首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以长沙市望城区集中式饮用水源地一级和二级保护区周边0~20 cm土壤为研究对象,于2018年采用网格布点法在一级和二级保护区分别布设3个(1#~3#)和12个(4#~15#)采样点,其中11#~15#采样点于2014年布设,探究土壤中苊(Ace)、苊烯(Acy)、蒽(Ant)、菲(Phe)、芴(Flu)、苯并[a]蒽(BaA)、芘(Pyr)、屈(Chr)、荧蒽(Fla)、苯并[a]芘(BaP)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、二苯并[a,h]蒽(DBA)、苯并[g,h,i]苝(BghiP)、茚并[1,2,3–c,d]芘(IcdP)共15种多环芳烃(PAHs)的污染水平及来源,运用毒性当量浓度值及终生癌症风险增量模型对土壤中PAHs进行风险评价。结果表明:水源地保护区土壤中15种PAHs总含量为75.22~5 617.86 ng/g,均值为670.96 ng/g,其中7种致癌PAHs(BaA、Chr、BbF、BkF、BaP、DBA、IcdP)的含量为12.13~2 989.26 ng/g,均值为319.80 ng/g;2#和4#土壤样品中多环芳烃均为中度污染,12#土壤样品中多环芳烃为重度污染,其他点位土壤均处于轻度污染或未受污染;荧蒽、芘、菲是水源地保护区土壤中的主要污染因子;除一级保护区土壤中芴含量稍高于二级保护区外,水源地一级保护区土壤中其余14种PAHs单体含量均低于二级保护区;除12#点位样品外,其他点位样品土壤中3环和4环PAHs占比均大于60%;采用特征比值法分析污染物来源,显示水源地一级保护区土壤中PAHs主要来源于石油源和燃烧源的混合污染,主要受区域内交通因素与上游工业、生活废弃物中PAHs迁移与沉降影响,二级保护区土壤中PAHs主要来源于石油源和生物质、煤燃烧的混合污染,可能与区域内人为活动和交通因素有关;健康风险评价结果表明,水源地一级和二级保护区土壤中PAHs的总致癌风险值均在10~(–6)~10~(–4),存在潜在健康风险。  相似文献   

2.
桂林市果园表土多环芳烃含量及来源研究   总被引:1,自引:0,他引:1  
[目的]分析桂林市果园土壤多环芳烃(PAHs)含量与来源,为评价果园地安全性提供参考。[方法]在桂林市葡萄园、柑橘园和桃园基地采集表土,分析美国环保署优控的16种多环芳烃(PAH_(16)),运用多环芳烃单体含量、谱系、丰度及诊断比值等构成的指标体系进行源识别。[结果]果园表土PAH_(16)含量平均为34.91 ng/g(报出限~143.8 ng/g),低于我国土壤背景值和荷兰无污染土壤限值(200 ng/g)。果园表土PAH_(16)以4~6环的芘(Pyr)、苯并[a]蒽(BaA)、(?)(Chr)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(InP)、苯并[g,h,i]苝(BgP)为主,2~3环的PAH_(16)低于报出限(荧蒽除外),单体含量介于报出限~23.4ng/g之间,检出率12.5%~68.8%,以BbF检出率最高,其次是Chr(56.3%)。葡萄园表土检出的PAHs种类最全、含量最高,其中LX001样地PAH16单体均10.0 ng/g,而柑橘园仅检出单体BbF(报出限~6.64 ng/g)、Chr(报出限~3.34 ng/g),检出率44.4%~66.7%。PAHs指标体系表明,废旧轮胎炼油与汽车尾气、农药杂质降解和木头、草燃烧可能分别是三类果园土壤PAH_(16)的主要来源。[结论]就土壤PAH_(16)而言,炼油厂约7 km以远或交通干道200 m以外的果园是安全的。  相似文献   

3.
东莞市蔬菜基地多环芳烃的污染特征研究   总被引:1,自引:0,他引:1  
利用气相色谱-质谱技术分析了东莞市典型蔬菜基地灌溉水、土壤和蔬菜中属于美国国家环保局优控污染物的16种多环芳烃(PAHs)化合物的污染特征。结果表明,灌溉水中仅检出少数PAHs化合物,且含量较低。土壤和蔬菜中均检出14种PAHs化合物,其中土壤中PAHs化合物总含量在0.048~1.799mg/kg之间,主要化合物为菲和芘,部分化合物超过美国土壤控制标准;蔬菜中ΣPAHs在0.174~3.261mg/kg(干重)之间,多数低于1.0mg/kg。大部分蔬菜中检出5种以上PAHs化合物,含量以低于0.50mg/kg为主,主要化合物为芘、菲、萘、蒽和荧蒽。致癌性化合物苯并(a)芘、苯并(b)荧蒽和苯并(k)荧蒽的检出率较低但含量高达1.0mg/kg左右。因此,东莞市蔬菜基地已受到PAHs不同程度的污染。  相似文献   

