首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Exudation of low molecular weight organic acids by fungi was studied in a project focusing on bioremediation of metal-contaminated soils. The production of acids (mainly oxalic and citric acid) as a response to nutrient variations and presence of metals has recently been reported (Arwidsson et al. 2009). A significant release of metals was observed and was related not only to the production of organic acids but also to the resulting pH decrease in the systems. The processes governing the release and redistribution of metals in the soil–water fungus system were the focus of the present continuation of the project, based on observations of Aspergillus niger, Penicillium bilaiae, and a Penicillium sp. The release of lead was 12% from the soil with the second highest initial load (1,600 mg kg?1), while the release of copper was 90% from the same soil (140 mg kg?1). The dominating mechanism behind the release and subsequent redistribution was the change in pH, going from near neutral to values in the range 2.1–5.9, reflecting the production of organic acids. For some of the systems, the formation of soluble complexes is indicated (copper, at intermediate pH) which favors the metal release. Iron is assumed to play a key role since the amount of secondary iron in the soils is higher than the total load of secondary heavy metals. It can be assumed that most of the heavy metals are initially associated with iron-rich phases through adsorption or coprecipitation. These phases can be dissolved, or associated metals can be desorbed, by a decrease in pH. It would be feasible to further develop a process in technical scale for remediation of metal-contaminated soil, based on microbial metabolite production leading to formation of soluble metal complexes, notably with copper.  相似文献   

2.
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe–Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.  相似文献   

3.
To increase the phytoextraction efficiency of heavy metals and to reduce the potential negative effects of mobilized metals on the surrounding environment are the two major objectives in a chemically enhanced phytoextraction process. In the present study, a biodegradable chelating agent, NTA, was added in a hot solution at 90°C to soil in which beans (Phaseolus vulgaris L., white bean) were growing. The concentrations of Cu, Zn and Cd, and the total phytoextraction of metals by the shoots of the plant from a 1 mmol kg?1 hot NTA application exceeded those in the shoots of plants treated with 5 mmol kg?1 normal NTA and EDTA solutions (without heating treatment). A significant correlation was found between the concentrations of metals in the shoots of beans and the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the application of a hot solution might play an important role in the process of chelate-enhanced metal uptake in plants. The application of hot NTA solutions did not significantly increase metal solubilization in soil in comparison with a normal application of solution of the same dosage. Therefore, the application of a hot NTA solution may provide a more efficient alternative in chemical-enhanced phytoextraction, although further studies of techniques of application in fields are sill required.  相似文献   

4.
The impact of autochthonous anaerobic bacteria on the release of metals in river sediment was studied. The sediments were characterized and bacterial activity was monitored in a batch reactor, where the sediments were incubated with a synthetic substrate solution containing glucose as carbon source. The results showed that metal release was correlated to the bacterial growth (carbon mineralization). In particular, a relationship between iron reduction and metal release was observed indicating that iron-reducing bacteria had a strong influence. By reductive dissolution of iron oxides, bacteria also released their associated toxic elements into the liquid phase. While organic analysis showed acetate and butyrate production leading to a decrease in pH and indicating a Clostridium fermentative bacteria activity, the results did not indicate any direct role of organic acids in the dissolution of iron and their associated metals.  相似文献   

5.
This investigation examines metal release from freshwater sediment using sequential extraction and single-step cold-acid leaching. The concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn released using a standard 3-step sequential extraction (Rauret et al., 1999) are compared to those released using a 0.5 M HCl; leach. The results show that the three sediments behave in very different ways when subject to the same leaching experiments: the cold-acid extraction appears to remove higher relative concentrations of metals from the iron-rich sediment than from the other two sediments. Cold-acid extraction appears to be more effective at removing metals from sediments with crystalline iron oxides than the “reducible” step of the sequential extraction. The results show that a single-step acid leach can be just as effective as sequential extractions at removing metals from sediment and are a great deal less time-consuming.  相似文献   

