首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
OBJECTIVE: To determine antiemetic efficacy of prophylactic administration of dexamethasone and its influence on sedation in cats sedated with xylazine hydrochloride. ANIMALS: 6 healthy adult cats (3 males and 3 females). PROCEDURE: The prophylactic antiemetic effect of 4 doses of dexamethasone (1, 2, 4, and 8 mg/kg of body weight, IM) or saline (0.9% NaCl) solution (0.066 ml/kg, IM) administered 1 hour before administration of xylazine (0.66 mg/kg, IM) was evaluated. Cats initially were given saline treatment (day 0) and were given sequentially increasing doses of xylazine on days 7, 14, 21, and 28. After xylazine injection, all cats were observed for 30 minutes to allow assessment of frequency of emesis and time until onset of the first emetic episode.The influence of dexamethasone on xylazine-induced sedation in these cats also was evaluated. RESULTS: Prior treatment with 4 or 8 mg/kg of dexamethasone significantly reduced the frequency of emetic episodes and also significantly prolonged the time until onset of the first emetic episode after xylazine injection. Time until onset of the first emetic episode also was significantly prolonged for dexamethasone at a dose of 2 mg/kg. Time until onset of sedation after administration of xylazine was not altered by administration of dexamethasone. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone (4 or 8 mg/kg, IM) significantly decreased the frequency of emetic episodes induced by xylazine without compromising sedative effects in cats. Dexamethasone may be used prophylactically as an antiemetic in cats treated with xylazine.  相似文献   

2.
Twenty-two juvenile African elephants were given a combination of xylazine (mean +/- SD = 0.14 +/- 0.03 mg/kg of body weight) and ketamine (1.14 +/- 0.21 mg/kg) as a single IM injection; one elephant was immobilized twice, 77 days apart. After injection, 14 elephants were immobilized, 4 were sedated deeply, 2 were sedated moderately, and 2 were sedated minimally. Immobilized elephants had a mean immobilization time of 11.6 +/- 6.9 minutes. At the conclusion of a variety of clinical procedures, 12 of the 14 elephants immobilized with a single dose combination of xylazine and ketamine were given yohimbine (0.13 +/- 0.03 mg/kg) IV, and the remaining 2 elephants were allowed to recover spontaneously; the elephants given yohimbine had a mean standing time of 2.4 +/- 1.1 minutes. Of the 8 sedated elephants, 5 were given an additional dose of combined xylazine (0.08 +/- 0.03 mg/kg), and ketamine (0.61 +/- 0.19 mg/kg) IM, and 1 elephant was given ketamine (0.47 mg/kg) IV. After injection, 4 of the 8 elephants were recumbent laterally within 17 minutes and 2 remained standing, under deep sedation. Seven of the 8 elephants were given yohimbine (0.13 +/- 0.03 mg/kg) IV; all were ambulatory in 2 minutes. Results indicated that yohimbine may be useful in controlling duration of xylazine-ketamine sedation and immobilization in juvenile African elephants.  相似文献   

3.
Antagonism of xylazine sedation by 4-aminopyridine and yohimbine in cattle   总被引:2,自引:0,他引:2  
Twenty-four crossbred steers (4 groups of 6 steers each) were injected IM with a standard dosage range of xylazine hydrochloride (0.2 to 0.3 mg/kg of body weight). When the steers were maximally sedated, group I (control group) were given isotonic saline solution (1 ml, IV), group II were given 4-aminopyridine (4-AP, 0.3 mg/kg) IV, group III were given yohimbine hydrochloride (0.125 mg/kg) IV, and group IV were given 4-AP (0.3 mg/kg) plus yohimbine hydrochloride (0.125 mg/kg) IV. The 4-AP decreased mean standing time (MST; time until animal could stand unaided) from 94.3 minutes (control) to 13.4 minutes. Yohimbine decreased MST to 27 minutes. The combination of 4-AP + yohimbine decreased MST to 7.4 minutes. Mean total recovery time (MTRT; time from xylazine injection until normal behavior, including eating and drinking) was not significantly (P = greater than 0.05) decreased from control values by any of the antagonists tested. The combination of 4-AP + yohimbine decreased MST in animals given a 3X overdose of xylazine (0.6 mg/kg) from 124 minutes (control) to 30.3 min. The MTRT was not significantly (P greater than 0.05) decreased from control values. Two animals given a 5X overdose of xylazine (1 mg/kg) and then given 4-AP + yohimbine had a MST of 32.5 minutes and a MTRT of 3.7 hours. The combination of 4-AP + yohimbine produced marked antagonism of xylazine sedation in cattle. The combination of antagonists may prove to be useful for the arousal of animals sedated with xylazine alone or with a combination of sedatives including xylazine.  相似文献   