4.
某氮肥厂场地土壤PAHs污染特征研究   总被引:3,自引:0,他引:3  
采用现场采样及室内测试方法对广州某氮肥厂原料车间和油库区土壤中16种优控多环芳烃(PAHs)的含量进行调查研究,分析了∑PAHs含量及其组成特征和垂直分布特征,并在此基础上进行了源解析.结果表明,分析样品中∑PAHs范围在10~7 795燃μ·kg-1,原料车间土壤中∑PAHs小于油库区土壤中的,菲、芘、荧蒽、并(b)荧蒽、苯并(a)芘为主要污染物;油库土壤0~40cm的样品中16种PAHs均有检出,∑PAHs和单体分布基本一致;原料车间土壤∑PAHs和单体浓度随着地面深度的增加而减少.通过对单组分比值(菲/蒽,荧蒽/芘)的分析可以看出油库区土壤中PAHs来源于石油和燃烧源,而原料车间污染源主要为燃烧源.  相似文献   

5.
选取位于珠江三角洲的佛山市顺德区作为研究对象,分析了该市26个代表性土壤样品中的多环芳烃的含量和组成,并对多环芳烃的来源进行探讨.结果显示,16种优控多环芳烃中有8种100%检出,其余8种也有不同程度的检出,检出率最低的化合物为蒽(7.9%).在顺德区土壤中多环芳烃含量介于34.0~341.0 μg·kg-1,平均值为169.4 μg·kg-1.总体上顺德区土壤PAHs污染程度较轻,仅34.62%的样品受到了轻度污染.通过主成分分析,可以提取出2个主因子,进而推断,PAHs的主要来源是燃烧源,而萘的主要来源是石油源.R型聚类分析可以将除蒽和苊之外的14种PAHs化合物明显分为3类:(1)芴、二苯并[a,h]蒽、二氢苊、萘聚为一类;(2)苯并[k]荧蒽、苯并[a]芘、苯并[a]葸聚为一类;(3)茚并[1,2,3-cd]芘、二苯并[a,h]蒽、苯并[b]荧蒽聚为一类,分类结果与PAHs化合物组分按照环数多少以及分子量大小基本一致,反映了多环芳烃在环境行为以及其本身化学性质的差异.  相似文献   

6.
我国土壤PAHs污染日益严重且来源较为复杂,为探明煤矿区土壤PAHs的污染情况,确定其污染来源,本试验通过在煤矿区不同点位采集表层土壤样品,并以该区未受PAHs污染的土壤样品作为对照,用气相色谱—质谱方法测定土壤中16种多环芳烃(PAHs)的含量,结合比值法、聚类分析法及其复合分析方法探讨PAHs污染土壤的来源。结果表明:煤矿区各采样点农地土壤中萘(Naph)、苯并(g,h,i)苝(BghiP)、茚并(1,2,3-cd)芘(InP)、二苯并(a,h)蒽(DbA)、苯并(b)荧蒽(BbF)、荧蒽(Flt)、苯并(a)蒽(BaA)、(Chry)、芘(Pyr)、苯并(a)芘(BaP)和苯并(k)荧蒽(BkF)含量基本达到了对照的5倍以上,人为影响较大。在空间分布上,萘(Naph)、芴(Flu)、菲(Phe)、蒽(Anth)和二苯并(a,h)蒽(DbA)为分异型,而其余PAHs则属于强分异型,不同采样点之间PAHs空间差异较大。比值法解析PAHs的来源结果表明,该煤矿区农地土壤PAHs主要来源于焦化厂、钢厂等工厂加工的煤、石油等化石燃料燃烧以及交通车辆燃烧源的燃烧。聚类分析法结果表明,PAHs来源主要包括石油泄漏、化石燃料(石油和煤)燃烧的燃烧源以及交通尾气排放;通过两种方法联合将不同污染水平点位进行功能分类的基础上,对煤矿区不同方位上PAHs的来源进行了细化分析认为,煤矿区北部、中部、南部区域土壤PAHs可能多受石油等化石燃料燃烧影响,而西部偏北方向土壤PAHs可能更多受生物质及煤炭等燃料燃烧影响。  相似文献   

