首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lysophosphatidic acid (LPA) exerts various actions on the mammalian reproductive system. In cows, LPA stimulates the synthesis and secretion of luteotropic factors in the ovary, which affects the growth and development of ovarian follicles. The role of LPA in granulosa cells, oocyte and oocyte‐cumulus complex (COC) has previously been investigated; but its role in the theca layer, which is an important structural and functional component of the ovarian follicle, is still unclear. The goal of this study was to investigate the expression of LPA in theca cells originating from different bovine ovarian follicle types. Theca cells were separated from healthy, transitional and atretic ovarian follicles, based on intrafollicular estradiol: progesterone ratios. LPA concentration in the follicular fluid (FF) in different follicle types was measured, and expression of the enzymes responsible for LPA synthesis (autotaxin [AX], phospholipase A2 [PLA2]) and receptors for LPA (LPAR1‐4) were determined. The obtained results confirmed the follicle‐type dependent presence of LPA in the FF of the bovine ovarian follicles. The highest concentration of LPA was detected in follicles classified as healthy and dominant. LPAR1‐4, PLA2 and AX expression in theca cells in all of the types of follicles examined were detected at mRNA and protein level. These results suggest that theca cells can be a source of LPA synthesis other than granulosa cells and COCs, as well as the target for its action in the bovine ovarian follicle, with PLA2 and LPAR4 playing major roles in LPA synthesis and action.  相似文献   

2.
Oocyte-somatic cell-endocrine interactions in pigs   总被引:1,自引:0,他引:1  
Oocyte-somatic cell communication is bi-directional and essential for both oocyte and follicular granulosa and theca cell function and development. We have shown that the oocyte secretes factors that stimulate porcine granulosa cell proliferation in serum-free culture, and suppress progesterone production, thereby preventing premature luteinisation. Possible candidates for mediating some of these effects are the bone morphogenetic proteins (BMPs) that belong to the transforming growth factor beta family. They are emerging as a family of proteins critical for fertility and ovulation rate in several mammals, and they are expressed in various cell types in the ovary. We have evidence for a functional BMP system in the porcine ovary and BMP receptors are present in the egg nests in the fetal ovary and in the granulosa cells, oocytes and occasional theca cells throughout subsequent development. In addition to paracrine interactions in the ovary, the porcine oocyte and its developmental potential can also be influenced by nutritional manipulation in vivo. We have demonstrated that feeding a high plane of nutrition to gilts for 19 days prior to ovulation increased oocyte quality compared to control animals fed a maintenance diet, as determined by oocyte maturation in vitro. This was associated with a number of changes in circulating reproductive and metabolic hormones and also in the follicular fluid in which the oocyte is nurtured. Further studies showed a similar increase in prenatal survival on Day 30 of gestation, demonstrating a direct link between oocyte quality/maturation and embryo survival. Collectively, these studies emphasise the importance of the interactions that occur between the oocyte and somatic cells and also with endocrine hormones for ovarian development, and ultimately for the production of oocytes with optimal developmental potential.  相似文献   

3.
In this study, the expressions of VEGF in dog follicles were detected by immunohistochemistry and the effects of VEGF treatment on the primordial to primary follicle transition and on subsequent follicle progression were examined using a dog ovary organ culture system. The frozen‐thawed canine ovarian follicles within slices of ovarian cortical tissue were cultured for 7 and 14 days in presence or absence of VEGF. After culture, the ovaries were fixed, sectioned, stained and counted for morphologic analysis. The results showed that VEGF was expressed in the theca cells of antral follicles and in the granulosa cells nearest the oocyte in preantral follicle but not in granulosa cells of primordial and primary follicles; however, the VEGF protein was expressed in CL. After in vitro culture, VEGF caused a decrease in the number of primordial follicles and concomitant increase in the number of primary follicles that showed growth initiation and reached the secondary and preantral stages of development after 7 and 14 days. Follicular viability was also improved in the presence of VEGF after 7 and 14 days in culture. In conclusion, treatment with VEGF was found to promote the activation of primordial follicle development that could provide an alternative approach to stimulate early follicle development in dogs.  相似文献   

