首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We studied the effects of ectomycorrhizal colonization by Laccaria bicolor (Maire) Orton S238 and Paxillus involutus (Batsch) Fr. 533 on cadmium (Cd) toxicity in Norway spruce seedlings (Picea abies (L.) Karst.). Both mycorrhizal and nonmycorrhizal seedlings were exposed to 0 (control), 0.5 or 5 &mgr;M CdSO(4) for 9 weeks in a sand culture system with frequent addition of nutrient solutions. In pure culture, P. involutus and L. bicolor showed similar Cd tolerance. However, in symbiosis, the Cd treatments decreased colonization by L. bicolor but not by P. involutus. Paxillus involutus ameliorated the negative effects of 0.5 &mgr;M Cd on shoot and root growth and chlorophyll content of old needles, whereas L. bicolor did not. Mycorrhizal colonization did not affect Cd concentrations of old needles and roots of seedlings. Despite differences between the ectomycorrhizal fungi in colonization and ability to alleviate Cd toxicity of seedlings, both species reduced Cd concentrations of young needles to a similar degree compared with nonmycorrhizal seedlings. However, in the 0.5 &mgr;M Cd treatment, the Cd content of needles of seedlings colonized by P. involutus was increased, whereas the Cd content of needles of seedlings colonized by L. bicolor was similar to that of needles of nonmycorrhizal seedings. When the amount of Cd translocated to needles was expressed on a root length basis to account for differences in the size of the root systems, the amount of Cd translocated to the needles was similar in seedlings mycorrhizal with P. involutus and in nonmycorrhizal seedlings. All mycorrhizal seedlings were similarly affected by 5 &mgr;M Cd, indicating that the amelioration efficiency of ectomycorrhizal fungi is dependent on the metal concentration to which the roots are exposed. Concentrations of P, K, Ca, Mg and Mn were decreased by 5 &mgr;M Cd to a similar extent in both nonmycorrhizal and mycorrhizal seedlings. In contrast to L. bicolor, P. involutus increased P uptake and altered patterns of root branching. We conclude that mycorrhizas alleviate Cd-induced reductions in growth of Picea abies seedlings. Although the two mycorrhizal fungi examined differed in their ability to alleviate Cd toxicity, these differences were not related to differences in Cd uptake or translocation to the shoot of the mycorrhizal seedlings. We suggest that amelioration of Cd toxicity by P. involutus may be a result of improved P nutrition or changes in root morphology, or both.  相似文献   

2.
Non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) and Norway spruce seedlings colonized with Paxillus involutus Fr. were grown in an axenic silica sand culture system. After successful mycorrhizal colonization, the seedlings were exposed to 200 or 800 micro M AlCl(3) for 10 weeks. In both non-mycorrhizal and mycorrhizal seedlings, exposure to Al significantly reduced root growth and the uptake of Mg and Ca. After 5 weeks of exposure to 800 micro M Al, the mycorrhizal seedlings had significantly higher chlorophyll concentrations than the non-mycorrhizal seedlings, although no difference in Mg nutrition was apparent. After 10 weeks of exposure to Al, both non-mycorrhizal and mycorrhizal seedlings exhibited needle chlorosis and reduced photosynthetic activity. However, the aluminum-induced reduction in shoot growth was largely ameliorated by colonization with P. involutus. We conclude that mycorrhizal colonization modifies the phytotoxic effects of Al in Norway spruce seedlings. However, differences in physiological responses to Al between mycorrhizal and non-mycorrhizal seedlings may be largely reduced in the long term as a result of impaired mineral nutrient uptake.  相似文献   

