首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Babesia spp. infections were investigated in Bos taurus x Bos indicus dairy cows and calves and in Boophilus microplus engorged female ticks and eggs. Blood samples and engorged female ticks were collected from 25 cows and 27 calves. Babesia spp. was detected in ticks by microscopic examination of hemolymph of engorged female and by squashes of egg samples. Cattle infection was investigated in blood thin smears and by DNA amplification methods (PCR and nested PCR), using specific primers for Babesia bovis and Babesia bigemina. Merozoites of B. bovis (3 animals) and B. bigemina (12 animals) were detected exclusively in blood smears of calves. DNA amplification methods revealed that the frequency of B. bigemina infection in calves (92.6%) and in cows (84%) and of B. bovis in calves (85.2%) and in cows (100%) did not differ significantly (P > 0.05). Babesia spp. infection was more frequent in female ticks and eggs collected from calves (P < 0.01) than from cows, especially in those which had patent parasitemia. Hatching rates of B. microplus larvae were assessed according to the origin of engorged females, parasitemia of the vertebrate host, frequency and intensity of infection in engorged female tick, and frequency of egg infection. Hatching rate was lower in samples collected from calves (P < 0.01) than from cows, and in those in which Babesia spp. was detected in egg samples (P < 0.01).  相似文献   

2.
Babesia bigemina infections were investigated in four genetic groups of beef cattle and in Rhipicephalus (Boophilus) microplus engorged female ticks. Blood samples and engorged female ticks were collected from 15 cows and 15 calves from each of the following genetic groups: Nelore, Angus x Nelore, Canchim x Nelore, and Simmental x Nelore. Microscopic examination of blood smears and tick hemolymph revealed that merozoites of B. bigemina (6/60) as well as kinetes of Babesia spp. (9/549) were only detected in samples (blood and ticks, respectively) originated from calves. PCR-based methods using primers for specific detection of B. bigemina revealed 100% infection in both calves and cows, regardless the genetic group. Tick infection was detected by nested-PCR amplifications showing that the frequency of B. bigemina was higher (P<0.01) in female ticks collected from calves (134/549) than in those collected from cows (52/553). The frequency of B. bigemina was similar in ticks collected from animals, either cows or calves, of the four genetic groups (P>0.05).  相似文献   

3.
OBJECTIVE: To assess the efficacy of ivermectin and moxidectin to prevent transmission of Babesia bovis and Babesia bigemina by Boophilus microplus to cattle under conditions of relatively intense experimental challenge. DESIGN: Naive Bos taurus calves were treated with either pour-on or injectable formulations of either ivermectin or moxidectin and then exposed to larvae of B microplus infected with B bovis or larvae or adults of B microplus infected with B bigemina. One calf was used for each combination of haemoparasite, B microplus life stage, drug and application route. PROCEDURE: Groups of calves were treated with the test drugs in either pour-on or injectable formulation and then infested with B microplus larvae infected with B bovis or B bigemina. B bigemina infected adult male ticks grown on an untreated calf were later transferred to a fourth group of animals. Infections were monitored via peripheral blood smears to determine haemoparasite transmission. RESULTS: Cattle treated with either pour-on or injectable formulations of ivermectin and moxidectin became infected with B bovis after infestation with infected larvae. Similarly, larvae infected with B bigemina survived to the nymphal stage to transmit the haemoparasite to animals treated with each drug preparation. Cattle treated with pour-on formulations of ivermectin and moxidectin then infested with adult male ticks infected with B bigemina did not become infected with B bigemina whereas those treated with the injectable formulations of ivermectin and moxidectin did show a parasitaemia. CONCLUSIONS: Injectable or pour-on formulations of ivermectin and moxidectin do not prevent transmission of Babesia to cattle by B microplus. Use of these drugs can therefore not be recommended as a primary means of protecting susceptible cattle from the risk of Babesia infection.  相似文献   