4.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

5.
Mammalian ovaries contain a large number of oocytes at different stages of growth. To utilize potential female gametes, it is important to develop culture systems that permit oocytes to achieve full growth and competence in order to undergo maturation, fertilization and development. The desired culture systems should meet at least the following three conditions: (i) oocytes remain healthy and functional so that they can execute intrinsic programs that direct their growth and development; (ii) granulosa cells that are adjacent to oocytes proliferate efficiently to prevent oocytes from becoming denuded; and (iii) granulosa cells maintain (and develop) appropriate associations with oocytes during the culture period. For this reason, several systems have been developed, and they can be classified into four categories based on the structure and components of the follicle/oocyte–granulosa cell complex and the location of the oocyte in the physical organization of the complex. The resultant diverse morphologies are due to multiple factors, including the method for initial isolation of follicles, the culture substrate, and hormones and other factors added into the medium. It is important to find an optimal combination of such factors involved in the process to facilitate future research efforts.  相似文献   

6.
Angiogenesis, the formation of new blood vessels from pre‐existing vasculature, plays a decisive role for the rapid growth of avian follicles. Compared to mammals, few data on the angiogenesis in the avian ovary are available. However, whereas several pro‐angiogenic factors in the avian ovary have been recently studied in detail, little information is available on the localization of anti‐angiogenic factors. The aim of this study was to determine the localization and possible function of the anti‐angiogenic factor thrombospondin‐1 (TSP‐1) and its receptor CD36 in the ovary of the ostrich using immunohistochemistry and to correlate the results with ultrastructural data. Whereas the oocytes and granulosa cells of all follicular stages were negative for TSP‐1, myofibroblasts of the theca externa and smooth muscle cells of blood vessels showed distinct reactions. A distinctly different staining pattern was observed for CD36. The oocytes were CD36 negative. No immunostaining for CD36 could be observed neither in the granulosa cells nor in the adjacent theca interna of vitellogenic follicles. In the theca externa, blood vessels protruding towards the oocyte showed CD36‐positive endothelial cells. In conclusion, a fine balance between angiogenic and anti‐angiogenic processes assures that a dense net of blood vessels develops during the rapid growth of a selected follicle. Anti‐angiogenic molecules, such as TSP‐1 and its receptor CD36 may, after the oocyte has reached its final size, inhibit further angiogenesis and limit the transport of yolk material to the mature oocyte. By this mechanism, the growth of the megalecithal oocyte during folliculogenesis may cease.  相似文献   

7.
In female reproduction, the oocyte number is limited after birth. To achieve a continuous ovulatory cycle, oocytes are stored in primordial follicles. Therefore, the regulation of primordial follicle dormancy and activation is important for reproductive sustainability, and its collapse leads to premature ovarian insufficiency. In this review, we summarize primordial follicle development and the molecular mechanisms underlying primordial follicle maintenance and activation in mice. We also overview the mechanisms discovered through in vitro culture of functional oocytes, including the establishment of primordial follicle induction by environmental factors, which revealed the importance of hypoxia and compression by the extra cellular matrix (ECM) for primordial follicle maintenance in vivo.  相似文献   

