首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
A pot experiment was performed to compare the impact of organic manure on soil enzymatic activity, respiration rate and the growth of two barley cultivars (Hordeum vulgare L.) differing in their salt tolerance under a simulated salinized environment. A plastic pot with a hole (2 cm in diameter) in the center of bottom was filled with an anthropogenic (paddy) soil and placed in a porcelain container containing NaCl solution (3.0 g L−1) such that a secondary salinization process was simulated via upward capillary water movement along the soil profile. A treatment with neither organic manure nor simulated soil salinization was taken as a control (CK1). The organic manure was applied either inside or outside rhizobag made of nylon cloth (40 μm of pore size). The soil was treated with: 20 g kg−1 rice straw (RS), 20 g kg−1 pig manure (PM), or 10 g kg−1 rice straw plus 10 g kg−1 pig manure (RS+PM). No organic manure was added in an additional control treatment (CK2). The results indicated that the placement of organic manure both inside and outside rihzobags significantly increased the activity of urease, alkaline phosphatase and dehydrogenase, as well as respiration rate in both rhizosphere and bulk soils. Also, nutrient uptake by barley plants was enhanced in the treatments with organic manure amended either inside or outside rhizobags. The activity of these enzymes along with the respiration rate was higher in rhizosphere than in non-rhizosphere when organic manure was supplied inside rhizobags, while the opposite was found in the case of manure incorporated outside rhizobags. Among all the treatments, RS+PM treatment had most significant stimulating effects on enzymatic and microbial activity and shoot dry weight of barley, followed by PM and RS. Moreover, more significant stimulating effects on both enzyme activity and plant growth were achieved in the treatments with manure amended inside rhizobags than outside rhizobags. The results of the present study confirmed the view that incorporation of organic manure especially into soil-root zones is an effective low-input agro-technological approach to enhancing soil fertility and minimizing phytotoxicity induced by secondary salinization.  相似文献   

2.
Enzyme activities and microbial biomass in coastal soils of India   总被引:1,自引:0,他引:1  
Soil salinity is a serious problem for agriculture in coastal regions, wherein salinity is temporal in nature. We studied the effect of salinity, in summer, monsoon and winter seasons, on microbial biomass carbon (MBC) and enzyme activities (EAs) of the salt-affected soils of the coastal region of the Bay of Bengal, Sundarbans, India. The average pH of soils collected from different sites, during different seasons varied from 4.8 to 7.8. The average organic C (OC) and total N (TN) content of the soils ranged between 5.2-14.1 and 0.6-1.4 g kg−1, respectively. The electrical conductivity of the saturation extract (ECe) of soils, averaged over season, varied from 2.2 to 16.3 dSm−1. The ECe of the soils increased five fold during the summer season (13.8 dSm−1) than the monsoon season (2.7 dSm−1). The major cation and anion detected were Na+ and Cl, respectively. Seasonality exerted considerable effects on MBC and soil EAs, with the lowest values recorded during the summer season. The activities of β-glucosidase, urease, acid phosphatase and alkaline phosphatase were similar during the winter and monsoon season. The dehydrogenase activity of soils was higher in monsoon than in winter. Average MBC, dehydrogenase, β-glucosidase, urease, acid phosphatase and alkaline phosphatase activities of the saline soils ranged from 125 to 346 mg kg−1 oven dry soil, 6-9.9 mg triphenyl formazan (TPF) kg−1 oven dry soil h−1, 18-53 mg p-nitro phenol (PNP) kg−1 oven dry soil h−1, 38-86 mg urea hydrolyzed kg−1 oven dry soil h−1, 213-584 mg PNP kg−1 oven dry soil h−1 and 176-362 mg PNP g−1 oven dry soil h−1, respectively. The same for the non-saline soils were 274-446 mg kg−1 oven dry soil, 8.8-14.4 mg TPF kg−1 oven dry soil h−1, 41-80 mg PNP kg−1 oven dry soil h−1, 89-134 mg urea hydrolyzed kg−1 oven dry soil h−1, 219-287 mg PNP kg−1 oven dry soil h−1 and 407-417 mg PNP kg−1 oven dry soil h−1, respectively. About 48%, 82%, 48%, 63%, 40% and 48% variation in MBC, dehydrogenase activity, β-glucosidase activity, urease activity, acid phosphatase activity and alkaline phosphatase activity, respectively, could be explained by the variation in ECe of saline soils. Suppression of EAs of the coastal soils during summer due to salinity rise is of immense agronomic significance and needs suitable interventions for sustainable crop production.  相似文献   