4.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

5.
Effect of yohimbine on xylazine-induced immobilization in white-tailed deer   总被引:1,自引:0,他引:1  
Two groups of white-tailed deer were given IM injections of xylazine with a projectile syringe. Deer in one of the groups served as controls and did not receive any treatments other than xylazine. Deer in the other group were given yohimbine IV at various times (15 to 171 minutes) to evaluate its effect on xylazine-induced immobilization. In 5 control deer given 3.7 +/- 1.2 mg of xylazine/kg (mean +/- SD), onset of recumbency was 13 +/- 2 minutes and time to standing was 268 +/- 76 minutes. In 20 principal deer given 2.8 +/- 1.0 mg of xylazine/kg, onset of recumbency was 8 +/- 7 minutes, time to sitting after giving yohimbine was 3 +/- 4 minutes in 18 of the deer, and time to standing after giving yohimbine was 4 +/- 5 minutes in 19 of the deer. Most of these deer were still moderately sedated 30 minutes after injection of yohimbine, but none of them became reimmobilized or as deeply sedated as before the injection of yohimbine. Yohimbine also reversed the bradycardia and respiratory depression induced by xylazine.  相似文献   

6.
The effects of four intravenous combinations, xylazine (0.7 mg/kg)/methadone (0.1 mg/kg), xylazine (0.7 mg/kg)/buprenorphine (0.004 and 0.006 mg/kg) and acepromazine (0.05 mg/kg)/buprenorphine (0.006 mg/kg) on arterial blood pressure, central venous pressure, heart rate, respiratory rate and blood gases were studied in four experimental ponies. With xylazine/buprenorphine and xylazine/methadone onset of sedation was rapid and obvious and although no surgical or diagnostic procedures were carried out, sedation was judged to be satisfactory for the next 30 to 40 minutes. Onset of sedation after intravenous injection of acepromazine/buprenorphine was slower and less obvious, while its duration was difficult to determine for the ponies could be aroused by noise even when apparently fully sedated. The observations indicated that at the stated doses all the drug combinations should be safe for clinical use.  相似文献   

7.
Atipamezole antagonism of xylazine sedation was evaluated in six ponies. Atipamezole (0.15 mg/kg) or saline was injected intravenously 15 minutes after the ponies had been sedated with xylazine (1.0 mg/kg). Arterial blood pressure and gases, pulse and respiratory rates, the electrocardiogram, nose-to-ground distance and a subjective sedation score were recorded. The pretreatment nose-to-ground distance and PaO2 returned to normal sooner after atipamezole than after saline and the ponies' appetite and normal locomotion also recovered sooner. No significant differences were observed between the effects of saline and atipamezole on the other measurements.  相似文献   

8.
ABSTRACT

Aims: To compare the effects of intrathecal anaesthesia using procaine and xylazine, with and without sedation with I/V xylazine and butorphanol, on sedation and cardiorespiratory measures in calves undergoing umbilical surgery.