8.
It has been hypothesized that the physiological basis of follicle selection is the differential expression of factors, which modulate the action of gonadotrophins on follicular cells, at key points during the process of follicle development. The aim of this research was to test this hypothesis by identifying factors that can enhance or attenuate the action of the gonadotrophins in stimulating follicle development using both in vivo and in vitro models. Experiments in vivo utilized sheep with an ovarian autotransplant to allow intra-arterial infusion of putative local factors and exposure of the ovary to high local concentrations. Experiments in vitro utilized physiological serum-free cell culture systems for both granulosa and theca cells that allow gonadotrophin-induced differentiation in vitro. The putative local factors tested included insulin-like growth factor-I (IGF-I LR3 analogue), transforming growth factor alpha (TGF alpha) or epidermal growth factor (EGF) and inhibin A. IGF-I stimulated both cellular proliferation and hormone production by both granulosa and theca cells in vitro and similarly stimulated ovarian follicle development and ovarian androgen and oestradiol secretion in vivo. Both TGF alpha and EGF stimulated granulosa and thecal cell proliferation in vitro in a dose-responsive manner and concomitantly inhibited hormone production, whereas intra-arterial infusion of TGF alpha in vivo resulted in induction of atresia in large antral follicles and an acute fall in ovarian hormone secretion. Inhibin A in vitro augmented gonadotrophin stimulated androgen and oestradiol production by thecal and granulosa cells, respectively, but had no effect on cell number. Paradoxically, intra-arterial infusion of inhibin A resulted in an acute depression in ovarian steroid secretion. This depression, however, was also associated with an acute depression in circulating FSH concentrations. In conclusion, these data provide strong support for the hypothesis that factors can modulate the action of gonadotrophins on follicular cells to augment (IGF-I, inhibin A) or inhibit (TGF alpha/EGF) granulosa and thecal cell differentiation. The challenge for the future in this area of research is to understand how these factors interact to enable one follicle to be selected from an ovulatory cohort.  相似文献   

9.
The development of efficient ovarian preantral follicle (PF) isolation and culture systems provide a large number of oocytes for the manipulation and embryo production. It also helps for understanding the mechanisms of follicle and oocyte development. Isolation and culture protocols for PFs were developed for many domestic species like cattle, buffalo, sheep, goat, pig, horse, camel, dog and cats; however, embryo production from oocytes derived from in vitro grown PFs was reported only in pigs, buffalo, sheep and goat. The rate of oocyte maturation from PFs grown in vitro is low and requires considerable research. This paper presents an overview of isolation and culture systems of PFs that have been developed for domestic species (cattle, buffalo, sheep, goat, pigs, horse, camel, dog and cat) along with the current status of progress achieved in the direction of producing embryos using PFs as the source of oocyte in these species.  相似文献   

10.
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF‐2) play a paramount role in the regulation of normal and pathologic angiogenesis in the ovary of mammals. Very little is known on the expression of these two growth factors in the avian ovary. The aim of this study was to determine for the first time the localization of VEGF and FGF‐2 in the ovary of the ostrich using immunohistochemical techniques to investigate the vascularization of the rapidly growing huge ostrich oocyte. At the oocyte periphery, distinct VEGF‐positive granules are visible. In our opinion, the expression of VEGF in the growing oocytes, which does not occur in mammals such as bovines, does not significantly contribute to angiogenesis in the theca interna and externa, where all the original and developing vessels are located, but may contribute to the mitoses and survival of granulosa cells during folliculogenesis. A different immunostaining can be demonstrated for FGF‐2: from late pre‐vitellogenic follicles, FGF‐2 immunopositivity can be observed at the inner perivitelline layer area. In the stroma, the smooth muscle cells of small arteries and the endothelial cells of venules and veins are positively stained for FGF‐2. Another interesting finding of this study is the occurrence of a significant number of VEGF‐ and FGF‐2 positive heterophilic granulocytes within the ovarian stroma, which migrate from the periphery of the ovary towards the growing follicles. We assume that the growth factors of the heterophilic granulocytes contribute significantly to the angiogenesis seen in both theca layers.  相似文献   

11.
Gap junctions have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues, and gap junctions play a major role in direct cell-cell communication. Gap junctional channels and connexin (Cx) proteins have been detected in adult ovaries in several species. Furthermore, it has been shown that several environmental factors, including maternal diet, may affect fetal organ growth and function. To determine whether maternal diet affects expression of Cx26, Cx32, Cx37, and Cx43 in fetal ovaries, sheep were fed a maintenance (M) diet with adequate (A) selenium (Se) or high (H) Se levels from 21 d before breeding to day 132 of pregnancy. From day 50 to 132 of pregnancy (tissue collection day), a portion of the ewes from the ASe and HSe groups was fed a restricted (R; 60% of M) diet. Sections of fetal ovaries were immunostained for the presence of Cxs followed by image analysis. All four Cxs were detected, but the distribution pattern differed. Cx26 was immunolocalized in the oocytes from primordial, primary, secondary, and antral follicles; in granulosa and theca layers of secondary and antral follicles; stroma; and blood vessels. Cx32 was in oocytes, granulosa, and theca cells in a portion of antral follicles; Cx37 was on the borders between oocyte and granulosa/cumulus cells of primordial to antral follicles and in endothelium; and Cx43 was on cellular borders in granulosa and theca layers and between oocyte and granulosa/cumulus cells of primordial to antral follicles. Maternal diet affected Cx26 and Cx43 expression, Cx26 in granulosa layer of antral follicles was decreased (P < 0.01) by HSe in the M and R diets, and Cx43 in granulosa layer of primary and granulosa and theca of antral follicles was increased (P < 0.05) by the M diet with HSe. Thus, Cxs may be differentially involved in regulation of fetal ovarian function in sheep. These data emphasize the importance of maternal diet in fetal growth and development.  相似文献   