3.
A long-term field experiment was conducted to examine the influence of mineral fertilizer and organic manure on the equilibrium dynamics of soil organic C in an intensively cultivated fluvo-aquic soil in the Fengqiu State Key Agro-Ecological Experimental Station (Fengqiu county, Henan province, China) since September 1989. Soil CO2 flux was measured during the maize and wheat growing seasons in 2002-2003 and 2004 to evaluate the response of soil respiration to additions and/or alterations in mineral fertilizer, organic manure and various environmental factors. The study included seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (NOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Organic C in soil and the soil heavy fraction (organo-mineral complex) was increased from 4.47 to 8.61 mg C g−1 and from 3.32 to 5.68 mg C g−1, respectively, after the 13 yr application of organic manure. In contrast, organic C and the soil heavy fraction increased in NPK soil to only 5.41 and 4.38 mg C g−1, respectively. In the CK treatment, these parameters actually decreased from the initial C concentrations (4.47 and 3.32 mg C g−1) to 3.77 and 3.11 mg C g−1, respectively. Therefore, organic manure efficiently elevated soil organic C. However, only 66% of the increased soil organic C was combined with clay minerals in the OM treatment. Cumulative soil CO2 emissions from inter-row soil in the OM and NPK treatments were 228 and 188 g C m−2 during the 2002 maize growing season, 132 and 123 g C m−2 during the 2002/2003 wheat growing season, and 401 and 346 g C m−2 yr−1 in 2002-2003, respectively. However, during the 2004 maize growing season, cumulative soil CO2 emissions were as high as 617 and 556 g C m−2, respectively, due to the contribution of rhizosphere respiration. The addition of organic manure contributed to a 16% increase in soil CO2 emission in 2002-2003 (compared to NPK), where only 27%, 36% and 24% of applied organic C was released as CO2 during the 2002 and 2004 maize growing seasons and in 2002-2003, respectively. During the 2002/2003 wheat growing season, soil CO2 flux was significantly affected by soil temperature below 20 °C, but by soil moisture (WFPS) during the 2004 maize growing season at soil temperatures above 18 °C. Optimum soil WFPS for soil CO2 flux was approximately 70%. When WFPS was below 50%, it no longer had a significant impact on soil CO2 flux during the 2002 maize growing season. This study indicates the application of organic manure composted with wheat straw may be a preferred strategy for increasing soil organic C and sequestering C in soil.  相似文献   

4.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

5.
The effects of tillage on the interaction between soil structure and microbial biomass vary spatially and temporally for different soil types and cropping systems. We assessed the relationship between soil structure induced by tillage and soil microbial activity at the level of soil aggregates. To this aim, organic C (OC), microbial biomass C (MBC) and soil respiration were measured in water-stable aggregates (WSA) of different sizes from a subtropical rice soil under two tillage systems: conventional tillage (CT) and a combination of ridge with no-tillage (RNT). Soil (0–20 cm) was fractionated into six different aggregate sizes (> 4.76, 4.76–2.0, 2.0–1.0, 1.0–0.25, 0.25–0.053, and < 0.053 mm in diameter). Soil OC, MBC, respiration rate, and metabolic quotient were heterogeneously distributed among soil aggregates while the patterns of aggregate-size distribution were similar among properties, regardless of tillage system. The content of OC within WSA followed the sequence: medium-aggregates (1.0–0.25 mm and 1.0–2.0 mm) > macro-aggregates (4.76–2.0 mm) > micro-aggregates (0.25–0.053 mm) > large aggregates (> 4.76 mm) > silt + clay fractions (< 0.053 mm). The highest levels of MBC were associated with the 1.0–2.0 mm aggregate size class. Significant differences in respiration rates were also observed among different sizes of WSA, and the highest respiration rate was associated with 1.0–2.0 mm aggregates. The Cmic/Corg was greatest for the large-macroaggregates regardless of tillage regimes. This ratio decreased with aggregate size to 1.0–0.25 mm. Soil metabolic quotient (qCO2) ranged from 3.6 to 17.7 mg CO2 g− 1 MBC h− 1. The distribution pattern of soil microbial biomass and activity was governed by aggregate size, whereas the tillage effect was not significant at the aggregate scale. Tillage regimes that contribute to greater aggregation, such as RNT, also improved soil microbial activity. Soil OC, MBC and respiration rate were at their highest levels for 1.0–2.0 mm aggregates, suggesting a higher biological activity at this aggregate size for the present ecosystem.  相似文献   