3.
We developed a nondestructive method for detecting early toxic effects of inflethal copper (Cu) concentrations on ectomycorrhizal and non-mycorrhizal (NM) Scots pine (Pinus sylvestris L.) seedlings. The fungal symbionts examined were Paxillus involutus (Fr.) Fr., Suillus luteus (Fr.) S.F. Gray and Thelephora terrestris (Ehrh.) Fr. The accumulation of Cu in needles and fungal development (ergosterol) in roots and infstrate were assessed. Inorganic phosphate (P(i)) and ammonium (NH(4) (+)) uptake capacities were determined in a semi-hydroponic cultivation system on intact P-limited plants that were exposed for 3 weeks to 0.32 (control), 8 or 16 &mgr;moles Cu(2+). Short-term effects of a 1-hour exposure to 32 &mgr;moles Cu(2+) on nutrient uptake rates were also determined. None of the Cu(2+) treatments affected plant growth or root ergosterol concentrations. The active fungal biomass in infstrate invaded by S. luteus was reduced by 50% in the 16 &mgr;M Cu(2+) treatment compared with the control treatment; however, colonization by S. luteus prevented an increased accumulation of Cu in the needles. In contrast, the 16 &mgr;M Cu(2+) treatment caused a 2.2-fold increase in needle Cu concentration in NM plants. Ergosterol concentrations in the infstrate colonized by P. involutus and T. terrestris were not affected by 16 &mgr;molar Cu(2+). Although P. involutus and T. terrestris were less sensitive to Cu(2+) than S. luteus, T. terrestris did not prevent the accumulation of Cu in needles of its host plant in the 16 &mgr;molar Cu(2+) treatment. Mycorrhizal plants consistently had higher P(i) and NH(4) (+) uptake capacities than NM plants. In the control treatment, specific P(i) uptake rates were almost 10, 4 and 3 times higher in plants associated with P. involutus, S. luteus and T. terrestris, respectively, than in NM plants, and specific NH(4) (+) uptake rates were about 2, 2 and 5 times higher, respectively, than those of NM seedlings. Compared with the corresponding control plants, a 3-week exposure to 8 &mgr;M Cu(2+) had no effect on the nutrient uptake potential of plants. In contrast, the 16 &mgr;M Cu(2+) treatment significantly reduced P(i) uptake capacity of all plants and decreased NH(4) (+) uptake capacity of seedlings colonized by S. luteus or T. terrestris. The 32 &mgr;M Cu(2+) 1-h shock treatment reduced specific NH(4) (+) and P(i) uptake rates of roots colonized by S. luteus to 39 and 77%, respectively, of the original rates. The Cu(2+) 1-h shock treatment reduced the NH(4) (+) uptake rate of NM plants by 51%.  相似文献   

4.
We studied carbon and nitrogen allocation in mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings grown in a semi-hydroponic system with nitrogen as the growth limiting factor. Three ectomycorrhizal fungi were compared: one pioneer species (Thelephora terrestris Ehrh.: Fr.) and two late-stage fungi (Suillus bovinus (L.: Fr.) O. Kuntze, and Scleroderma citrinum Pers.). By giving all plants in each treatment the same amount of readily available nitrogen, we ensured that the external mycelium could not increase the total nitrogen content of the plants, thereby guaranteeing that any change in carbon or nitrogen partitioning was a direct effect of the mycorrhizal infection itself. Carbon and nitrogen partitioning were measured at an early and a late stage of mycorrhizal development, and at a low and a high N addition rate. Although mycorrhizal seedlings had a higher net assimilation rate and a higher shoot/root ratio than non-mycorrhizal seedlings, they had a lower rate of shoot growth. The high carbon demand of the mycobionts was consistent with the large biomass of external mycelia and the increased belowground respiration of the mycorrhizal plants. The carbon cost to the host was similar for pioneer and late-stage fungi. Above- and belowground partitioning of nitrogen was also affected by mycorrhizal infection. The external mycelia of Scleroderma citrinum retained 32% of the nitrogen supplied to the plants, thus significantly reducing nitrogen assimilation by the host plants and consequently reducing their growth rate. By contrast, the external mycelia of T. terrestris and Suillus bovinus retained less nitrogen than the mycelia of Scleroderma citrinum, hence we attributed the decreased growth rates of their host plants to a carbon drain rather than a nitrogen deficiency.  相似文献   