4.
Bovine babesiosis is responsible for serious economic losses in Uruguay. Haemovaccines play an important role in disease prevention, but concern has been raised about their use. It is feared that the attenuated Babesia bovis and Babesia bigemina vaccine strains may be transmitted by the local tick vector Boophilus microplus, and that reversion to virulence could occur. We therefore investigated the possibility that these strains could be transmitted via the transovarial route in ticks using a Babesia species-specific polymerase chain reaction (PCR) assay. DNA was extracted from the developmental stages of the tick vector that had fed on calves immunized with the haemovaccine. It was possible to detect Babesia DNA not only in adult ticks, but also in their eggs and larvae. In addition, it was shown that calves infested with larvae derived from eggs laid by ticks fed on acutely infected calves, were positive for Babesia using PCR. Caution should therefore be shown with the distribution of the haemovaccine in marginal areas. It is still advisable that suitable tick control measures be used to prevent transovarial transmission and the potential risk of attenuated Babesia reverting to virulence.  相似文献   

5.
Boophilus microplus infected with Babesia bovis were transferred artificially from one splenectomised calf to another during each moult in the parasitic life cycle of the tick. Eggs from the engorged female ticks recovered at the end of the cycle were incubated and the resulting larvae used to infest more splenectomised calves. Babesia bovis was transmitted only by the original larvae used at the commencement of the experiment and it was concluded that the protozoan parasite did not persist in an infective form in the ticks beyond the larval stage.  相似文献   

6.
Blood smear examination, flow cytometry, duplex Polymerase Chain Reaction (PCR), and duplex nested PCR (nPCR) were evaluated for detection of Babesia bigemina and Babesia bovis infections in cattle vaccinated with live attenuated strains. Two groups of four cattle were immunized with either B. bigemina (Bi) or B. bovis (Bo). On day 23 post inoculation (PI), Bi cattle were vaccinated with B. bovis (BiBo) and Bo cattle were vaccinated with B. bigemina (BoBi). Babesia bigemina was first detected by blood smear examination 7.5+/-3.5 days PI in the Bi group and 32.2+/-1.7 days PI in the BoBi group. The first occurrence of B. bovis in blood smears was 8.0 days PI in the Bo group and 36.0+/-2.6 days PI in the BiBo group. Flow cytometry detected parasitized erythrocytes on day 1.7+/-1.5 and 2.2+/-1.5 PI in the Bi and Bo groups, respectively, but did not discriminate between the two Babesia spp. Duplex PCR detected B. bigemina on day 4.0+/-0.8 and 26.0+/-0.8 PI in the Bi and BoBi groups, respectively, and B. bovis on day 4.0 and 25.3+/-0.5 PI in the Bo and BiBo groups, respectively. The duplex nPCR detected B. bigemina on 3.0+/-0.8 and 25.0+/-0.0 days PI in the Bi and BoBi groups, respectively, and 4.7+/-1.7 and 27.7+/-6.2 days PI in the Bo and BiBo groups, respectively. Duplex nPCR outperformed the other tests in terms of specificity and sensitivity, indicating that it is the most useful method for identifying Babesia spp. in cattle following vaccination.  相似文献   

7.
The present study was carried out to detect tick species that infest cattle, and Theileria and Babesia species transmitted by these ticks in Kayseri province (Turkey). A total of 300 cattle were examined for tick infestations. Of the 300 cattle, 117 (39%) were infested with ticks. A total of 1160 ticks belonging to 11 Ixodid genera were collected from the infested animals and their shelters. The most prevalent tick species was Boophilus annulatus 26.37% (306/1160) followed by Hyalomma marginatum marginatum 21.12% (245/1160) and Rhipicephalus turanicus 18.7% (217/1160). The collected ticks were separated into 43 tick pools, according to their species. These pools were examined for bovine Theileria and Babesia species (Theileria sp., Babesia sp., Theileria annulata, T. buffeli/orientalis, Babesia bigemina, B. bovis and B. divergens) by using the reverse line blotting method (RLB). Of the 43 tick pools examined, 6 (14%) were infected with B. bigemina, 4 (9.3%) with T. annulata, and 1 (2.3%) with Babesia sp., whereas 1 (2.3%) displayed mixed infection with T. annulata + B. bigemina. The sequence and phylogenetic analyses of Babesia sp., which could not be identified to the species level by RLB, were performed. In the phylogenetic tree, Babesia sp. (Kayseri 1) grouped with Babesia sp. (Kashi 2), Babesia sp. (Kashi 1), Babesia sp. (Xinjiang) and B. orientalis with 96.8-100% identity.  相似文献   