6.
A long-term field experiment was established to determine the influence of mineral fertilizer (NPK) or organic manure (composed of wheat straw, oil cake and cottonseed cake) on soil fertility. A tract of calcareous fluvo-aquic soil (aquic inceptisol) in the Fengqiu State Key Experimental Station for Ecological Agriculture (Fengqiu county, Henan province, China) was fertilized beginning in September 1989 and N2O emissions were examined during the maize and wheat growth seasons of 2002-2003. The study involved seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (1/2 OMN), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Manured soils had higher organic C and N contents, but lower pH and bulk densities than soils receiving the various mineralized fertilizers especially those lacking P, indicating that long-term application of manures could efficiently prevent the leaching of applied N from and increase N content in the plowed layer. The application of manures and fertilizers at a rate of 300 kg N ha−1 year−1 significantly increased N2O emissions from 150 g N2O-N ha−1 year−1 in the CK treatment soil to 856 g N2O-N ha−1 year−1 in the OM treatment soil; however, there was no significant difference between the effect of fertilizer and manure on N2O emission. More N2O was released during the 102-day maize growth season than during the 236-day wheat growth season in the N-fertilized soils but not in N-unfertilized soils. N2O emission was significantly affected by soil moisture during the maize growth season and by soil temperature during the wheat growth season. In sum, this study showed that manure added to a soil tested did not result in greater N2O emission than treatment with a N-containing fertilizer, but did confer greater benefits for soil fertility and the environment.  相似文献   

7.
Impacts of 22-year organic and inorganic N managements on total organic carbon (TOC), water-soluble organic C (WSOC), microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidized organic C (KMnO4-C) concentrations, C management index (CMI), and C storage in surface soil (0–20 cm) were investigated in a maize (Zea may L.) field experiment, Northeast China. The treatments included, CK: unfertilized control, M: organic manure (135 kg N ha− 1 year− 1), N: inorganic N fertilizer (135 kg N ha− 1 year− 1) and MN: combination of organic manure (67.5 kg N ha− 1 year− 1) and inorganic N fertilizer (67.5 kg N ha− 1 year− 1). TOC concentration and C storage were significantly increased under the M and MN treatments, but not under the inorganic N treatment. The organic treatments of M and MN were more effective in increasing WSOC, MBC, POC and KMnO4-C concentrations and CMI than the N treatment. The M treatment was most effective for sequestrating SOC (10.6 Mg ha− 1) and showed similar increase in degree of grain yield to the N and MN treatments, therefore it could be the best option for improving soil productivity and C storage in the maize cropping system.  相似文献   

8.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

9.
Soil microbial biomass was analyzed in a rapidly subsiding coastal bottomland forest at three sites along an elevation change of ∼1 m and an associated hydrologic gradient of 400 m from rare (ridge site), to occasional (intermediate site), to frequent flooding (swamp site). Given the current rate of relative sea-level rise in this area (subsidence+global mean sea-level rise ∼1.2 cm y−1), this gradient may represent a space-for-time substitution for about one century of future sea-level rise. Along the hydrologic gradient, microbial biomass carbon (MBC) in the upper 20 cm of mineral soil was 157±26 (ridge), 134±14 (intermediate), and 90±20 (swamp) g C m−2. MBC was positively correlated with soil organic matter (r2=0.76, P=0.002) and the ratio of MBC to soil organic C ranged from 0.008 to 0.017 depending on soil depth and site. Generally, MBC decreased with increasing soil moisture from the ridge to the swamp site. Although MBC was statistically similar overall in the ridge and intermediate sites, the intermediate site had the largest fraction (45%) at 0-5 cm, whereas the ridge site had the largest fraction (40%) below 10-20 cm. Based on a space-for-time substitution model using non-linear regression analysis, we predict that MBC in the upper 20 cm of soil is likely to decrease by about one-third along the transect over the next century as a result of subsidence and sea-level rise.  相似文献   

10.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

11.
Effect of different manures and pine needles application on soil biological properties and phosphorus availability was evaluated in sandy loam soils. Fertilizers nitrogen, phosphorus, and potassium (NPK); Sesbania aculeata green manure (GM); farm yard manure (FYM); and vermicompost (VC) were applied alone or in combination with pine needles. Microbial biomass carbon, dehydrogenase, and alkaline phosphatase activity increased significantly due to manures and NPK. Pine needles reduced the microbial biomass carbon (MBC) and dehydrogenase activity in FYM and VC but increased in NPK and GM. Acid phosphatase activities were found to be significantly increased by pine needles application in NPK, FYM, VC, and GM as compared to without pine needles counterparts. No significant differences were found in soil solution phosphorus in manure treated soil due to pine needle application, but phosphorus uptake was reduced significantly in these treatments. Pine needles application clearly influenced the soil biological properties without any perceptible effect on nutrient release from the manures.  相似文献   