6.
The solution phase forms of Cu, Mn, Ni, and Zn in digested sewage sludge and a soil/sludge mixture were investigated. Gel filtration chromatographic analysis indicated that Cu and possibly Ni were maintained in solution by association with a soluble, high molecular weight organic fraction; Mn solubility was due to the presence of unbound inorganic species and soluble Zn was distributed equally between the two forms. Speciation of the metals in the solution phase of the soil/sludge mixture generally reflected that of the sludge. However, the total amount of soluble Mn in the soil/sludge mixture was approximately 25 times greater than in the sludge and was attributed to heavy metal induced release of indigenous soil Mn. Increases in the quantities of soluble Ni and Zn in both the sludge and the soil/sludge mixture following equilibration with 40 mg L?1 NTA were due to conversion of solid phase forms to soluble metal-NTA complexes. The preferential complexation of NTA with Cu already present in soluble organic forms resulted in a change in speciation without a corresponding increase in solubility. The importance of changes in speciation with regard to potential metal mobility and bioavailability within sludge-amended soil is discussed.  相似文献   

7.
不同水动力下湖泊沉积物重金属释放通量   总被引:2,自引:0,他引:2  
为探讨不同水动力下湖泊沉积物重金属释放通量,该文在室内可循环式水槽试验中模拟了动水条件下沉积物的运动,试验时通过控制闸门开关改变水槽内水体流速,探讨了不同水动力下沉积物的悬浮与释放规律。以鄱阳湖沉积物为水槽试验沉积物,通过分析沉积物中Cu、Zn、Cd、Pb浓度的变化,建立了当沉积物粒径为50~200μm时,沉积物中Cu、Zn、Cd、Pb释放通量与流速的关系式。结果表明:释放通量随水体流速增大呈指数增长,当流速分别为15、35、65 cm/s时,Cu释放通量分别为45.82、65.18、127.16 mg/(m~2·d);Zn为104.35、139.82、220.5 mg/(m~2·d);Cd为0.116、0.163、0.28 mg/(m~2·d);Pb为4.78、6.72、11.57 mg/(m~2·d),鄱阳湖水体重金属浓度计算值与实测值误差在5%~20%范围内。研究结果可为湖泊重金属污染控制及治理提供科学依据。  相似文献   

8.

Purpose

Laboratory experiments were conducted to examine the potential for metal (Cu, Ni and Zn) and herbicide (simazine, atrazine and diuron) release from agricultural soil and dredged sediment in managed realignment sites following tidal inundation.

Materials and methods

Column microcosm and batch sorption experiments were carried out at low (5?practical salinity units, psu) and high (20?psu) salinity to evaluate the changes in the partitioning of metals and herbicides between the soil/sediment and the aqueous phase, and the release of metals and herbicides from soil/sediment to the overlying water column.

Results and discussion

For both the metals and herbicides, the highest contaminant loads were released from the sediment within the first 24?h of inundation suggesting that any negative impacts to overlying water quality in a managed realignment scheme will be relatively short term following tidal inundation of soil and sediment. The release of metals was found to be dependent on a combination of salinity effects and the strength of binding of the metals to the soil and sediment. In the case of the herbicides, salinity impacted on their release. Particulate organic carbon was found to control the binding and release of the herbicides, highlighting the importance of assessing soil and sediment organic matter content when planning managed realignment sites.

Conclusions

Our research demonstrates that metals and herbicides may be released from contaminated sediments and agricultural soils during initial periods of flooding by seawater in managed realignment sites.  相似文献   

9.
Sediments from an eutrophic reference lake (L. HjÄlmaren) and eleven oligotrophic Swedish lakes were analyzed for heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and tested for whole sediment toxicity to Daphnia magna. Whole sediment toxicity, expressed as 48-hr EC50 on a wet weight basis in reconstituted dilution water, ranged from 2.8% (most toxic) to >32% (least toxic). Correlations between bulk sediment heavy metal concentrations and toxicity were significant (P≤0.05) for Hg, Pb, and Zn. However, a causal connection between the concentrations of these metals and toxicity was not supported by the results from metal-spiked sediment toxicity tests. In addition sediment toxicity was not affected by the addition of EDTA, which is a strong chelator known to reduce metal toxicity. After storage for several months test sediments either remained nontoxic, toxic, or increased in toxicity. These results illustrate some of the difficulties in the interpretation of bulk sediment chemistry data and the release of toxic chemicals from sediment samples, highlighting the effect of sediment storage on toxicity.  相似文献   

