首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic alpha-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of 'Candidatus Liberibacter asiaticus,' respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that 'Ca. Liberibacter asiaticus' was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/mug of total DNA in different tissues. A relatively high concentration of 'Ca. Liberibacter asiaticus' was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that 'Ca. Liberibacter asiaticus' was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.  相似文献   

2.
Indian citrus ringspot disease is an important viral disease in kinnow mandarin orchards where disease incidence up to 100% has been recorded. The disease is caused by Indian citrus ringspot virus (ICRSV), a positive sense flexuous RNA virus. The transmission of ICRSV is generally through budwood. Association of ICRSV with pollens of naturally infected flowers from cv. ‘Kinnow’ mandarins has been shown previously and this study demonstrates the presence of ICRSV in seed tissues. DAC-ELISA revealed the presence of virus in seed coats but not in embryo and endosperm of seeds collected from the fruits of ICRSV-infected Kinnow plants. Of the infected seed coats, 18% were found to harbor the virus. The seedlings in the grow-out test did not show any symptom for 2 years and the virus could not be detected in seedlings by DAC-ELISA and RT-PCR. The present study indicated that ICRSV could be localized in the testa of seeds but its transmission to progeny was not observed.  相似文献   

3.
This study reports the development of a loop-mediated isothermal amplification procedure (LAMP) for polymerase chain reaction (PCR)-based detection of 'Candidatus Liberibacter solanacearum', the bacterial causal agent of potato zebra chip (ZC) disease. The 16S rDNA gene of 'Ca. Liberibacter solanacearum' was used to design a set of six primers for LAMP PCR detection of the bacterial pathogen in potato plants and the psyllid vector. The advantage of the LAMP method is that it does not require a thermocycler for amplification or agarose gel electrophoresis for resolution. Positive LAMP results can be visualized directly as a precipitate. The LAMP strategy reported here reliably detected 'Ca. Liberibacter solanacearum' and the closely related species 'Ca. Liberibacter asiaticus', the causative agent of huanglongbing disease of citrus, in plant DNA extracts. Although not as sensitive as quantitative real-time PCR, LAMP detection was equivalent to conventional PCR in tests of ZC-infected potato plants from the field. Thus, the LAMP method shows strong promise as a reliable, rapid, and cost-effective method of detecting 'Ca. Liberibacter' pathogens in psyllids and field-grown potato plants and tubers.  相似文献   

4.
Mango malformation, caused by the fungus Fusarium mangiferae , is one of the major diseases of this crop occurring worldwide. This study was conducted to investigate aspects of the epidemiology, survival and spread of the pathogen in general and specifically in seedlings, the majority of which are cultivated in infected orchards in Egypt. Survival of conidia of a representative isolate (506/2) declined very rapidly in soil under summer conditions (1·6 weeks for 50% population decline), but significantly less in controlled and winter conditions (17·9 and 15·0 weeks, respectively, for 50% population decline). Likewise, inoculum survival in naturally infected panicles on the soil surface declined faster than in those buried at 30-cm depths. Natural infections were evaluated on fruits and seeds in a heavily infected and a healthy orchard. In infected trees, the skins of all sampled fruits within a 2-m radius of infected panicles were infected, but the pathogen was not detected in the seeds, seed coats or flesh. The pathogen was not detected in any parts of fruits from a healthy orchard. Vegetatively malformed mango seedlings, growing under infected trees bearing infected panicles, were sampled in two locations in Egypt to determine whether infection in seedlings was systemic (evenly distributed within plant tissue) or whether the pathogen originated from malformed panicles. According to PCR-specific primer amplification, the pathogen was detected in 97% of seedling apical meristems, declining gradually to 5% colonization in roots. It was concluded that inoculum of the pathogen originates from infected panicles and affects seedlings from the meristem, with infections descending to lower stem sections and roots. Minor infections of roots may occur from inoculum originating from infected panicles, but the pathogen is not seedborne.  相似文献   

5.
柑橘黄龙病(Citrus Huanglongbing,HLB)是柑橘生产上最具毁灭性的病害,对我国乃至世界的柑橘产业造成了巨大的经济损失[1].由于CLas还无法进行分离培养[2],导致对CLas的研究(如病原学、基因组学等)主要依赖于含有CLas的寄主材料,如染病柑橘和带菌柑橘木虱(Diaphorina citri)...  相似文献   