8.
A total of 207 bovine blood samples were collected from clinically healthy cattle bred in central region of Syria and examined by Giemsa-stained blood smears, nested PCR, ELISA, and IFAT to determine the molecular and serological prevalence of Babesia bovis and B. bigemina. All samples were negative to Babesia spp. by microscopic examination of blood smears. On the other hand, the overall prevalence of B. bovis and B. bigemina was 9.18% and 15.46% by nPCR, 15.46% and 18.84% by ELISA, and 18.36% and 21.74% by IFAT, respectively. Mixed infections were detected in a total of 5 samples (2.4%) by nPCR, 16 (7.73%) by ELISA and 27 (13.04%) by IFAT. Statistically significant differences in the prevalence of the two infections were observed on the basis of age and location. These data provide valuable information regarding the occurrence and epidemiology of B. bovis and B. bigemina infections in Syrian cattle, which can be employed in developing rational strategies for disease control and management.  相似文献   

9.
Oviposition, egg hatching and survival of newly-hatched larvae of Boophilus annulatus were studied in relation to infection by Babesia species and different temperature regimens. Infection of female ticks by Babesia bigemina or B. bovis had no effect on the time elapsed between engorgement and oviposition. The duration of oviposition was shorter in infected females incubated at 25 degrees C or 35 degrees C and infected females laid fewer eggs than the controls. No larvae hatched at 16 degrees C. B. bigemina-infected eggs hatched more quickly than uninfected eggs at 35 degrees C. The hatching percentage of B. bigemina-infected eggs was reduced by 50% at an incubation temperature of 25 degrees C and by 75% at 35 degrees C. At 16 degrees C there was no difference in the duration of survival of infected and non-infected larvae but at 25 degrees C and 35 degrees C the mean survival period of infected larvae was significantly lower than those of controls.  相似文献   

10.
Observations were made on the effects of five different methods of laboratory maintenance on the infectivity and virulence of Babesia bigemina for the tick Boophilus microplus. The original isolate was highly infective and virulent, causing premature death of engorged female ticks and reduced egg production. Maintenance of the strain by syringe passage in unsplenectomised calves at six to 10 week intervals reduced both its infectivity and virulence for ticks. When slow passages were preceded by a series of rapid passages in splenectomised calves, the changes to the strain were less pronounced. The other three procedures, rapid syringe passage in splenectomised calves and tick passage in either splenectomised or intact calves, had no statistically significant effect on the characteristics measured.  相似文献   

11.
The seroprevalence of Babesia bigemina and Babesia bovis antibodies in non-vaccinated cattle was monitored on a South African ranch. The main objective was to assess the endemic stability to bovine babesiosis in cattle maintained under relaxed tick-control measures. Cattle were bled at the age of 7, 8, 10, 17, 20 and 30-120 months and the sera tested for the presence of antibodies using the indirect fluorescent antibody (IFA) test. None of the animals were positive to B. bovis. Seroprevalence of B. bigemina antibodies was 46, 70, 90, 92, 54 and 82% in the various age classes, respectively. Endemic stability was therefore reached by the time the calves were 9 months old. The high seroprevalence of B. bigemina was probably due to the high vector tick population on the ranch, which would have encouraged frequent transmission of B. bigemina. An endemically stable situation to B. bigemina could therefore be achieved merely by adopting a tick-control method that allows a reasonable number of ticks on cattle rather than relying entirely on intensive tick control and vaccination.  相似文献   