10.
Mining operations at Mårsätter in 1877–81 resulted in increased metal loading to a small lake, notably as sulphidic tailings. The event is taken as an opportunity to study the present environmental impact of a historical single major metal release. Lake water and four sediment cores were sampled and analysed for principal and trace elements in solid and aqueous phases as well as general hydrochemical conditions. Chronologies were determined from 206Pb/207Pb ratios and historical records. Ordinary sedimentation after the event has lead to that the tailings are found as a distinct layer at a depth of 18–22 cm in the sediment. The layer is characterized by elevated metal concentrations in the solid and pore water phases, respectively, circum neutral pH and sulphate concentrations below detection. Geochemical modelling indicated a preference for carbonate equilibrium in the waste while sulphides prevailed above it. It is concluded that the growth of the ordinary sediment on top of the waste has lead to a physicochemical barrier that seals of the waste from the overlying sediment. Chemical or physical rupture of the barrier will release the metals to downstream regions. According to the chronologies at least three sources have contributed to the present elevated levels of metals, in additions to the release of tailings. Copper from a historical blast furnace prior to the event at Mårsätter, transport from mineralized parts of the watershed and release of contaminated water from present mining operations maintain elevated levels of notably zinc, silver, cadmium and lead. At present less than 10% of the lead content at the sediment/water interface comes from atmospheric deposition. Increased levels of antimony and thallium were not observed prior to ca 1950.  相似文献   

11.

Purpose

The aim of this study was to quantify the release of the hydrophobic contaminant emamectin (EMA) from marine sediments in response to inputs of organic material (OM) and/or oil, in the presence or absence of two different bioturbating species. Specifically, it was designed to test whether oil would decrease the release of EMA and whether OM and/or the presence of bioturbating macrofauna would increase the release of EMA from sediment.

Materials and methods

Experimental sediments were spiked with EMA (5 μg kg?1 wet sediment). The different treatments were prepared by the addition of OM (310 g algae m?2) and/or an aliphatic oil (29.6 g oil m?2). In addition, two bioturbating species, Brissopsis lyrifera or Ennucula tenuis, were added in some aquaria, resulting in a total of 12 treatments with four replicates each. Water samples for analyses of silicate and EMA and sediment samples for analyses of total organic carbon (TOC) were taken at the start and end of the experimental exposure. In addition, oxygen was measured during the experimental period of 8 days. Fluxes were calculated and compared between treatments using generalised linear models (GLMs).

Results and discussion

The EMA release flux was significantly increased in treatments with added OM, possibly reflecting the presence of soluble complexes formed between EMA and dissolved OM. The presence of B. lyrifera caused a small, but statistically significant, increase in EMA release from sediment. This species would be expected to have a stronger effect on bioirrigation and particle mixing than E. tenuis, particularly when the population density of the latter species is low (as in the present experiment). There were no consistent effects of oil in this experiment, but the presence of oil decreased the EMA release flux when co-occurring with added OM and/or B. lyrifera. Increased retention of hydrophobic contaminants in the presence of oil is consistent with the existing literature on contaminant fate.

Conclusions

The results from this study highlight the need to consider both the infauna present in polluted areas and the level of organic enrichment of the sediment when modelling the environmental fate of hydrophobic contaminants. It also highlights that labile OM and refractory oil appear to differ in their effects on the remobilisation of hydrophobic organic contaminants, by reducing and increasing release, respectively.  相似文献   

12.
用室内土培试验方法,在采自田间的Pb、Cd和As复合污染土壤中单作或间作龙葵和大叶井口边草条件下,筛选出修复Pb-Cd-As复合污染土壤较好的种植方式为间作。进一步在间作方式下,研究了外源添加不同浓度EDDS(乙二胺二琥珀酸)、NTA(氨三乙酸)和EDTA(乙二胺四乙酸)对植物吸收Pb、Cd和As的影响。结果表明,间作显著促进了龙葵地上部对Cd的吸收量和大叶井口边草地上部对As的吸收量,间作龙葵地上部吸收Cd和大叶井口边草地上部吸收As含量分别是单作龙葵和大叶井口边草的1.3倍和1.4倍,说明间作龙葵和大叶井口边草比单作更有利于修复Pb-Cd-As复合污染土壤。间作条件下,大叶井口边草对螯合剂的耐性比龙葵更强。3、6、12mmol.kg-1EDTA能极显著增加土壤中Pb、Cd有效态含量,从而促进龙葵地上部对Pb吸收和大叶井口边草地上部对Pb、Cd吸收。EDTA比NTA具有更强的提高土壤Pb、Cd有效态的能力,但对土壤As有效态促进作用与EDTA相比,NTA效果极显著,1.5、3mmol.kg-1NTA处理极显著提高土壤As有效态含量及促进龙葵和大叶井口边草地上部对As吸收。  相似文献   