6.
In February 2007, sweet orange trees with characteristic symptoms of huanglongbing (HLB) were encountered in a region of S?o Paulo state (SPs) hitherto free of HLB. These trees tested negative for the three liberibacter species associated with HLB. A polymerase chain reaction (PCR) product from symptomatic fruit columella DNA amplifications with universal primers fD1/rP1 was cloned and sequenced. The corresponding agent was found to have highest 16S rDNA sequence identity (99%) with the pigeon pea witches'-broom phytoplasma of group 16Sr IX. Sequences of PCR products obtained with phytoplasma 16S rDNA primer pairs fU5/rU3, fU5/P7 confirm these results. With two primers D7f2/D7r2 designed based on the 16S rDNA sequence of the cloned DNA fragment, positive amplifications were obtained from more than one hundred samples including symptomatic fruits and blotchy mottle leaves. Samples positive for phytoplasmas were negative for liberibacters, except for four samples, which were positive for both the phytoplasma and 'Candidatus Liberibacter asiaticus'. The phytoplasma was detected by electron microscopy in the sieve tubes of midribs from symptomatic leaves. These results show that a phytoplasma of group IX is associated with citrus HLB symptoms in northern, central, and southern SPs. This phytoplasma has very probably been transmitted to citrus from an external source of inoculum, but the putative insect vector is not yet known.  相似文献   

7.
A protocol for the specific detection and quantification of ‘Candidatus Liberibacter solanacearum’ in carrot seeds using real‐time PCR was developed. The bacterium was detected in 23 out of 54 carrot seed lots from 2010 to 2014, including seeds collected from diseased mother plants. The average total number of ‘Ca. L. solanacearum’ cells in individual seeds ranged from 4·8 ± 3·3 to 210 ± 6·7 cells per seed from three seed lots, but using propidium monoazide to target live cells, 95% of the cells in one seed lot were found to be dead. Liberibacter‐like cells were observed in the phloem sieve tubes of the seed coat and in the phloem of carrot leaf midrib from seedlings. The bacterium was detected as early as 30 days post‐germination, but more consistently after 90 days, in seedlings grown from PCR positive seed lots in an insect‐proof P2 level containment greenhouse. Between 12% and 42% of the seedlings from positive seed lots tested positive for ‘Ca. L. solanacearum’. After 150 days, symptoms of proliferation were observed in 12% of seedlings of cv. Maestro. ‘Candidatus Liberibacter solanacearum’ haplotype E was identified in the seeds and seedlings of cv. Maestro. No phytoplasmas were detected in seedlings with symptoms using a real‐time assay for universal detection of phytoplasmas. The results show that to prevent the entry and establishment of the bacterium in new areas and its potential spread to other crops, control of ‘Ca. L. solanacearum’ in seed lots is required.  相似文献   

8.
Citrus huanglongbing (HLB or citrus greening), is a highly destructive disease that has been spreading in both Florida and Brazil. Its psyllid vector, Diaphorina citri Kuwayama, has spread to Texas and Mexico, thus threatening the future of citrus production elsewhere in mainland North America. Even though sensitive diagnostic methods have been developed for detection of the causal organisms, Candidatus Liberibacter spp., the pathogen cannot be detected consistently in plants until symptoms develop, presumably because of low titer and uneven distribution of the causal bacteria in nonsymptomatic tissues. In the present study, TaqMan based real-time quantitative polymerase chain reaction methodology was developed for detection of 'Ca. L. asiaticus' in D. citri. Over 1,200 samples of psyllid adults and nymphs, collected from various locations in Florida, from visually healthy and HLB symptomatic trees at different times of the year were analyzed to monitor the incidence and spread of HLB. The results showed that spread of 'Ca. L. asiaticus' in an area may be detected one to several years before the development of HLB symptoms in plants. The study suggests that discount garden centers and retail nurseries may have played a significant role in the widespread distribution of psyllids and plants carrying HLB pathogens in Florida.  相似文献   

9.
For many years, Plum pox virus (PPV) was considered to be transmissible by seed, increasing the fear of long-distance spread of the disease. In the late 1970s, it was claimed on the basis of biological transmission of the virus to herbaceous indicator plants and the development of serological diagnosis based on polyclonal antibodies, that PPV was seed-transmitted, with a different infection rate according to the plant species and part of the seed which was tested. In the 1990s, PPV was characterized into four different types, and specific monoclonal antibodies were produced for them. These new and more sensitive diagnostic techniques, together with RT-PCR with different sets of specific primers, were used to approach once again the problem of PPV transmission through seeds. The virus was detected in seed coats and cotyledons, but embryonic tissue and seedlings obtained from germinated seeds never showed symptoms, and gave negative results for PPV with both ELISA and PCR assays. No PPV isolate is currently recognized to be seed transmitted, so vertical transmission of PPV from infected mother plants to their progeny does not occur. Hypothetically, the only possibility of seed transmission would arise from a mutation in the helper component of the virus, associated with high susceptibility of the infected Prunus cultivar.  相似文献   