7.
沙颍河流域水环境中多环芳烃污染及风险评价   总被引:1,自引:0,他引:1  
为了研究沙颍河流域上覆水与表层沉积物中多环芳烃(PAHs)的空间分布、来源与生态风险,2018年7月对沙颍河流域30个采样点的上覆水与表层沉积物中16种PAHs使用气相色谱/质谱技术(GC/MS)进行调查研究。结果表明,在上覆水与表层沉积物中ΣPAHs的浓度范围分别为:356.60~2 275.04 ng·L~(-1)、64.27~11 433.63 ng·g~(-1),平均浓度分别为1 051.23 ng·L~(-1)、965.77 ng·g~(-1);各支流上覆水中PAHs含量呈现贾鲁河颍河沙河澧河趋势,表层沉积物中PAHs含量呈现沙河澧河颍河贾鲁河趋势,上覆水与表层沉积物中均以4~6环高环多环芳烃为主,与国内外其他河流相比沙颍河流域上覆水中PAHs处于较高污染水平,表层沉积物中PAHs污染水平相对较低;来源分析表明沙颍河流域上覆水与沉积物中多环芳烃主要来自高温燃烧源;生态风险评估表明上覆水中荧蒽(Fla)、芘(Pyr)、苯并[a]蒽(BaA)、苯并[b]荧蒽(BbF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(IcdP)和苯并[g,h,i]苝(BghiP)等PAHs单体为高风险多环芳烃单体,高分子量多环芳烃(4~6环)对生态风险贡献最大,沙颍河流域上覆水中PAHs属于高风险水平;沉积物中各PAHs单体的浓度除点位S27外均未超过效应区间中值(ERM)与频繁效应浓度值(FEL),表明沙颍河流域沉积物中PAHs潜在生态风险发生概率并不高。  相似文献   

8.
混合菌降解土壤中多环芳烃的试验研究   总被引:4,自引:0,他引:4  
PAHs生物降解程度受多种因素影响.通过筛选驯化PAHs降解菌,研究混合菌对土壤中菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的生物降解性能,并考察污染时间对土壤中PAHs降解效果的影响.结果表明,筛选的混合菌具有很强的PAHs降解能力,缩短了PAHs生物降解的半衰期,且PAHs起始降解速率较快,之后趋于平缓.27 d内土壤中的菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧葸、茚并(1,2,3-cd)芘的平均降解率分别为98.14%、89.97%、88.47%、63.55%、65.24%、60.49%,其中菲在5 d之内的降解率高于93%.污染210 d的土壤中各PAHs的起始降解速率高于污染50 d的土壤,因此污染时间越长,PAHs生物降解的停滞期越短.  相似文献   

9.
[目的]为呼和浩特市农田土壤污染预警和农业规划用地提供科学理论依据。[方法]对呼和浩特市农田土壤60个采样点位中15种多环芳烃进行污染特征、来源解析和生态风险评价。[结果]ΣPAHs含量范围为114~948μg/kg,平均含量为338μg/kg,参照相关研究评价标准判定,呼和浩特市农田土壤中70%以上属于轻微污染,不存在严重污染点位;研究区农田土壤中高分子量多环芳烃污染占总含量的74%,以近郊农田土壤污染最为严重;定量解析来源主要是煤、焦炭和木材的燃烧以及汽车尾气的排放。[结论]采用生态效应区间法评价和苯并(a)芘毒性等效当量法评价均证明呼和浩特市农田土壤存在一定的潜在生态风险,其中苯并[a]芘、二苯并[a,h]蒽等高分子量多环芳烃是主要潜在的污染物。  相似文献   

10.
[目的]为呼和浩特市农田土壤污染预警和农业规划用地提供科学理论依据.[方法]对呼和浩特市农田土壤60个采样点位中15种多环芳烃进行污染特征、 来源解析和生态风险评价.[结果]ΣPAHs含量范围为114~948μg/kg,平均含量为338μg/kg,参照相关研究评价标准判定,呼和浩特市农田土壤中70%以上属于轻微污染,不存在严重污染点位;研究区农田土壤中高分子量多环芳烃污染占总含量的74%,以近郊农田土壤污染最为严重;定量解析来源主要是煤、焦炭和木材的燃烧以及汽车尾气的排放.[结论]采用生态效应区间法评价和苯并(a)芘毒性等效当量法评价均证明呼和浩特市农田土壤存在一定的潜在生态风险,其中苯并[a]芘、二苯并[a,h]蒽等高分子量多环芳烃是主要潜在的污染物.  相似文献   