5.
Models of the effects of elevated concentrations of aluminum (Al) on growth and nutrient uptake of forest trees frequently ignore the effects of mycorrhizal fungi. In this study, we present novel data indicating that ectomycorrhizal mycelia may prevent leaching of base cations and Al. Mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were grown in sand obtained from the B-horizon of a local forest. In Experiment 1, non-mycorrhizal seedlings and seedlings inoculated with Hebeloma cf. longicaudum (Pers.: Fr.) Kumm. ss. Lange or Laccaria bicolor (Maire) Orton were provided with nutrient solution containing 2.5 mM Al. Aluminum did not affect growth of non-mycorrhizal seedlings or seedlings inoculated with L. bicolor. Seedlings colonized by H. cf. longicaudum had the highest biomass production of all seedlings grown without added Al, but the fungus did not tolerate Al. Shoots of seedlings colonized by L. bicolor had the lowest nitrogen (N) concentrations but the highest phosphorus (P) concentrations of all seedlings. The treatments had small but significant effects on shoot and root Al concentrations. In Experiment 2, inoculation with L. bicolor was factorially combined with the addition of a complete nutrient solution, or a solution lacking the base cations K, Ca and Mg, and solutions containing 0 or 0.74 mM Al. Seedling growth decreased in response to 0.74 mM Al, but the effect was significant only for non-mycorrhizal seedlings. Mycorrhizal seedlings generally had higher P concentrations than non-mycorrhizal seedlings. Aluminum reduced P uptake in non-mycorrhizal plants but had no effect on P uptake in mycorrhizal plants. Mycorrhizal colonization increased the pH of the soil solution by about 0.5 units and addition of Al decreased the pH by the same amount. We conclude that the presence of ectomycorrhizal mycelia decreased leaching of base cations and Al from the soil.  相似文献   

6.
We studied the ability of the ectomycorrhizal (ECM) fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr. (Strain H), to produce indole-3-acetic acid (IAA) and to affect the formation and growth of roots on Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Effects of indole-3-butyric acid (IBA) and the auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), on rooting and the cutting-fungus interaction were also studied. Both fungi produced IAA in the absence of exogenous tryptophan, but the mycelium and culture filtrate of Pisolithus tinctorius contained higher concentrations of free and conjugated IAA than the mycelium and culture filtrate of Paxillus involutus. Inoculation with either fungus or short-term application of culture filtrate of either fungus to the base of hypocotyl cuttings enhanced root formation. Inoculation with either fungus was even more effective in enhancing root formation than treatment of the hypocotyl bases with IBA. Fungal IAA production was not directly correlated with root formation, because rooting was enhanced more by Paxillus involutus than by Pisolithus tinctorius. This suggests that, in addition to IAA, other fungal components play an important role in root formation. Treatment with 5 microM TIBA increased the rooting percentage of non-inoculated cuttings, as well as of cuttings inoculated with Pisolithus tinctorius, perhaps as a result of accumulation of IAA at the cutting base. However, the marked reduction in growth of Pisolithus tinctorius in the presence of TIBA suggests that the effects of TIBA on rooting are complicated and not solely related to IAA metabolism. The high IAA-producer, Pisolithus tinctorius, formed mycorrhizas, and the IBA treatment increased mycorrhizal frequency in this species, whereas TIBA decreased it. Paxillus involutus did not form mycorrhizas, indicating that a low concentration of IAA together with other fungal components were sufficient to stimulate formation and growth of the roots, but not the formation of ECM symbiosis.  相似文献   

7.
Identity of mycorrhizas and isolation of symbionts and associated fungi from Sitka spruce growing in pure and mixed stands with either Japanese larch or Lodgepole pine are described and compared. More mycorrhizal types and sporocarps of the Agaricales were collected from mixed stands. Mycorrhizas of Lactarius rufus, Paxillus involutus and Suillus spp. were more prevalent on roots from mixed stands. The most common unidentified mycorrhizal type (type B) had features similar to synthesized mycorrhizas of two Basidiomycete isolates. Suillus grevillei and three un-identified types were associated specifically with Japanese larch. The main associating fungi were Oidiodendron sp. and Mycelium radicis atrovirens. The association of a “nurse” tree with Sitka spruce provides a more diverse mycorrhizal flora, the majority of which are shared between the tree species.  相似文献   