10.
This study investigated the potential of seed transmission of Cape St. Paul wilt disease (CSPWD) in coconuts. PCR amplification was used to assess the distribution of phytoplasmas in parts of West African Tall (WAT) palms infected with CSPWD. Employing phytoplasma universal primer pair P1/P7 in standard PCR, or followed with a nested PCR using CSPWD–specific primer pair G813f/AwkaSR, phytoplasma infection was detected in the trunks, peduncles, spikelets, male and female flowers of four infected WAT coconut palms. Through nested PCR, phytoplasma was also detected in four of 19 embryo DNA samples extracted individually from fruits harvested from three of the four infected palms and was confirmed as CSPWD by cloning and sequencing. Subsequently, CSPWD phytoplasma was again detected in five of 33 embryos from nine infected palms, and in one of eight fruits from two symptomless palms. Fruits from infected palms recorded higher percentage germinations in two field nurseries (average of 71·0%) compared to fruits from healthy palms (average of 57·6%), and matured fruits that had dropped from infected palms showed the same levels of germination as those harvested directly from the palms. This indicates that infected fruits retain the ability to germinate whether harvested or dropped. No phytoplasmas were detected in any of the resulting seedlings and plantlets obtained through embryo in-vitro culture. Therefore, although phytoplasma DNA can be detected in embryos, there is as yet no evidence that the pathogen is seed transmitted through to the seedling to cause disease in progeny palms.  相似文献   

11.
ABSTRACT Xylella fastidiosa, a xylem-limited bacterium, causes several economically important diseases in North, Central, and South America. These diseases are transmitted by sharpshooter insects, contaminated budwood, and natural root-grafts. X. fastidiosa extensively colonizes the xylem vessels of susceptible plants. Citrus fruit have a well-developed vascular system, which is continuous with the vascular system of the plant. Citrus seeds develop very prominent vascular bundles, which are attached through ovular and seed bundles to the xylem system of the fruit. Sweet orange (Citrus sinensis) fruit of cvs. Pera, Natal, and Valencia with characteristic symptoms of citrus variegated chlorosis disease were collected for analysis. X. fastidiosa was detected by polymerase chain reaction (PCR) in all main fruit vascular bundles, as well as in the seed and in dissected seed parts. No visual abnormalities were observed in seeds infected with the bacterium. However, the embryos of the infected seeds weighed 25% less than those of healthy seeds, and their germination rate was lower than uninfected seeds. There were about 2,500 cells of X. fastidiosa per infected seed of sweet orange, as quantified using real-time PCR techniques. The identification of X. fastidiosa in the infected seeds was confirmed by cloning and sequencing the specific amplification product, obtained by standard PCR with specific primers. X. fastidiosa was also detected in and recovered from seedlings by isolation in vitro. Our results show that X. fastidiosa can infect and colonize fruit tissues including the seed. We also have shown that X. fastidiosa can be transmitted from seeds to seedlings of sweet orange. To our knowledge, this is the first report of the presence of X. fastidiosa in seeds and its transmission to seedlings.  相似文献   

12.
Water extracts obtained from the roots, shoots, and fruits of mature wild onion ( Asphodelus tenuifolius ) plants and soil taken from an A. tenuifolius field were used to determine their allelopathic effects on the germination and seedling growth of chickpea ( Cicer arietinum ) in the laboratory. The roots, shoots, and fruits of A. tenuifolius were soaked individually in water in a ratio of 1:20 (w/v) for 24 h to prepare the extracts. Distilled water was used as the control. The germinated seeds were taken out from the Petri dishes and counted every day for 12 days. The seeds of chickpea were also sown in sand and in each of the controlled, normal soil and the soil taken from the A. tenuifolius -infested field in Petri dishes to record the length and weight of the roots and shoots 18 days after sowing. The mean germination time reached the maximum amount for the stem and fruit extracts. The fruit extract caused the most reduction in the germination index and the germination percentage of chickpea. The different wild onion organ extracts significantly reduced the root and shoot length and biomass of the chickpea seedlings compared with the distilled water. The fruit extract of wild onion proved to be the most detrimental to the root length, shoot length, and dry weight of the chickpea seedlings. The soil beneath the A. tenuifolius plants significantly reduced the emergence, root length, shoot length, shoot dry weight, and seedling dry weight but increased the root dry weight of the chickpea seedlings. It is suggested that A. tenuifolius releases phytotoxic compound(s).  相似文献   