11.
以常州市某农药厂搬迁土地为研究对象.在监测分析土壤中16种多环芳烃(PAHs)的基础上,对该区域土壤进行健康风险和生态风险评价.结果表明.研究区域土壤中∑PAHs的含量范围为0~1.546 mg·kg-1,优势化合物中萘、菲等低环化合物含量大于高环的荧蒽、苯并[k]荧蒽和芘等化合物,且土壤中PAHs可能来源于石油源.健...  相似文献   

12.
利用自动固相萃取-气相色谱/质谱技术,研究广州市流溪河流域18个采样点水体中16种优控PAHs的污染水平、组成特征,并进行生态风险评估。结果表明,水体中PAHs总量在107.5~672.0 ng·L-1之间,平均含量为185.9 ng·L-1;就组成特征而言,水体中PAHs以2环(23.4%)、3环(51.8%)和4环(15.2%)为主;与国内外其他河流水体相比,∑PAHs含量水平处于较低水平。通过构建8种常见PAHs对淡水生物的物种敏感性分布曲线,计算出8种PAHs对不同淡水生物的5%危害浓度(HC5)及其预测无效应浓度(PNEC);进而分析了8种PAHs的生态风险,并对比脊椎动物和无脊椎动物对8种PAHs的敏感性差异。通过评估流溪河水体中PAHs的联合生态风险,8种PAHs对所有物种的生态风险大小依次为苯并[a]芘蒽荧蒽菲萘芘芴苊;而且8种PAHs对无脊椎动物的毒性与生态风险明显高于脊椎动物。与其他水体相比,流溪河水体中PAHs确实存在一定的生态风险,但尚较低。  相似文献   

13.
针对"北京烤鸭"传统烤制方法在烤制过程中易产生含多环芳烃(PAHs)的烟气而存在的食品安全隐患问题,基于气体射流冲击技术研制了烤鸭设备和晾坯设备。对最佳烤制工艺、烤鸭样品预处理和多环芳烃检测技术进行研究,并对不同温度烤制的烤鸭中3种PAHs含量进行高效液相荧光检测。结果表明:15℃条件下晾坯8h,170~190℃烤制45 min的烤鸭品质最佳。170℃烤制的烤鸭鸭皮中苯并[a]芘含量为0.13μg/kg,低于国家限量标准(5μg/kg)和一些欧洲国家的限量标准(1μg/kg),二苯并[a,h]蒽1.28μg/kg,7,12-二甲基苯并[a]蒽0.48μg/kg,鸭肉中均未检出;烤鸭中3种PAHs的总含量为0.16μg/kg,普通消费人群单餐摄入3种PAHs的总量为0.02~0.03μg。气体射流冲击烤鸭技术能有效减少PAHs的产生,低于200℃下烤制的烤鸭安全性相对高于传统烤鸭。  相似文献   

14.
优化了小麦粉中多环芳烃(PAHs)的提取方法,利用高效液相色谱法对30份小麦粉样本进行18种PAHs含量测定,以苯并[a]芘毒性为当量因子,分析小麦粉中PAHs污染特征。结果表明,采用正己烷直接提取小麦粉中PAHs,方法简单,提取效果较好。小麦粉中4种PAHs总量范围为0.93~8.64μg/kg;18种PAHs的总量范围为6.29~80μg/kg;苯并[a]芘的含量范围为0~1.08μg/kg。本研究中30份样本均能达到我国国家标准对小麦粉中苯并[a]芘限量要求,均能达到德国安全技术认证(GS认证)对18种PAHs限量要求,但有1份小麦粉超出欧盟[Regulation(EC)No.835/2011]对苯并[a]芘限量要求,10份小麦粉超出4种PAHs限量要求,对人体存在一定健康风险。污染特征分析表明,虽然小麦粉中PAHs主要由2~3环PAHs构成,但小麦粉的毒性主要是由5~6环PAHs贡献。  相似文献   