13.
Sediment re-suspension experiments have been conducted to predict contaminants release from sediments to the water column, during dredging operations. In this context, polluted, anoxic estuarine sediments from Rio de Janeiro, SE Brazil, were suspended in oxygenated estuarine water, in laboratory experiments intended to simulate their dispersion by flood flow or dredging operations, in order to measure any release into solution of heavy metals originally present as sulphides that might suffer oxidation. Oxidation of sulphides to sulphate acidified the waters but only after at least 5 h of suspension. Furthermore, the oxidation of acid volatile sulphide (AVS) to sulphate was more rapid and only proceded to completion within 5 days, when large quantities of sulphide forming metals other than Fe were not present. In sediment heavily polluted with zinc, oxidation of AVS was slower and incomplete, resulting in soluble release of a much smaller fraction of the Zn present in the sediment and a maximum dissolved zinc concentration that was much lower than that resulting from less contaminated sediment. The maximum percentages of sulphide-bound metals appearing in solution at any time during re-suspension were low, less than 46% in all cases and typically less than 10%. These maxima were manifested only after acidification by sulphate formation. Appreciable metal dissolution would not occur in an estuary if dilution and dispersion separated the sediment from acid generated or if dredged material settled before acidification occurred.  相似文献   

14.
Batch and upflow column leaching experiments were used to evaluate the nature and extent of Cu and Zn solubilization from contaminated soil by nitrilotriacetic acid (NTA) in 0.025 M NaClO4. In batch soil suspensions, NTA levels of 10?5 to 10?3 M substantially promoted Cu and Zn release from the metal-enriched soil. The ability of NTA to enhance Cu and Zn solubility decreased with increasing solution acidity probably due to competitive binding of NTA by protons and Fe released by hydrous oxide dissolution. However, in the pH range typically encountered in northeastern U.S. soils, soluble metal levels were nearly constant for a given NTA concentration. Leaching soil columns with NTA solutions enhanced Cu release more than Zn, as the enrichment ratio (cumulative metal leached by NTA compared to the 0.025 M NaClO4 control leachate) after 85 pore volumes displacements was 23.6 and 4.3 for Cu and Zn, respectively. While Cu release by 0.01 M CaCl2 differed little from the control, 0.01 M CaCl2 was substantially more effective than 10?5 M NTA in displacing bound Zn. The data reflect different retention mechanisms for Cu and Zn in this soil.  相似文献   

15.

Purpose

A bioremediation process for sediments contaminated with heavy metals has been developed based on two core stages: (1) conditioning of dredged sludge using plants; and (2) solid-bed bioleaching of heavy metals from the resulting soil-like material using microbially produced sulfuric acid. In laboratory and pilot-scale tests, reed canary grass (Phalaris arundinacea) was found to be best suited for the conditioning process. To demonstrate the feasibility of conditioning in practice, a study on a larger scale was performed.

Materials and methods

The sediment originated from a detritus basin of the Weisse Elster River in Leipzig (Saxony, Germany) and was polluted with heavy metals, especially with zinc and cadmium. The dredged sludge was a muddy-pasty, anoxic, and had a high organic matter content. The experimental basin (base area of 50?×?23 m) was filled with 1,400 m3 of sludge to a height of 1.2 m. Conditioning was carried out in five segments that were planted with pre-cultivated Phalaris plants at two plant densities, sowed with Phalaris seeds using two different seeding devices, and grown over by vegetation. Plant development and changing sediment characteristics were analyzed during two vegetation periods by harvesting plant biomass every 4 weeks and sampling sediment material at two different depths every 2 weeks over a total duration of 475 days.