13.
Myagrum perfoliatum is a noxious broad‐leaved weed in western Iranian farming systems. A better understanding of the timing of seedling emergence would facilitate the development of better control strategies for this weed. Therefore, the objective of this study was to examine the effects of different factors on muskweed seed germination. Only 2.8% of the seeds of this species, which are encapsulated in siliques, germinated by, while the seeds that had been removed from the siliques had a 50% germination rate. The immersion of muskweed fruits in concentrated sulfuric acid for 110 min was the best treatment for promoting germination. Gibberellic acid stimulated the germination of the naked seeds by 29.1%, potassium nitrate (40 mmol L‐1) increased the germination rate to 71%, while higher concentrations of potassium nitrate inhibited germination. The optimum germination temperature for the naked seeds was 20/10°C (day/night) and light was not required for germination. No seedling emerged when the seeds were buried 6 cm deep. The seeds were sensitive to both osmotic and salinity stress, but they germinated to 46–49% over a pH range of 4–10. The results of this study revealed that the seeds of M . perfoliatum have physiological dormancy and that it is slowly broken via after‐ripening. However, the fruit wall can prevent germination after physiological dormancy is broken. Thus, this species has the potential to form a persistent seed bank because of the presence of the fruit wall.  相似文献   

14.

The role of seed coat chemical factors in the resistance of the cowpea varieties, Kanannado, IT89KD-391 and Borno brown, to the cowpea seed bruchid Callosobruchus maculatus (F.), was investigated under laboratory conditions (30-35C and 65-67% RH) in Maiduguri, Nigeria. Significantly higher numbers of eggs were laid on de-coated than on intact Kanannado seeds whereas significantly smaller numbers of eggs were laid on de-coated than on intact IT89KD-391 or Borno brown seeds. Susceptibility was higher in de-coated than in intact Kanannado seeds (susceptibility indices [SI] 3.4 and 0.0, respectively). Egg-hatch was significantly reduced in seeds with intact seed coats by 88.6%, while the proportion of eggs that failed to hatch in de-coated seeds was 31.9%. Treatment of Borno brown seeds especially with 32 and 64 mg of extracts from Kanannado and IT89KD-391 seed coats, reduced oviposition by 61.9% and 95.2%, respectively. Treatment with 32 mg of the seed coat extracts reduced egg-hatch by 49.2%. Identical dosages (32 and 64 mg) of these seed coat extracts also significantly reduced susceptibility ofBorno brown to C. maculatus (SI values 6.7 and 1.5, respectively). Comparable SI values for Borno brown treated with 16 mg of the seed coat extracts or extract-free acetone were 14.9 and 14.0, respectively.  相似文献   

15.
Zhang M  Powell CA  Zhou L  He Z  Stover E  Duan Y 《Phytopathology》2011,101(9):1097-1103
Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide and is threatening the survival of the Floridian citrus industry. Currently, there is no established cure for this century-old and emerging disease. As a possible control strategy for citrus HLB, therapeutic compounds were screened using a propagation test system with 'Candidatus Liberibacter asiaticus'-infected periwinkle and citrus plants. The results demonstrated that the combination of penicillin and streptomycin (PS) was effective in eliminating or suppressing the 'Ca. L. asiaticus' bacterium and provided a therapeutically effective level of control for a much longer period of time than when administering either antibiotic separately. When treated with the PS, 'Ca. L. asiaticus'-infected periwinkle cuttings achieved 70% of regeneration rates versus <50% by other treatments. The 'Ca. L. asiaticus' bacterial titers in the infected periwinkle plants, as measured by quantitative real-time polymerase chain reaction, decreased significantly following root soaking or foliar spraying with PS. Application of the PS via trunk injection or root soaking also eliminated or suppressed the 'Ca. L. asiaticus' bacterium in the HLB-affected citrus plants. This may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases.  相似文献   

16.
长期的观察发现,不同柑橘品种感染黄龙病后出现的病症也不尽相同,针对这种现象本文检测了浙江柑橘黄龙病病原β-操纵子核糖体蛋白基因并进行了序列比对,BLAST比对结果说明所扩增的基因序列之间差异性为0,与基因库(NCBI)中黄龙病亚洲韧皮杆菌DNA序列相似性为100%,由此说明浙江柑橘黄龙病病原β-操纵子核糖体蛋白基因并未发生变异,出现上述现象可能是其他基因发生变异或者与品种的抗病性有关。  相似文献   