8.
The extraction of glutamine synthetase (GS) from jack pine (Pinus banksiana Lamb.) tissue was facilitated by solubilization of the tissue with 1% or more Nonidet P-40 detergent. In contrast with procedures commonly used to extract GS from other plant tissues, highest recovery of GS was obtained when jack pine tissues were subjected to ultrasonic homogenization in the absence of PVP. Chromatography on DEAE-Sephacel showed that jack pine needles possess two isoforms of GS. Isoform GS(1), which is generally associated with the cytoplasm, eluted at 90 mM KCl and accounted for 80% of total GS activity. Isoform GS(2), which eluted at 280 mM KCl, is generally associated with the chloroplast and is thought to be active in the primary assimilation of ammonium in leaves. Thus GS(2) activity may be important if conifers are to avoid ammonium toxicity under circumstances, such as exposure to nitrous oxides, where nitrate reductase activity is induced in needles. In June, 72% of total GS activity was located in needles. Near the end of the growing season in August, however, only 1% of total GS activity was found in needles whereas 79% was found in roots.  相似文献   

9.
Production of free and conjugated polyamines by two ectomycorrhizal fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr., was studied in vitro. Spermidine was the main polyamine in the mycelium of both fungi. Paxillus involutus also produced large amounts of the diamine putrescine, whereas Pisolithus tinctorius contained traces of the diamine cadaverine and released into the culture medium an unknown compound probably related to cadaverine or N-methylputrescine. Both fungi accelerated adventitious root formation and increased subsequent root growth of Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Exogenous cadaverine enhanced rooting caused by Pisolithus tinctorius and also promoted mycorrhiza formation by the fungus. Putrescine and Paxillus involutus had a synergistic effect on root initiation, but not on subsequent root growth. We conclude that specific diamines may be involved in the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine, and that the effects of specific exogenous polyamines are dependent on the fungal strain and its ability to produce these compounds. The finding that Paxillus involutus enhanced rooting and root growth without mycorrhiza formation indicates that fungal-induced rooting is not necessarily related to visible mycorrhiza formation.  相似文献   

10.
丛枝菌根对喜树幼苗的生长效应   总被引:2,自引:0,他引:2  
赵昕  于涛  王洋  阎秀峰 《林业研究》2006,17(2):121-123
2005年2月精选喜树种子培养无菌根幼苗,生长90天以后分别接种3种丛枝菌根真菌,即蜜色无梗囊霉(Acaulospora mellea)、透光球囊霉(Glomus diaphanum)和弯丝硬囊霉(Sclerocystis sinuosa),探讨了菌根真菌对喜树幼苗株高、生物量以及氮、磷吸收的影响。结果表明,丛枝菌根的形成显著促进了菌根幼苗的高生长和生物量的积累,对喜树幼苗氮素营养的吸收影响不大,但却有利于喜树幼苗对磷素营养的吸收。从植株高度和生物量来看,菌根幼苗优于无菌根幼苗,蜜色无梗囊霉菌根幼苗尤为突出,分别达到无菌根幼苗(CK)的1.2和1.6倍,差异显著。丛枝菌根的形成对喜树幼苗氮素营养的吸收影响不大。从全株的氮含量来看,菌根幼苗与无菌根幼苗相近,只有在根、茎和叶片中Am菌根幼苗的氮含量才有明显变化,而透光球囊霉和弯丝硬囊霉菌根幼苗与无菌根幼苗之间则没有显著差异。丛枝菌根的形成总体上促进了喜树幼苗对磷素营养的吸收,并且主要体现在根的磷含量上。与无菌根幼苗比,所有菌根幼苗根的氮、磷分配比例增加,而茎和叶片的氮、磷分配比例减少。图2表2参13。  相似文献   