Results and discussion

At the end of the second vegetation period, the pre-cultivated Phalaris plants had reached a height of 2 m, compared to 1.8 m for the sowed Phalaris seeds. Regarding root penetration and the degree of sediment conditioning, the less expensive sowing techniques yielded similar results to planting pre-cultivated plants. The content of heavy metals in the Phalaris plants was below the permissible limits for Germany. The vegetation evapotranspirated large amounts of water from the sediment and transported oxygen into the anoxic sludge. The water content was reduced from 68 to 37 %. The muddy-pasty sludge turned into a soil-like oxic material with a high permeability to water. The oxidation of sediment-borne compounds lowered the pH from 7.3 to 6.0. Due to the high total precipitation in Saxony in the summer of 2010, a maximum of 65 % of the sediment was conditioned.

Conclusions

The feasibility of the first core stage of the bioremediation process for sediments was demonstrated in practice by conditioning 1,400 m3 of dredged sludge using reed canary grass. To establish the proposed sediment treatment in practice, the applicability of the central core stage–solid-bed bioleaching of conditioned soil-like sediment–will also be tested at a larger scale.  相似文献   

16.
In this study, the occurrence of toxic heavy metals (As, Cd, Cr, Cu, Pb, and Zn) and relative bioaccumulation in biota samples were investigated in a freshwater ecosystem, the Basento river, one of the main aquatic systems in the south of Italy, which over the last years has been transformed into a sink of urban and industrial wastes. Therefore, the levels of arsenic, cadmium, chromium, copper, lead, and zinc were determined in water, sediments, and tissues of some macroinvertebrate—which are natural assessment endpoints for the evaluation of ecological risk in aquatic systems. Accumulation factors, as a ratio between the concentration of a given contaminant in biota and the one in an abiotic medium, were considered in order to estimate heavy metal contamination loads in biota. Statistical analysis was performed for a comparative evaluation of bioaccumulation among various macroinvertebrates, according to different feeding guilds. The Tukey honestly significantly different test showed significant differences in the bioaccumulation of As, Cd, and Cr among the considered biological receptors (collector–gatherer, predator, and filterer), suggesting that the biological uptake from immediate contact with the sediment or solid substratum (collector–gatherer), instead of the bioconcentration from water (filterer) or biomagnification along the biotic food webs (predators), is the more effective biological sequestering pathway for these metals. Biota–sediment accumulation factors, commonly used for the evaluation of sediment’s role in aquatic systems contamination, were determined for the considered metals. A linear correlation between the concentrations of As, Cd, Cr, and Zn in macroinvertebrates and those in the sediments suggested that the metal uptake data in macroinvertebrates can provide useful information for the estimation of heavy metal exposure risk or bioavailability when making assessments of sediment toxicity in freshwater ecosystems.  相似文献   

17.
The behavior of metals in sediments after their disposal to land has important implications for the environmental management. The sediment from the Carska Bara (Serbia) was polluted with adequate metal salts in order to reach severe contamination based on the pseudo-total metal content of Pb, Cd, Ni, Zn, Cu, and Cr according to the corresponding Dutch standards and Canadian guidelines. The toxicity and fate of the metal in sediment depend on its chemical form, and therefore, quantification of the different forms of a metal is more meaningful than the estimation of its total concentration. In this study, fractionation of metals in sediment has been investigated to determine its speciation and ecotoxic potential, as well as evaluation of metal potential toxicity based on the simultaneously extracted metals (SEMs) and acid volatile sulfides (AVSs) analysis at the beginning of the experiment and after 5?weeks of sediment aging. The investigations suggest that Cd, Pb, and Zn have a tendency to associate with labile fraction, the most mobile and most dangerous fraction for the environment. Risk assessment code revealed their high risk. Copper and chromium showed low to medium risk to the aquatic environment. Nickel showed no risk to the aquatic environment. This was the case at the beginning and after 5?weeks of aging. Aging yielded an increased mobility of all metals based on the increased proportion in mobile fractions. The ??[SEM i ]/[AVS] ratio was found to be >1 both at the beginning and after 5?weeks of aging, with the ratio showing an increase with time. This ratio indicates the potential availability/toxicity and, according to the US EPA criteria, the samples belong to the group with probable negative effect. If particular metals are considered, only the ??[SEM i ]/[AVS] ratio for zinc was >1 at the beginning. After 5?weeks, the ratio was >1 for zinc, lead, and copper. Comparison of the results of sequential extraction and the results of SEM and AVS analysis showed good agreement for lead and zinc.  相似文献   