17.
Corynebacterium wilt of tomato causes severe losses in France and Belgium. The disease can be seed-transmitted and sanitary selection of seedlots is a direct prophylactic control method. It must be selective, objective and sensitive and must provide information on the pathogenicity of the bacteria detected. A method is proposed that associates immunofluorescence (IF) staining with bioassay and isolation. In a preliminary comparison of inoculation on different host plants, tomato seedlings with two or four leaves were the most sensitive. Artificially and naturally contaminated seed extracts were IF-screened and confirmed by isolation of the pathogen from inoculated seedlings. The detection method consists of maceration of tomato seeds in PBS-cycloheximide buffer, filtration and centrifugation of the seed extract, and IF screening of the pellets with two antisera. Pellets with positive or suspect IF reading (threshold 5 × 103 cells in the pellet) are inoculated into tomato seedlings incubated at 25°C. Within 30 days the seedlings are inspected for typical wilt symptoms and isolation experiments are carried out from the vessels. The method has been tested on commercial seedlots.  相似文献   

18.
Wheat blast caused by Magnaporthe oryzae pathotype Triticum (MoT), initially restricted to South America, is a global threat for wheat after spreading to Asia in 2016 by the introduction of contaminated seeds, raising the question about transmission of the pathogen from seeds to seedlings, a process so far not well understood. We therefore studied the relationship between seed infection and disease symptoms on seedlings and adult plants. To accomplish this objective, we inoculated spikes of wheat cv. Apogee with a transgenic isolate (MoT-DsRed, with the addition of being resistant to hygromycin). We identified MoT-DsRed in experiments using hygromycin resistance for selection or by observation of DsRed fluorescence. The seeds from infected plants looked either apparently healthy or shrivelled. To evaluate the transmission, two experimental designs were chosen (blotter test and greenhouse) and MoT-DsRed was recovered from both. This revealed that MoT is able to colonize wheat seedlings from infected seeds under the ground. The favourable conditions of temperature and humidity allowed a high recovery rate of MoT from wheat shoots when grown in artificial media. Around 42 days after germination of infected seeds, MoT-DsRed could not be reisolated, indicating that fungal progression, at this time point, did not proceed systemically/endophytically. We hypothesize that spike infection might occur via spore dispersal from infected leaves rather than within the plant. Because MoT-DsRed was not only successfully reisolated from seed coats and germinating seeds with symptoms, but also from apparently healthy seeds, urgent attention is needed to minimize the risks of inadvertent dispersal of inoculum.  相似文献   

19.
Apple bitter rot caused by Colletotrichum acutatum sensu lato results in fruit decay before and after harvest. We investigated the epidemiology of the disease in terms of conidial formation and dispersal as well as the change in susceptibility of fruits in Iwate, Japan. Conidia of C. acutatum were detected in rainwater collected from inside the tree canopy from May to August with peaks in production in mid-May to early June and mid- to late July. The first peak corresponded to the most conidia being produced on fruit scars, but the second peak was due to conidiation on mummified fruitlets and peduncles collected in July. Inoculation experiments revealed that fruits were susceptible to the pathogen between 20 and 90 days after petal fall and that immature fruits infected as early as 20 days after petal fall frequently developed lesions on the lower fruit half as growth progressed. These results suggest that C. acutatum sporulates on infested fruit scars to infect immature fruits, resulting in bitter rot and that the fungus also colonizes mummified fruitlets and peduncles, contributing to survival of the pathogen on fruit scars. Thus, infested fruit scars represent the primary source of inoculum.  相似文献   

20.
 柑橘黄龙病是柑橘生产上最具毁灭性的病害之一,由目前还无法分离培养的候选韧皮部杆菌亚洲种(“Candidatus Liberibacter asiaticus”, CLas)引起的。早期研究表明CLas在染病柑橘植株内的分布并不均匀。为进一步探究CLas在染病枝条及果实内的空间分布规律,本研究以感染黄龙病的贡柑(带果实)枝条为材料,利用定量PCR(quantitative PCR, qPCR)分析同一枝条不同部位及果实橘络中的CLas浓度。结果表明,带果贡柑枝条不同部位的CLas分布不均匀且以果实橘络部位的CLas浓度最高(15 487.6 CLas cells/ng总DNA)。通过对同一橘络不同片段长度(每1.5 cm)中的CLas进行定量分析发现,同一橘络中的CLas同样呈不均匀分布(CLas个数范围:12 407~10 271 089)。此外,定量分析发现黄龙病引起的畸形果大小两侧橘络中的CLas浓度差异不显著。该结果可为探究CLas在柑橘枝条及果实中的转运规律提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号