15.
【目的】分析贵州松桃县植烟土壤和烟叶中多环芳烃(PAHs)的含量及污染特征,并解析其污染来源,为烟区土壤 烤烟体系的环境评价、PAHs污染修复提供参考。【方法】2020年7月,分别采集贵州省铜仁市松桃县烤烟成熟期40个土壤样品和40个新鲜烟叶样品,测定了16种PAHs含量,分析土壤和烟叶中PAHs的组成特征,并解析其在土壤 烤烟体系中的污染来源。【结果】贵州松桃县植烟土壤中16种PAHs的总含量为166.74~989.43 μg/kg,平均含量为600.77 μg/kg,其中以3~5环PAHs所占比例较高(78.7%);致癌性的∑7PAHs含量为70.97~365.71 μg/kg,平均含量为221.13 μg/kg,占16种PAHs总含量的24.5%~62.7%,其中具有强致癌性的苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)和苯并(a)芘(BaP)的平均占比分别为5.18%,5.32%和6.03%;在松桃县烤烟烟叶中,16种PAHs的含量为502.79~2 217.15 μg/kg,平均值为1 011.23 μg/kg,其中4~5环PAHs占75.1%;致癌性的∑7PAHs含量为293.53~1 730.72 μg/kg,平均含量为707.03 μg/kg,占16种PAHs总含量的56.0%~85.5%;其中具有强致癌性的BbF、BkF和BaP平均占比分别为10.19%,7.78%和39.96%。烟叶中的PAHs平均含量高于土壤。根据欧洲农业土壤中PAHs的控制标准,本研究有50%的土壤样品处于PAHs中度污染水平,45%的土壤样品处于PAHs轻度污染水平。诊断比例法解析表明,PAHs主要来源于当地工业生产活动、车用石油燃烧及煤炭、秸秆、木材的高温燃烧排放,最终通过大气沉降和叶面吸收进入土壤-烤烟体系;此外,烤烟种植和管理中塑料薄膜及肥料的使用也是土壤PAHs累积的重要来源。【结论】工业活动和农膜及肥料的使用,使贵州松桃县土壤 烤烟体系中PAHs出现累积,可能会对当地生态环境和居民(尤其是烟农)健康造成威胁,应当引起足够重视。  相似文献   

16.
多环芳烃(PAHs)是广泛存在于环境中的一类持久性有机污染物,农作物作为主要的食物来源,可吸收环境中的PAHs并富集到体内,随后通过食物链,最终危害人体健康。为了明确山西省土壤和玉米中PAHs的污染特征及其暴露风险,采集105个表层土壤及玉米籽粒样本,检测16种优先控制的PAHs。结果表明,土壤中∑16PAHs含量为22.12~1 315.43 ng/g,平均值为426.17 ng/g,土壤主要受到高分子量PAHs(3~5环)的影响,呈轻度—中度污染;高分子量PAHs(3~5环)分别占土壤和玉米中所有PAHs总量的81.32%和91.58%。山西省玉米中PAHs总含量为8.73~760.70 ng/g,平均为307.07 ng/g;菲(Phe)在土壤中的平均含量最高(235.34 ng/g),苯并[b]荧蒽(Bbf)在玉米中的平均含量最高(70.81 ng/g)。太原—临汾盆地是土壤和玉米污染最严重的地区,燃烧源和交通源分别是土壤和玉米PAHs的主要来源;此外,6.09%的玉米种植区可能会遭受高致癌暴露风险。  相似文献   

17.
不同栽培环境下豇豆体内多环芳烃源解析及风险评估   总被引:2,自引:1,他引:1  
为了探讨不同污染特征环境下栽培的蔬菜体内多环芳烃(PAHs)来源及风险,以豇豆[Vigna unguiculata(Linn.)Walp]为材料,检测大棚(试验基地PAHs污染残留区)和大田(距离机动车通道100 m内)栽培的豇豆体内PAHs含量,采用同分异构体比值法分析了其体内PAHs来源,并用生态效应低中值法和苯并(a)芘毒性等效当量法评估了豇豆体内PAHs污染的生态风险,以人群日均暴露量估算了其潜在人体健康风险。结果表明:在16种优控的PAHs中,大棚豇豆体内含有13种,大田豇豆体内含有6种;大棚豇豆体内的PAHs总含量为253.94μg·kg-1,以2~4环为主,其中3环占总含量的64.47%。大田豇豆体内PAHs总含量为80.60μg·kg-1,芴和菲占总含量的69.69%。大棚和大田豇豆体内的二苯并(a,h)蒽毒性当量分别为43.32μg·kg-1和10.85μg·kg-1,其对总的毒性当量贡献率分别为89.38%和88.57%;大棚和大田豇豆的人群健康风险系数分别为2.07×10-6和6.5×10-7。研究表明:大棚豇豆体内PAHs主要源于人为处理残留的PAHs;大田豇豆体内PAHs主要来源于汽油和生物质燃烧污染。大棚豇豆存在一定的生态风险和健康风险,大田豇豆尚不存在PAHs的生态风险和健康风险,但需重视苯并(k)荧蒽、二苯并(a,h)蒽和茚并(1,2,3-c,d)芘等物质的富集作用。  相似文献   

