV-1, and BRSV was found to 5, 2, and 6 farms out of the 8, respectively. The proportion of calves that showed seroconversion to BVDV, BHV-1, and BRSV were 19%, 14%, and 26%, respectively. In the second study, another farm having previous serological evidence of BVDV infection was selected. The decline of maternal antibodies against BVDV was monitored in 20 calves and the half-life of maternal antibodies was 34 +/- 12 days presumably indicating an early natural infection with BVDV. Furthermore, sera free of BVDV antibodies that were collected in studies 1 and 2 and were assayed for the presence of BVDV by nested RT-PCR. Two BVDV strains were detected and compared to those of ruminant and porcine pestiviruses. Both strains were assigned to subgroup Ib of type I BVDV. This investigation provides information on BVDV genotypes circulating in Venezuela and may contribute to the establishment of official control programmes against the viruses studied.  相似文献   

19.
Bovine respiratory syncytial virus (BRSV) caused a large epizootic of acute respiratory disease in Japan in 1968—69 (Inaba et al. 1970, Inaba et al. 1972). A much smaller outbreak occurred in Switzerland (Paccaud & Jacquier 1970). In Belgium the virus has been isolated from an outbreak of respiratory disease (Wellemans et al. 1970). BRSV has later been proved an important causal agent of respiratory disorders in the same country (Wellemans & Leiinen 1975). In England and USA the virus has caused and been isolated from outbreaks of acute respiratory disease in calves (Jacobs & Edington 1971, Rosenquist 1974, Smith et al. 1974). In Denmark BRSV has sporadically been isolated from pneumonic calf lungs (Bitsch et al. 1976).  相似文献   

20.
An experiment was conducted to reproduce respiratory tract disease with bovine respiratory syncytial virus (BRSV) in one-month-old, colostrum-fed calves. The hypothesized role of viral hypersensitivity and persistent infection in the pathogenesis of BRSV pneumonia was also investigated. For BRSV inoculation a field isolate of BRSV, at the fifth passage level in cell culture, was administered by a combined respiratory tract route (intranasal and intratracheal) for four consecutive days. Four groups of calves were utilized as follows: Group I, 6 calves sham inoculated with uninfected tissue culture fluid and necropsied 21 days after the last inoculation; Group II, 6 calves inoculated with BRSV and necropsied at the time of maximal clinical response (4-6 days after the last inoculation); Group III, 6 calves inoculated with BRSV and necropsied at 21 days after the last inoculation; Group IV, 6 calves inoculated with BRSV, rechallenged with BRSV 10 days after initial exposure, and necropsied at 21 days after the initial inoculation. Clinical response was evaluated by daily monitoring of body temperature, heart rate, respiratory rate, arterial blood gas tensions, hematocrit, total protein, white blood cell count, and fibrinogen. Calves were necropsied and pulmonary surface lesions were quantitated by computer digitization. Viral pneumonia was reporduced in each principal group. Lesions were most extensive in Group II. Disease was not apparent in Group I (controls). Significant differences (p less than 0.05) in body temperature, heart rate, respiratory rate, arterial oxygen tension, and pneumonic surface area were demonstrated between control and infected calves. Results indicate that severe disease and lesions can be induced by BRSV in one-month-old calves that were colostrum-fed and seropositive to BRSV. BRSV rechallenge had minimal effect on disease progression. Based on clinical and pathological response, results did not support viral hypersensitivity or persistent infection as pathogenetic mechanisms of BRSV pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号