12.
In vitro growth of immature oocytes provides opportunities to increase gametic resources and to understand the mechanisms underlying oocyte development. Many studies on the in vitro growth of oocytes have been reported thus far; however, only a few cases have been reported, which demonstrated that oocytes can support full-term development after in vitro fertilization. Our research group recently found that culture of mouse neonatal primordial follicles increased the birthrate; however, the establishment of an in vitro system that can completely mimic follicle or oocyte growth in vivo and control oogenesis remains an ongoing challenge.  相似文献   

13.
卵母细胞及其紧密连接的卵泡细胞之间的精细调节,促使卵母细胞成熟、受精和胚胎发育.在卵泡发育过程中,除了下丘脑-垂体-性腺轴间的内分泌调节外,卵母细胞源旁分泌或自分泌因子维持发育卵泡内微环境稳态,调节卵母细胞成熟和颗粒细胞增殖.目前发现,这些关键的调控因子主要是TGFβ超家族成员中的生长分化因子-9 (GDF9)和骨形态发生蛋白(BMP15).GDF9/BMP15主要表达于卵母细胞,是卵泡发育必需的细胞因子.论文综述了GDF9/BMP15的结构特点、表达特性、信号通路及其在卵巢中的生物学作用等研究进展.  相似文献   

14.
Many factors influence the efficiency of the in vitro embryo production technology in cattle but the most important are the physiological conditions of the donor and the culture protocols for oocyte maturation and fertilization and for embryo culture from zygote to blastocyst. Therefore, general factors such as age, body conditions and herd management play a pivotal role together with more specific factors such as reproductive soundness and ovarian cyclicity. Given that good quality and competent oocytes are available a complex series of processes, including oocyte maturation, fertilization and culture of the derived zygotes, must be completed to generate viable embryos.  相似文献   

15.
The mammalian ovary contains a huge number of small follicles of various sizes, and each follicle encloses a small oocyte. Only a small number of non-growing oocytes (30 microm in the pig and cow) grow to their final size (120 microm), mature, and are ovulated. In vitro growth (IVG) culturing of small oocytes will provide a new source of mature oocytes for livestock production. Using the IVG culture system, non-growing mouse oocytes in primordial follicles grow to their final size and acquire full developmental competence. Among large animals, babies were produced from ovarian oocytes by IVG culture only in the cow. However, the oocytes used were not non-growing ones but at the mid-growth stage (90-99 microm in diameter) in early antral follicles. Xenotransplantation of the follicles at an early stage to immuno-deficient mice is a substitute for an effective long-term IVG culture of much smaller oocytes. IVG and xenotransplantation of small oocytes at a specific size will provide a new understanding of the mechanisms regulating oogenesis and folliculogenesis in the complex mammalian ovary.  相似文献   