12.
We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha–1 year–1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg–1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.  相似文献   

13.
Fatty acids as major compounds of soil lipids may affect many soil properties, but the input and turnover rates in soil are largely unknown. The objective of this study was to identify and quantify fatty acids in soils as a result of input from primary sources such as plant residues, farmyard manure and soil organisms, and to evaluate the corresponding turnover- and stabilization processes. The concentrations of n-C10:0 to n-C34:0 fatty acids were determined in the Ap horizon of a Phaeozem with long-term cropping of rye and maize and the treatments ‘Unfertilized’ (‘U’) and fertilized with ‘Farmyard manure’ (‘FYM’). The most important primary sources of fatty acids such as rye and maize stubble and roots, soil micro- and mesofauna, and the applied FYM were also investigated. The quantification of fatty acids by gas chromatography/mass spectrometry (GC/MS) showed that long-term FYM application led to larger concentrations of n-alkyl fatty acids in the plots grown with rye (‘U’: 48.1 μg g−1, ‘FYM’: 57.7 μg g−1, **P≤0.01, n=3) and maize (‘U’: 17.0 μg g−1, ‘FYM’: 23.4 μg g−1, ***P≤0.001, n=3). The observed bimodal fatty acid distribution in soils from n-C10:0 to n-C21:0 and from n-C21:0 to n-C34:0 with a predominance at n-C16:0 and at n-C28:0 was apparently due to input from crop residues, soil organisms and FYM. The short-chain lengths may have originated from the investigated primary sources. The major contributors to the long-chain lengths, with a maximum at n-C28:0, were rye stubble and FYM. A change in mono-culture from rye to maize, 38 years prior to sampling, led to a decrease in fatty acid concentrations by factors of about 2.8 (‘U’) and 2.5 (‘FYM’). Therefore, rye-derived fatty acids and soil tillage had a larger impact on fatty acid pools than the input of primary organic matter. The changes in fatty acid distributions and pools under the consideration of the quantified input of primary organic matter led to the conclusion that the short-chained fatty acids were more rapidly decomposed than the long-chains.  相似文献   

14.
Previous research has shown that β-glucosidase activity can detect soil management effects and has potential as a soil quality indicator, but mechanisms for this response are not well understood. A significant amount of hydrolytic enzyme activity comes from extracellular (abiontic) activity that is bound and protected by soil colloids. This study was conducted to determine how management affects the kinetics of this enzyme (Km, substrate affinity, and Vmax, maximum reaction velocity) and its degree of stabilization on soil colloids. Soils were sampled from three sites in Oregon, with a paired comparison within each site of a native, unmanaged soil, and a matching soil under agricultural production (>50 years). Microwave radiation (MW) stress was used to denature the β-glucosidase fraction associated with viable microorganisms in these soils as an estimate of abiontic activity. Total activity and Vmax were decreased by both management and MW. The results showed that β-glucosidase activity is sensitive to soil management on a variety of soils and environments (135 vs. 190, 80 vs. 111 and 80 vs. 134 μg PNP g−1 h−1 for managed and unmanaged treatments, respectively, at the three study sites in Oregon). The evidence suggests that this sensitivity to management is not (or minimally) due to differences in isoenzymes (Km generally was unaffected) but rather due to an overall reduction in the amount of enzyme present (Vmax decreased) and that this reduction in activity is reflected more from the activity of enzymes in the stabilized fraction than that associated with viable microbial population. Although β-glucosidase activity after MW irradiation appears to be limited as a soil quality indicator, it maybe useful as research tool to separate abiontic from microbial activity ‘biomass’ β-glucosidase activity correlated with microbial biomass C (r=0.42, P<0.05) but MW irradiated, abiontic, activity did not (r=−0.20NS).  相似文献   