11.
The effect of two arbuscular mycorrhizal (AM) fungi, Glomus fasciculatum and G. macrocarpum on shoot and root dry weights and nutrient content of Cassia siamea in a semi-arid wasteland soil was evaluated. Under nursery conditions, mycorrhizal inoculation improved growth of seedlings. Root and shoot dry weights were higher in mycorrhizal than non-mycorrhizal plants. The concentration of P, K, Cu, Zn and Na was significantly higher in AM inoculated seedlings than in non-inoculated seedlings. Mycorrhization led to decrease in alkalinity of the rhizosphere soil from pH 8.5 to 7.4. Under nursery conditions, the degree of mycorrhizal dependency increased with age of C. siamea seedling. On transplantation to the field, the survival rate of mycorrhizal seedlings (75%–90%) was higher than that of non-mycorrhizal seedlings (40%). Besides better survival rate, AM inoculation improved the growth performance of seedlings in terms of height and stem diameter. Among the two AM fungi used, the efficiency of Glomus macrocarpum was higher than that of G. fasciculatum under both nursery and field conditions.This revised version was published online in May 2005 with corrected page numbers.  相似文献   

12.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown for 68 days in a growth chamber in nutrient solutions with ammonium, nitrate or ammonium nitrate as the nitrogen source. Among the nitrogen sources tested, whole-seedling biomass, relative growth rate (RGR), root and shoot elongation, and number of lateral roots, were greatest in seedlings grown with ammonium. In the absence of nitrogen, plant growth and formation of lateral roots were poor. Initially, glutamine synthetase, NAD-glutamate dehydrogenase and aspartate aminotransferase activities were high in young roots and shoots, but all three enzymatic activities decreased after one month of culture. In root apices, glutamine synthetase and aspartate aminotransferase activities were higher than NAD-glutamate dehydrogenase activity. Enzymatic activities were often higher in ammonium-fed seedlings than in seedings supplied with the other forms of nitrogen. Activities of all three enzymes were significantly reduced in seedlings grown in the absence of nitrogen. The beneficial effect of ammonium is discussed on the basis of its involvement in the assimilation pathways of Douglas-fir.  相似文献   

13.
A large areas of Larch seedlings, including container and bare-root seedlings (new and transplanted seedlings) were inoculated pure inocula that were cultivated by usingSuillus grevillei. Compared with those of control area, all growth indices as rate of emergence, growth(in seedling height, collar diameter and number of lateral branch-root), rate of mycorrhiza inoculum, rate of survival and content of nutrient elements were greatly increased. Therefore,Suillus grevillei is a better and suitable mycorrhizal fungus to larch seedling either in the severe cold mountain area or in the plain region. It should be spread and used in larch cultivation and planting.  相似文献   

14.
We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The results demonstrate the dynamic manner in which mycorrhizal mycelia deploy C when foraging for nutrients. The inhibitory effect of the wood-decomposer fungus P. velutina on C allocation to external mycorrhizal mycelium has important implications for nutrient cycling in forest ecosystems.  相似文献   

15.
Khasa  P.D.  Sigler  L.  Chakravarty  P.  Dancik  B.P.  Erickson  L.  Mc Curdy  D. 《New Forests》2001,22(3):179-197
The effect of three levels of fertilizer on thegrowth of three species of containerized-grownconifer seedlings (Pinus contorta, Picea glauca, and Picea mariana) and twospecies of bare-root conifer seedlings (Pinus sylvestris and Larix sibirica),and on the colonization of these seedlings bysix species of ectomycorrhizal fungi (Hebeloma longicaudum, Laccaria bicolor,Paxillus involutus, Pisolithustinctorius, Rhizopogon vinicolor andSuillus tomentosus), was studied. Thegrowth of the seedlings in both container-grownand bare-root nurseries increased as the levelsof fertilizer increased. For better seedlinggrowth and environmental quality it may be possible to reduce the level of fertilizers in commercial nurseries upto 33% by using selected mycorrhizal fungi.Ectomycorrhizal colonization in all seedlingswas not affected by fertilizer levels. Hebeloma longicaudum, L. bicolor, P.involutus, and P. tinctorius formedwell-developed ectomycorrhizae, whereasectomycorrhizal development by R.vinicolor and S. tomentosus was poor.Native mycorrhizal fungi colonizednon-inoculated control seedlings; however,their colonization was always lower than withinoculated fungi.  相似文献   