16.
Two groups of mouse preantral follicles with diameters of 125-150 and 151-175 microm were cultured individually for 6 days in a medium supplemented with FSH and fetal calf serum to determine their in vitro growth characteristics. Their oocyte capacity for maturation and development to the blastocyst stage following in vitro fertilization was also assessed. Antral formation rate at the end of culture was higher in the follicles of 151-175 microm (89%) than 125-150 microm (76%). The timing of antrum formation was different between the two follicle categories: most 151-175 microm follicles formed antra earlier than 125-150 microm follicles (days 4 and 5 vs. 5 and 6). However, follicle diameters at the time of antrum formation were the same regardless of the initial size and the culture period. Maturation rates of the oocytes derived from both categories of in vitro grown follicles (70 and 62%) were not different from those of oocytes from in vivo grown follicles (74%). The in vitro derived oocytes, however, showed less cleavage (30 and 35%) than the in vivo derived oocytes (89%). Although the oocytes from both follicle categories developed to the morula stage after in vitro fertilization, blastocysts were only obtained from oocytes derived from the 151-175 microm category. These results demonstrate that an individual follicle culture system using a medium with FSH and fetal calf serum supports in vitro growth of mouse preantral follicles with diameters of 151-175 microm to the preovulatory stage, and that their oocytes have the capability to develop to the blastocyst stage.  相似文献   

17.
试验研究了清和促性腺激素对山羊卵丘扩展和卵母细胞核成熟的,卵母细胞与卵丘扩展的关系以及卵丘扩展与卵母细胞核成熟的关系。结果表明:(1)培养24h,添加PMSG组卵母细胞核成熟率显著高于不加激素组(P<0.05),而培养到27h,2者成熟率之间差异变得不显著,说明添加PMSG卵母细胞核的最终成熟率没有明显影响,但加速了卵母细胞核的成熟进程;(2)M199+BSA培养27h,卵母细胞核成熟率显著高于培养24h,而M199+FCS培养27h与培养24h的成熟差异不显著,说明添加BSA时,卵母细胞核体外成熟速度比添加FCS的慢;(3)卵丘扩展良好与扩展不好的卵母细胞核成熟率以及第1极体形态无统计学差异,说明山羊卵母细胞的核成熟可能不依赖于卵丘扩展;(4)山羊的卵丘扩展产不依赖于卵母细胞;(5)将带壁颗粒细胞与不带壁颗粒细胞的COC分开培养发现,2者卵母细胞核成熟度无明显差异,带有壁颗粒细胞的COC卵丘扩展情况明显优于一般COC。  相似文献   

18.
Galli  C.  Duchi  R.  Crotti  G.  Turini  P.  Ponderato  N.  Colleoni  S.  Lagutina  I.  Lazzari  G. 《Veterinary research communications》2004,28(1):121-126
Many factors influence the efficiency of the in vitro embryo production technology in cattle but the most important are the physiological conditions of the donor and the culture protocols for oocyte maturation and fertilization and for embryo culture from zygote to blastocyst. Therefore, general factors such as age, body conditions and herd management play a pivotal role together with more specific factors such as reproductive soundness and ovarian cyclicity. Given that good quality and competent oocytes are available a complex series of processes, including oocyte maturation, fertilization and culture of the derived zygotes, must be completed to generate viable embryos.  相似文献   

19.
TGF-β超家族(transforming growth factor-β,TGF-β)是一类在结构上相对保守的生长因子,参与细胞增殖与分化等多种细胞生理活动。近来发现卵巢体细胞和卵母细胞能够表达多种属于TGF-β超家族的生长因子。这些生长因子参与调节卵泡的生长发育,并且其表达和功能的发挥随卵泡生长发育表现出阶段特异性。 其中BMP15和GDF9等基因的突变会影响卵泡正常的生长发育和功能发挥,甚至不育。  相似文献   

20.
Mammalian oocytes secrete transforming growth factor β (TGF‐β) superfamily proteins, such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 6 (BMP6) and BMP15, and fibroblast growth factors (FGFs). These oocyte‐derived paracrine factors (ODPFs) play essential roles in regulating the differentiation and function of somatic granulosa cells as well as the development of ovarian follicles. In addition to the importance of individual ODPFs, emerging evidence suggests that the interaction of ODPF signals with other intra‐follicular signals, such as estrogen, is critical for folliculogenesis. In this review, we will discuss the current understanding of the role of ODPFs in follicular development with an emphasis on their interaction with estrogen signaling in regulation of the differentiation and function of granulosa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号