15.
Scanty information on long-term soil organic carbon (SOC) dynamics hampers validation of SOC models in the tropics. We observed SOC content changes in a 16-year continuously cropped agroforestry experiment in Ibadan, south-western Nigeria. SOC levels declined in all treatments. The decline was most pronounced in the no-tree control treatments with continuous maize and cowpea cropping, where SOC levels dropped from the initial 15.4 to 7.3-8.0 Mg C ha−1 in the 0-12 cm topsoil in 16 years. In the two continuously cropped alley cropping (AC) systems, one with Leucaena leucocephala and one with Senna siamea trees, SOC levels dropped to 10.7-13.2 Mg C ha−1. Compared to the no-tree control treatments, an annual application of an additional 8.5 Mg ha−1 (dry matter) of plant residues, mainly tree prunings, led to an extra 3.5 Mg C ha−1 (∼0.2% C) in the 0-12 cm top soil after 11 years, and 4.1 Mg C ha−1 after 16 years. The addition of NPK fertilizer had little effect on the quantities of above-ground plant residues returned to the soil, and there was no evidence that the fertilizer affected the rate of SOC decomposition. The fact that both C3 and C4 plants returned organic matter to the soil in all cropping systems, but in contrasting proportions, led to clear contrasts in the 13C abundance in the SOC. This 13C information, together with the measured SOC contents, was used to test the ROTHC model. Decomposition was very fast, illustrated by the fact that we had to double all decomposition rate constants in the model in order to simulate the measured contrasts in SOC contents and δ13C between the AC treatments and the no-tree controls. We hypothesized (1) that the pruning materials from the legume trees and/or the extra rhizodeposition from the tree roots in the AC treatments accelerated the decomposition of the SOC present at the start of the experiment (true C-priming), and/or (2) that the physical protection of microbial biomass and metabolites by the clay fraction on this site, having a sandy top soil in which clay minerals are mainly of the 1:1 type, is lower than assumed by the model.  相似文献   

16.
The use of composts in agricultural soils is a widespread practice and the positive effects on soil and plants are known from numerous studies. However, there have been few attempts to compare the effects of different kinds of composts in one single study. The aim of this paper is to investigate to what extent and to which soil depth four major types of composts would affect the soil and its microbiota.In a crop-rotation field experiment, composts produced from (i) urban organic wastes, (ii) green wastes, (iii) manure and (iv) sewage sludge were applied at a rate equivalent to 175 kg N ha−1 yr−1 for 12 years. General (total organic C (Corg), total N (Nt), microbial biomass C (Cmic), and basal respiration), specific (enzyme activities related to C, N and P cycles), biochemical properties and bacterial genetic diversity (based on DGGE analysis of 16S rDNA) were analyzed at different depths (0-10, 10-20 and 20-30 cm).Compost treatment increased Corg at all depths from 11 g kg−1 for control soil to 16.7 g kg−1 for the case of sewage sludge compost. Total N increased with compost treatment at 0-10 cm and 10-20 cm depths, but not at 20-30 cm. Basal respiration and Cmic declined with depth, and the composts resulted in an increase of Cmic and basal respiration. Enzyme activities were different depend on the enzyme and among compost treatments, but in general, the enzyme activities were higher in the upper layers (0-10 and 10-20 cm) than in the 20-30 cm layer. Diversity of ammonia oxidizers and bacteria was lower in the control than in the compost soils. The type of compost had less influence on the composition of the microbial communities than did soil depth.Some of the properties were sensitive enough to distinguish between different compost, while others were not. This stresses the need of multi-parameter approaches when investigating treatment effects on the soil microbial community. In general, with respect to measures of activity, biomass and community diversity, differences down the soil profile were more pronounced than those due to the compost treatments.  相似文献   

17.
The aim of this study was to determine the effects of increasing concentrations of salt solutions (including 0.12, 2, 6, and 10 dS m−1) on the growth of berseem clover (Trifolium alexandrinum L.) and related soil microbial activity, biomass and enzyme activities. Results showed that the dry weights of root and shoot decreased with an increase in the concentrations of salt solutions. Soil salinization depressed the microbiological activities including soil respiration and enzyme activities. Substrate-induced respiration was consistently lower in salinized soils, whereas microbial biomass C did not vary among salinity levels. Higher metabolic quotients (qCO2) and unaffected microbial biomass C at high EC values may indicate that salinity is a stressful factor, inducing either a shift in the microbial community with less catabolic activity or reduced efficiency of substrate utilization. Acid phosphatase and alkaline phosphatase activities decreased with increasing soil salinity. We found significant, positive correlations between the activities of phosphatase enzymes and plant's root mass, suggesting that any decrease in the activities of the two enzymes could be attributed to the reduced root biomass under saline conditions.  相似文献   