12.
Demand for live trivalent tick fever vaccine containing Babesia bovis, Babesia bigemina and Anaplasma centrale produced by the Department of Primary Industries, Queensland, has increased from less than 10,000 doses in 1988 to 500,000 doses in 2001. This paper describes a series of trials aimed at overcoming certain constraints to obtain B. bigemina parasitised erythrocytes (PEs) on a large enough scale from infected splenectomised calves to meet the demand. Passage through a series of splenectomised calves failed to increase the yield per calf but we showed that the dose rate of infected cells could be reduced from the long-time standard of 1x10(7) to 2.5x10(6) without affecting immunogenicity and still leaving a safety margin of at least 50-fold for infectivity. This change quadrupled the potential yield of doses per calf and allowed the DPI to meet the increased demand for B bigemina in vaccine. Due to the high cost and limited availability of suitable, health tested donors, calves previously infected with B. bovis or A. centrale were used to provide B. bigemina organisms but the practice resulted in red cell agglutination in some batches of prepared vaccine. A trial is described where B. bigemina-infected red cells were washed by centrifugation to remove agglutinating antibodies. Washing had no effect on parasite viability and this method is now in routine use in the production of trivalent vaccine.  相似文献   

13.
为了鉴定从汉中市牛体表采集到的蜱种类及其携带病原梨形虫(Piroplasma)的种类,在形态学初步观察的基础上,用PCR技术基于线粒体16SrDNA对蜱种类进行了分子鉴定,并基于梨形虫18S rRNA基因分别检测蜱体内携带巴贝斯虫属(Babesia)、泰勒虫属(Theileria)等病原情况.结果显示,所采集到的67只...  相似文献   

14.
Serologic and molecular evidence suggest that white-tailed deer in South Texas and North Mexico carry the agents of bovine babesiosis, Babesia bovis and Babesia bigemina. To determine if white-tailed deer in central Texas, which is outside the known occurrence of the vector tick at this time, harbor these parasites, blood samples from free-ranging and captive white-tailed deer (Odocoileus virginianus) in Tom Green County were tested by polymerase chain reaction (PCR) assays for B. bovis and B. bigemina 18S rDNA. Of the 25 samples tested, three (12%) were positive by nested PCR for B. bovis. This identity was confirmed by sequence analysis of the cloned 18S rDNA PCR product. Further confirmation was made by sequence analysis of the rRNA internal transcribed spacer (ITS) 1, 5.8S rRNA gene, and ITS 2 genomic region in two (representing samples from two different ranches) of the B. bovis positive samples. Three samples were positive by B. bigemina nested PCR, but sequencing of the cloned products confirmed only one animal positive for B. bigemina; Theileria spp. DNA was amplified from the other two animal samples. In addition to Theileria spp., two genotypically unique Babesia species sequences were identified among the cloned sequences produced by the B. bigemina primers in one sample. Phylogenetic analysis showed no separation of the deer B. bovis or B. bigemina 18S rDNA, or deer B. bovis ITS region sequences from those of bovine origin. Clarification of the possible role of white-tailed deer as reservoir hosts in maintaining these important pathogens of cattle is critical to understanding whether or not deer contribute to the epidemiology of bovine babesiosis.  相似文献   

15.
OBJECTIVE: To assess the effect of breed of cattle on the transmission rates of and innate resistance to Babesia bovis and B bigemina parasites transmitted by Boophilus microplus ticks. DESIGN: Groups of 56 purebred B indicus and 52 B indicus cross B taurus (50%, F1 generation) steers were placed in a paddock seeded with and also naturally infested with B microplus which were the progeny of females ticks fed on B taurus cattle specifically infected with a virulent isolate of B bovis. The cattle were placed in the infested paddock 50 days after seeding had started. PROCEDURE: Cattle were inspected from horseback daily for 50 days. Clinically ill cattle were brought to yards and assessed by monitoring fever, depression of packed-cell volume, parasitaemia and severity of clinical signs. Any animals that met preset criteria were treated for babesiosis. Blood samples were collected from all cattle on day 28, 35 and 42 after exposure and antibodies to Babesia spp and packed cell volume measured. RESULTS: All steers, except for one crossbred, seroconverted to B bovis and B bigemina by day 35 and 75% of the crossbred steers showed a maximum depression in packed cell volume of more than 15% due to infection with Babesia spp compared with only 36% of the B indicus group. Ten of the 52 crossbreds and 1 of the 56 B indicus steers showed severe clinical signs. Two of the crossbreds required treatment of which one died 2 weeks after initial treatment. CONCLUSIONS: Pure-bred B indicus cattle have a high degree of resistance to babesiosis, but crossbred cattle are sufficiently susceptible to warrant the use of preventive measures such as vaccination. Transmission rates of B bovis and B bigemina to B indicus and crossbred cattle previously unexposed to B microplus were the same.  相似文献   