Methods: Male dairy calves, aged <3 months, were recruited that had enlargement of the umbilical stalk which was abnormal when palpated. They were assigned to receive either intrathecal injection between the sixth lumbar and first sacral vertebrae of 4?mg/kg of 2% procaine and 0.2?mg/kg 2% xylazine, with I/V injection of 0.02?mg/kg xylazine and 0.1?mg/kg of butorphanol (IT?+?SED group; n?=?6), or the same intrathecal injection and I/V injection of 0.9% saline (IT group; n?=?7). Surgery to correct abnormalities was carried out with calves positioned in dorsal recumbency. Rescue analgesia with injections of 2% procaine around the surgical wound was administered when movements triggered by surgery were observed. Post-operative analgesia was provided using I/V 0.5?mg/kg meloxicam. Duration of surgery was recorded, as well as degree of sedation, heart rate, systolic (SAP), diastolic (DAP) and mean (MAP) arterial blood pressure during surgery.

Results: All anaesthetic and surgical procedures were successfully performed. Mean total duration of surgery was similar for the IT?+?SED and the IT groups (30.33 (SD 10.09) and 31.00 (SD 10.21) minutes, respectively) (p?=?0.92). All calves were at least mildly sedated from 5 minutes after injections to the end of the surgery. One calf in the IT?+?SED group and three calves in the IT group required rescue analgesia when the umbilicus was manipulated. Between 0 and 10–15 minutes after injection, decreases in mean heart rate, SAP, MAP and DAP were observed in both groups. Mean SAP was lower in the IT?+?SED than the IT group. Hypotension (MAP<60?mm Hg) was present in four calves from the IT?+?SED group and in one from the IT group.

Conclusions and clinical relevance: Intrathecal administration of 2% procaine and 2% xylazine allowed the successful completion of umbilical surgery, but 30% of calves needed rescue analgesia during surgery. Clinically, the addition of I/V sedation seemed to provide better analgesia than intrathecal block alone but resulted in greater hypotension.  相似文献   

9.
Idazoxan was studied at three dose rates to assess its potential as an antagonist to xylazine. Calves in the study group were initially given xylazine at a dose rate of 0.2 mg/kg intravenously followed 12 minutes later by idazoxan at a dose rate of either 0.05, 0.075 or 0.10 mg/kg intravenously. A control group received a saline injection instead of idazoxan. All three dose levels of idazoxan successfully reversed the xylazine induced central nervous depression and all animals stood within two minutes of injection. No residual signs of sedation were noticed and relapse did not occur. In addition idazoxan was successful in reversing respiratory and cardiovascular depression produced by xylazine. The results indicated that idazoxan may be used for rapid reversal of xylazine induced sedation in calves.  相似文献   

10.
The effects of either xylazine (0.25 mg/kg) intramuscularly, ketamine (5.5 mg/kg) intramuscularly, or a mixture of xylazine (0.15 mg/kg) and ketamine (2.5 mg/kg) intramuscularly on sedation, analgesia, cardiac and respiratory rates, body temperature and muscle relaxation were studied in the domesticated dromedary camel. Either drug used separately was suitable for sedation and analgesia in the camel. However, the mixture of xylazine and ketamine was superior to either drug used alone. Camels which received the combination of xylazine and ketamine had fewer effects on cardiac and respiratory rates and better analgesia. In addition, they showed better muscle relaxation, less central nervous system irritability and shorter recovery times than camels sedated with ketamine alone.  相似文献   

11.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64–0.96 mg/kg) and intramuscular (1.0–1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6–1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer.

Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6–1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again.

Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

12.
In 2 separate experiments, groups of atropinized cats (6 cats/group) were given acepromazine (0.25 mg/kg of body weight) or xylazine (2.2 mg/kg) IM and anesthetized with pentobarbital. The mean dose of pentobarbital was decreased approximately 36% by acepromazine, and approximately 80% by xylazine, compared with published doses. Anesthetized cats were given IV saline solution (control groups) or were given the antagonists 4-aminopyridine (4-AP; 0.5 mg/kg), yohimbine (0.4 mg/kg), or 4-AP + yohimbine (0.5 mg/kg and 0.4 mg/kg, respectively). In acepromazine-treated cats, 4-AP + yohimbine was the most effective antagonist; arousal and walking occurred in an average of 10.4 minutes and 91.7 minutes, respectively. Yohimbine enhanced the antagonistic effects of 4-AP. In xylazine-treated cats, yohimbine was an effective antagonist; arousal and walking occurred in an average of 2.8 minutes and 12.8 minutes, respectively. Yohimbine did not enhance the antagonistic effects of 4-AP. Mean respiratory rates were decreased by acepromazine, but were increased by xylazine. Thus, respiratory rate depression by pentobarbital was not as marked with xylazine as it was with acepromazine. Changes in mean heart rate were not remarkable with either sedative, and cardiac irregularities were not palpated or auscultated. In healthy cats, the duration of pentobarbital anesthesia can be controlled by 4-AP + yohimbine (acepromazine-pretreated cats) or by yohimbine alone (xylazine-pretreated cats).  相似文献   