18.
Our aim was to compare the soil microbial biomass concentration and its activity (measured as CO2-C evolved) following the rewetting and aerobic incubation of soils which have previously been stored air-dry for different periods. Some of the soils have been stored in the Rothamsted sample archive for 103 years, others were comparable freshly sampled soils following air-drying and rewetting and other soils were stored air-dry for 2 years then rewetted for the work described here. Following air-drying, soil ATP concentrations were variable in recently air-dried soil, comprising about 10-35% of the initial ATP concentrations in fresh soil. Following rewetting, the percentage recovery of ATP increased in all soils by 7 days, then declined to between 73% and 87% of the original ATP concentration in the air-dried soils by day 12. Storage of air-dried soils decreased the ability of the microbial biomass to restore its ATP concentrations. For example, the ATP concentration in a soil sampled from stubbed (i.e. tree seedling, saplings and bushes cut frequently to ground level) grassland of the Broadbalk continuous wheat experiment at Rothamsted then air-dried for 2 years was only about 14% of that in the fresh soil at 2 days after rewetting. In other soils from the Hoosfield Barley Experiment, also at Rothamsted, previously given NPK or FYM since 1852, and sampled then stored air-dry for between 13 and 83 years, from 52% to 57% of the ATP in the comparable fresh soils was measured at two days after rewetting. The soil ATP concentration then changed little more up to 12 days. One of the most interesting findings was that while the microbial biomass ATP concentration in the above NPK soils only ranged from about 2 to 4 μmol ATP g−1 biomass C, in the FYM soil the microbial biomass ATP concentrations (range 11.5-13.6 μmol ATP g−1 biomass C) were the same as we repeatedly measure in fresh moist aerobic soil. We do not yet know the reasons for this. More than twice as much CO2-C was evolved from the long-term stored soils than from freshly sampled ones. However, the specific respiration of the microbial biomass did not change much after the first 12 years of storage, indicating that loss of viability mainly occurred in the earlier years.  相似文献   

19.
Black carbon (BC) or charcoal is thought to represent an important component of the carbon cycle, but has seldom been quantified in soils. We quantified soil BC in a temperate mixed-grass savanna in the southern Great Plains using benzenecarboxylic acids as molecular markers for BC. Soils were collected from four fire treatments (repeated summer fires in 1992 and 1994; repeated winter fires in 1991, 1993 and 1995; alternate-season fires in winter 1991, summer 1992, and winter 1994; and unburned control) at 0-10 and 10-20 cm depth in 1996. Black carbon concentrations ranged from 50 to 130 g BC kg−1 of soil organic carbon (SOC), or from 0.55 to 1.07 g BC kg−1 of whole soil in this mixed grass savanna. The BC contribution to SOC increased significantly with soil depth (P<0.05). Repeated fires increased BC slightly compared to the unburned controls; however, the effects of repeated fires on BC were not statistically significant in this mixed-grass savanna. Results of this study provide estimates of BC concentrations for native, uncultivated mixed-grass savanna, and indicate that 2-3 fires have little effect on the size of the soil BC pool in this region.  相似文献   

20.
Municipal solid waste (MSW) composts have been used to maintain the long-term productivity of agroecosystems and to protect the soil environment from overcropping, changes in climatic conditions and inadequate management; they also have the additional benefit of reducing waste disposal costs. Since MSW may contain heavy metals and other toxic compounds, amendments cannot only influence soil fertility, but may also affect the composition and activity of soil microorganisms. The effects of MSW compost and mineral N amendments in a 6-year field trial on some physical-chemical properties, enzyme activities and bacterial genetic diversity of cropped plots (Beta vulgaris-Triticum turgidum rotation) and uncropped plots were investigated. The compost was added at the recommended and twice the recommended dosage (12, 24 t ha−1). Amendments of cropped plots with MSW compost increased the contents of organic C from 13.3 to 15.0 g kg−1 soil and total N from 1.55 to 1.65 g kg−1 soil. There were significant increases in dehydrogenase (9.6%), β-glucosidase (13.5%), urease (15.4%), nitrate reductase (21.4%) and phosphatase (9.7%) activities. A significant reduction in protease activity (from 3.6 to 2.8 U g−1 soil) was measured when a double dose of compost was added to the cropped plots. No dosage effect was detected for the other enzymes. Changes in the microbial community, as a consequence of MSW amendment, were minimal as determined using denaturing gradient gel electrophoresis, rDNA internal spacer analysis and amplified ribosomal DNA restriction analysis of bacteria, archaea, actinomycetes, and ammonia oxidizers. This indicates that there was no significant variation in the overall bacterial communities nor in selected taxonomic groups deemed to be essential for soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号