16.
Developing stages of Babesia bigemina were detected in the Giemsa-stained haemolymph smears of replete Boophilus decoloratus females engorged on infected animals. Replicate smears of these were prepared for staining by the indirect fluorescent antibody (IFA) technique. With specific antisera to B bigemina in dilutions up to 1/160 and rabbit antibovine globulin conjugated with fluorescein isothiocyanate (conjugate) the B bigemina stages were seen to fluoresce under the fluorescent microscope. When antisera against cattle Theileria spp or negative control sera were used, fluorescence was not detected in dilution above 1/5 and there was a complete absence of fluorescence when the conjugate alone was used. Thus the developing stages of B bigemina from the haemolymph could be identified using the IFA technique. Both spherical and elongated developing stages were seen to fluoresce specifically. The apical and the perinuclear regions and the posterior end of the vermicules appeared to fluoresce more intensely than the rest of the cytoplasm.  相似文献   

17.
以耳袋法将长角血蜱(Haemaphysalis longicornis)幼虫饲于实验感染双芽巴贝斯虫(Babesia bigemina)牛,幼虫饱血后24h内,其肠管内容物中红细胞内、外见有单梨子型(3.5~4.5μm×1.2~2.6μm)和双梨子型(4.1~4.8μm×1.8~3.0μm)两种裂殖体.饱血后24~48h,随着裂殖体细胞膜及核变性而发生形态变化.48~72h,绝大多数裂殖体出现溶解.72h后,这些裂殖体从肠道消失.其后,在蜱肠上皮及血淋巴中也未能找到双芽巴贝斯虫体.本实验从形态学上证明双芽巴贝斯虫在长角血蜱若虫肠道内不能发育.  相似文献   

18.
A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.  相似文献   

19.
Batches of Rhipicephalus bursa adult ticks were fed on two lambs with 10.0% (batch 1) and 0.3% (batch 2) Babesia ovis parasitaemia, respectively. Haemolymph and eggs were checked for parasites daily after detachment, before and after appearance of B. ovis in the lamb's blood.B. ovis kinetes were found in the haemolymph and eggs earlier in the engorged ticks detached before appearance of the parasite in the host blood. Rates of haemolymph and egg infection with B. ovis as well as the percentage of infected eggs were much higher in batch 1 (10% lamb parasitaemia) than in batch 2 ticks (0.3% lamb parasitaemia). In eggs incubated at 28 degrees C the optimal period to look for kinetes seems to be days 4-9. Heavily infected ticks laid fewer less eggs within a shorter oviposition period. Pre-oviposition, pre-hatching periods and egg hatchability were not affected. Various parasitic forms are described in the haemolymph and the eggs.  相似文献   

20.
From blood collected from 94 cattle at 12 locations in the eastern and northeastern areas of Zimbabwe, DNA was extracted and analysed by polymerase chain reaction with primers previously reported to be specific for Babesia bigemina and Babesia borvis. Overall, DNA of Babesia bigemina was detected in the blood of 33/94 (35%) cattle and DNA from B. bovis was detected in 27/58 (47%) of cattle. The prevalence of DNA of B. bigemina was significantly higher in young animals (<2 years) (23/46) than in animals over 2 years of age (10/48; chi2= 8.77; P <0.01%). Although tick sampling was not thorough, Boophilus decoloratus could be collected at 7/9 sites sampled and Boophilus microplus at 4/9 sites. Of the 20 B. decoloratus allowed to oviposit before PCR analysis, 1 (5%) contained DNA that could be amplified with primers for B. bigemina while 12 (60%) were positive with primers for B. bovis. Of the B. microplus allowed to oviposit, 11/16 (69%) were positive for B. bovis DNA by PCR and 2/16 (12%) were positive for B. bigemina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号