13.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64-0.96 mg/kg) and intramuscular (1.0-1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6-1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer. Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6-1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again. Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

14.
Objective  To evaluate the effect of acepromazine or xylazine on Schirmer tear test 1 results in clinically normal cats.
Animals  Sixteen healthy cross-breed cats.
Procedure  The animals were randomly divided into two groups of eight cats each. The first group was sedated with acepromazine alone (0.2 mg/kg) and the second group received only xylazine (2 mg/kg). All cats had Schirmer tear test (STT) readings taken prior to sedation and at 15 and 25 min postsedation.
Results  Sedation with acepromazine or xylazine in cats with normal pre-sedation STT 1 values caused a statistically significant decrease in mean values of tear production in both groups. In acepromazine group the mean ± SEM STT at T15 and T25 were 4.31 ± 0.98 ( P  < 0.001) and 5.18 ± 1.07 ( P  = 0.002). The post-treatment mean ± SEM values in xylazine group were 2.18 ± 0.97 ( P  < 0.001) and 2.62 ± 1.17 ( P  = 0.001) at 15 and 25 min respectively. Comparison between T15 and T25 in acepromazine group ( P  = 0.49) and xylazine group ( P  = 0.56) revealed no significant differences.
Conclusion  These observations indicate that both acepromazine or xylazine significantly reduced tear production in clinically normal cats. In cats, clinicians should measure STT values prior to utilizing acepromazine or xylazine as sedatives in order to accurately assess the results. Moreover, sterile ocular lubricant or tear replacement should be used as a corneal protectant during sedation with these drugs.  相似文献   

15.
Groups of atropinized dogs (6 dogs/group) were sedated with xylazine (2.2 mg/kg of body weight, IM). At recumbency, the dogs were given IV saline solution (control groups), yohimbine (0.05, 0.1, and 0.2 mg/kg), 4-aminopyridine (4-AP; 0.3, 0.6, and 0.9 mg/kg), doxapram (0.5, 1.0, 2.0, and 4.0 mg/kg), or the smallest dose of these antagonists in dual combinations or in triple combination. Two additional groups were sedated with an overdose of xylazine (11 mg/kg, IM). At recumbency, 1 of these groups was given saline solution IV and the other group was given yohimbine IV (0.4 mg/kg) as the antagonist. With the 2.2 mg/kg dose of xylazine, control mean arousal time (MAT) and mean walk time (MWT) were 15.5 minutes and 24.8 minutes, respectively. These values were decreased by the individual antagonists to 0.5 to 2.5 minutes and 0.9 to 7.4 minutes, respectively. Approximate equipotent doses of antagonists (mg/kg) were: yohimbine, 0.2; 4-AP, 0.6; and doxapram, 0.5. Relapses did not occur after yohimbine or 4-AP. With doxapram, muscle tremors and spasms, abnormal postures, or aggressive behavior occurred in several dogs and several dogs had partial or complete relapses. The small doses of individual antagonists were synergistic with regard to MAT, MWT, and duration of residual sedation, but the various combinations of antagonists were not more effective in these regards than were larger doses of the single antagonists. With the overdose of xylazine, control MAT and MWT were 41.5 minutes and 144.5 minutes, respectively. Yohimbine decreased these values to 2.2 minutes and 2.5 minutes, respectively. Relapses did not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