18.
Nutrient (C, N and P) and metal (Cr, Cu, Ni, Pb and Zn) content and dynamics of suspended and channel bed sediments were analysed within the rural Attert River basin (Luxembourg). This basin is representative of the main physiographic characteristics of the country, where there is currently little information available on the composition and dynamics of fluvial sediment. Stream bed fine-grained sediment samples (n?=?139) collected during low flow conditions and time-integrated suspended sediment samples (n?=?183) collected during storm runoff events (October 2005 to April 2008) in seven nested basins ranging from 0.45 to 247?km2 were analysed. Nutrient and metal spatial patterns, temporal trends and the relationship between their content and storm runoff characteristics (e.g. maximum discharge and sediment concentration) were assessed. Results showed a high spatial and temporal variability, mainly associated with basin characteristics and local inputs. Higher values of total C were measured in the highly forested basins located in the northern part of the Attert River basin, whereas the highest values of total P were mainly associated with material coming from grassland and with the inflow of wastewater treatment plants (i.e. higher values of total P were measured in the southern part of the basin). The abundance of metals, not only in suspended but also in channel bed sediments, was generally as follows: Zn > Cr > Ni > Pb > Cu. Both nutrient and metal concentrations were at a maximum at the beginning of the wet season, after having been accumulated during the summer. These values tended to decrease during autumn and winter due to sediment mobilisation, and a higher flow capacity to transport coarser particle fractions from the sources. In general, concentrations of nutrients and metals on suspended sediment were negatively correlated with antecedent precipitation, total precipitation, total specific discharge and maximum discharge, which has been previously associated to a ??dilution?? effect during storm runoff events. Results show that both sediment sources and hydrologic events play an important role on the spatial and temporal variability of sediment-associated nutrient and metal contents.  相似文献   

19.
A comparison of neutral freshwater lakes and acidic coal mining lakes with respect to both, in-lake alkalinity generation and P mobilization, has been made to predict the extent of the possibility of P remobilisation in acidic mining lakes creating eutrophication. It is hypothesized that the maturing process of an acid mining lake is comparable to the recent history of the increasing productivity observed in SO42--rich freshwater lakes. This hypothesis is based on the observation that (1) with rising pH over time the atomic S:Fe ratio in the acidic waters is increasing because only a fraction of the SO42--S but nearly all Fe is usually buried in the sediment; (2) the potential of their sediments to immobilize P is at present linked to its continuous accumulation at the sediment together with the stock of its binding partners, mainly Fe(III) compounds; (3) the input of organic matter stimulating the SO42- reduction and the formation of insoluble complexes of sulfide with ferrous Fe will enhance not only the generation of alkalinity, but will also increase the mobility and release of P.  相似文献   

20.
Polluted sediments are periodically subjected to resuspension processes resulting from natural events (e.g. storms, strong waves) as well as from anthropogenically induced activities (e.g. dredging). The main part of the resuspended material is initially in an anoxic state and will be reoxidized more or less quickly in the oxic water column. In laboratory experiments reflecting, as far as possible, natural conditions (e.g. constant pH) the release of Cd, Cu and Zn during this reoxidation phase was investigated. Up to 2% of the particulate bound heavy metals were remobilized from the sediments. In addition the evolution of the concentrations of the anions PO4, SO4, NO3 and NH4 were measured to examine the influence of microbial processes on the release of trace elements. Cell counts and microbial activity of certain micro-organisms during the release processes were also investigated. The investigations illustrated that biological activity has a significant effect on release. In all sediment samples the release of cadmium was delayed in comparison with the other elements even in sediments from different river systems. The influence of different microbial processes on this divergent behavior was examined. The significance of dredging activities to the remobilization processes during reoxidation of anoxic sediments in the Elbe River is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号