18.
[目的]探索多环芳烃(PAHs)进入菜心的主要途径,为提高菜心产量和品质及保障质量安全提供参考依据.[方法]在菜心收获期,利用5种PAHs对菜心进行叶面涂抹和根部水培处理,比较两种处理方式下菜心体内的PAHs含量、菜心产量和营养品质差异.[结果]叶面涂抹处理后3 d,菜心中的PAHs总含量为127.28 μg/kgDW,显著高于根部水培处理组(13.63 μg/kgDW)(P<0.05,下同).菜心主要以叶面吸收PAHs,此过程中菜心对5种PAHs的吸收量排序为萘>菲>荧蒽>苯并(a)蒽>苯并(a)芘.叶面涂抹处理组菜心的单株鲜重和可溶性糖含量分别为44.94 g和175.67 μg/g,均显著高于根部水培处理和对照组;维生素C(Vc)和可溶性蛋白含量以根部水培处理组最高,分别为21.24 mg/100 gFW和10.76 μg/g,均显著高于叶面涂抹处理组和对照组;根部水培处理组的纤维素含量最高,为10.26%,与对照组差异显著;两种PAHs处理方式对菜心叶绿素含量无显著影响(P>0.05).相关性分析结果表明,菜心体内的总PAHs含量与菜心单株鲜重、可溶性糖含量、可溶性蛋白含量和纤维素含量呈正相关,与Vc含量呈负相关.[结论]菜心叶面吸收PAHs的能力远强于根部,生产上菜地选择应远离公路和工厂,以避免尾气、灰尘和烟雾中的PAHs等通过叶片进入菜心体内,影响菜心品质及食用安全.  相似文献   

19.
以我国珠江三角洲典型农村河流湿地(RRW)、城市河流湿地(URW)和人工湿地(CW)为研究对象,对比分析了湿地表层土壤中16种优控多环芳烃(PAHs)的含量、来源及毒性风险水平。结果表明,三类湿地表层土壤中16种∑PAHs的范围为625.0~789.2 ng·g~(-1),平均值为666.3 ng·g~(-1)。∑PAHs含量的总体分布趋势为CW(736.4 ng·g~(-1))RRW(639.3 ng·g~(-1))URW(625.0 ng·g~(-1)),其中RRW和URW以3-5环PAHs为主,三者的总比例占PAHs总量的81.42%和89.35%,CW中的2-5环PAHs含量均较高。三类湿地土壤的PAHs单体萘(Nap)、菲(Phe)和苯并[a]芘(Bap)含量较高,平均值分别为98.68 ng·g~(-1)、109.8 ng·g~(-1)和140.92 ng·g~(-1)。同分异构体的比率揭示出CW和URW中的PAHs主要来源于以煤为主的化石燃料(包括煤炭、石油等)燃烧,而RRW中的PAHs则源自煤、石油燃烧和石油排放的混合源。与国内外其他区域相比,三类湿地的∑PAHs累积量均处于中高度污染,单体芴(Fle)则存在一定的生物毒性。基于苯并[a]芘的毒性当量浓度(TEQBap)和风险商值法评价了土壤PAHs的生态风险,结果表明三类湿地土壤均呈中等生态风险水平,呈现CWRRWURW的趋势,69%的单体(包括Bap、Phe等)处于中等风险水平,苯并[a]芘(Bap)的毒性当量浓度最高,贡献最大。城市化背景下的人类活动给珠江河口湿地带来的不同程度的环境污染不容忽视,应当采取一定的措施进行恢复和整治。  相似文献   

20.
采用索式提取法对某城区的表层土壤进行多环芳烃含量检测,结果表明:20个土样的平均PAHs浓度是65.19μg/kg,苯并(b)荧蒽和?的含量占总PAHs含量的47.74%,由此判断该城区表层土壤中的PAHs污染形势严峻,其主要来自于汽车尾气.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号