17.
This study aimed to evaluate the effects of a constant rate infusion (CRI) of xylazine or xylazine in combination with lidocaine on nociception, sedation, and physiologic values in horses. Six horses were given intravenous (IV) administration of a loading dose (LD) of 0.55 mg/kg of xylazine followed by a CRI of 1.1 mg/kg/hr. The horses were randomly assigned to receive three treatments, on different occasions, administered 10 minutes after initiation of the xylazine CRI, as follows: control, physiologic saline; lidocaine low CRI (LLCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.025 mg/kg/min); and lidocaine high CRI (LHCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.05 mg/kg/min). A blinded observer assessed objective and subjective data for 50 minutes during the CRIs. In all treatments, heart and respiratory rates decreased, end-tidal carbon dioxide concentration increased, and moderate to intense sedation was observed, but no significant treatment effect was detected in these variables. Ataxia was significantly higher in LHCRI than in the control treatment at 20 minutes of infusion. Compared with baseline values, nociceptive threshold increased to as much as 79% in the control, 190% in LLCRI, and 158% in LHCRI. Nociceptive threshold was significantly higher in LLCRI (at 10 and 50 minutes) and in LHCRI (at 30 minutes) than in the control treatment. The combination of CRIs of lidocaine with xylazine produced greater increases in nociceptive threshold compared with xylazine alone. The effects of xylazine on sedation and cardiorespiratory variables were not enhanced by the coadministration of lidocaine. The potential to increase ataxia may contraindicate the clinical use of LHCRI, in combination with xylazine, in standing horses.  相似文献   

18.
Fifteen cows with bovine spongiform encephalopathy (BSE) and 90 healthy cows were given xylazine intramuscularly at a dosage of 0.15 mg/kg bodyweight. The onset of sedation and of drooling was recorded, and the heart and respiratory rates and the systolic and diastolic blood pressure were measured every five minutes for 40 minutes. All the healthy cows but only five of the 15 cows with BSE became sedated, and the period between the administration of xylazine and the onset of sedation was twice as long in the cows with BSE than in the healthy cows (15.0 [7.5] and 7.6 [2.6] minutes). Throughout the observation period, the blood pressure of the cows with BSE was significantly higher than that of the healthy cows, and the blood pressure of the healthy cows, but not of the cows with BSE, decreased significantly towards the end of the observation period.  相似文献   

19.
Isofluorane is a modern, only slightly depressive inhalation anaesthetic with excellent pharmacologic characteristics in use in equine medicine. In contrast to halothane, isofluorane is hardly broken down in the liver, but is eliminated by the lung. It low solubility in blood permits excellent control of anaesthesia. However, due to its swift elimination from the organism there is heightened risk of premature recovery from isofluorane anaesthesia. In this study the recovery phases of 96 horses were monitored for its duration and the animals' physical coordination. The horses were divided into four groups. Two groups were sedated with xylazine, one of which received postanaesthetic sedation with xylazine, the other saline solution only. The other two groups were sedated with romifidine, either with or without postanaesthetic sedation after general anaesthesia. In this study the horses of Group 4, sedated with 0.02 mg/kg BW romifidine at the moment of extubation, showed the best recovery phase. The number of attempts to arise was reduced and coordination was better. Similar results were obtained by postanaesthetic sedation with 0.2 mg/kg BW xylazine (Group 2). Premedication with 0.08 mg/kg BW romifidine without postanaesthetic sedation (Group 3) could be carried out at mean duration of anaesthesia of 85 minutes with no negative effects observed during the recovery period. Premedication with xylazine without postanaesthetic sedation (Group 1) is not to be recommended, as the number of attemps to stand up was significantly higher and coordination was either weak or significantly poorer than in the other three groups. The results of this study show that post-anaesthetic sedation of horses with an alpha 2-adrenoceptor agonist can improve the recovery phase after inhalant anaesthesia with isofluorane in regard to the number of attempts to arise and the animals' physical coordination.  相似文献   

20.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号