16.
水分胁迫下外生菌根对马尾松幼苗养分吸收的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
利用接种褐环乳牛肝菌、鸡油菌、彩色豆马勃、土生空团菌的马尾松苗,在温室采用盆栽方法,研究水分胁迫下,不同菌根化苗对养分的吸收情况.结果表明:在水分胁迫下,外生菌根能显著提高马尾松幼苗对N、P、K的吸收.随胁迫加剧,菌根化苗N、P含量和磷酸酶活性均呈先增后降趋势,在中度胁迫时达最大,其中,接种褐环乳牛肝菌l的苗对N、P吸收效果最好,分别比对照增加56.65%和44.32%;接种彩色豆马勃和褐环乳牛肝菌1的马尾松苗的K含量随胁迫的加剧先增后降,在轻度胁迫时达最大,分别比对照增加221.99%和200.00%.N和K主要分布在叶中,而P在根、茎、叶中分布较均匀,菌根的形成有利于马尾松幼苗N、K的上行运输.在轻度和中度胁迫下,接种褐环乳牛肝菌1对提高马尾松苗N、P、K的吸收和含量效果最好,同时也促进了马毛松幼苗生长和抗旱能力的增强.  相似文献   

17.
A pine forest in the south of Sweden was treated with lime and wood ash. In early June, 12 months after the ash treatment and 18 months after the lime treatment, one year old Pinus syhestris L. seedlings were planted. Four months later six différent ectomycorrhizal types had infected the seedlings in all the treatments. A mycorrhizal type designated “pink”; was more than twice as common in the lime treatments as in the control and ash treatments. Piloderma croceum Erikss. & Hjorts. was significantly more abundant in limed soil than in ash treated soil. The results were compared to those from a bioassy performed in the laboratory, where P. syhestris seedlings had been grown in soil from the same forest. Similar soil pH values in the two studies resulted in different relative infection rates of the mycorrhizal types found. One additional mycorrhizal type, designated “white”; was found in the field experiment. This suggests that mycelial connections to the mature host plants may significantly alter the ability of different fungi to colonize host plant roots in competition with each other compared to when the fungi infect from propagules in the soil.  相似文献   

18.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

19.
Abstract

Mycorrhizal fungi contain chitin in their cell walls and may be influenced by transgenic chitinases. This study examined the ability of a transgenic tree, silver birch (Betula pendula Roth), constitutively expressing the sugar beet chitinase IV gene, to form ectomycorrhizae with Paxillus involutus (Batsch) Fr. Eight transgenic lines showing varying levels of sugar beet chitinase IV expression and the non-transgenic control plants were inoculated by P. involutus in vitro, and the morphology of the mycorrhizae, mycorrhization efficiency and shoot and root fresh weights were studied. All the transgenic birch lines were able to form normal ectomycorrhizae containing distinctive mantles and Hartig nets. The level of sugar beet chitinase IV expression had no significant influence on mycorrhizal colonization. The only significant differences between transgenic and control plants were detected in weight parameters. According to these results, the expression of sugar beet chitinase IV in silver birch is not deleterious to formation of ectomycorrhizae between birch and P. involutus.  相似文献   

20.
实验研究接种聚丛球霉菌(Glomuse aggrregattum)、幼套球霉菌(Glomuse etunicatum)、摩西球霉菌(Glomuse mossea)后对降香黄檀幼苗生殖生长以及营养吸收利用的影响,结果显示:1)3个菌根菌侵染效果较好,且降香黄檀幼苗对3种菌种有较强的依赖性。2)其中接种聚丛球霉菌的苗高、地茎、生物量、叶绿素含量及对营养元素N,P的吸收利用优于其他2个菌种,并与CK差异达显著水平;其苗高、地茎高于CK 44%和78%,生物量、叶绿素含量分别是CK的3.6,1.9倍,根部、茎部及叶部含N量是CK的1.47,2.03,1.34倍,而根部、茎部及叶部含P量是CK的1.53,1.47,2.09倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号