首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil nematode communities can provide important information about soil food web structure and function. However, how soil nematode communities and their metabolic footprints change over time in temperate forests is not well known. We examined the changes in the composition, diversity and metabolic footprints of soil nematode communities in three differently-aged (young, mid and old) forests of the Changbai Mountains, China. Carbon flows through different nematode trophic groups were also quantified based on nematode biomasses. The results showed that the highest abundance and diversity of total nematodes was found in the mid forest. Nematode communities were characterized by the replenishment in abundance but not the replacement of dominant genera. A low enrichment footprint in the young forest suggests a decline in available prey, while a high enrichment footprint in the mid forest indicates an increase in resource entry into soil food web. The relationship between the carbon flows of omnivores-predators and fungivores was stronger than that among other trophic groups. Our study shows that bottom-up effects of the vegetation, the soil environment and the connectedness of nematode trophic groups are all important driving forces for nematode community structure in temperate forests.  相似文献   

2.
茅苍术间作对连作花生土壤线虫群落的影响   总被引:1,自引:0,他引:1  
张亚楠  李孝刚  王兴祥 《土壤学报》2016,53(6):1497-1505
以连作10年花生的红壤为基质,分别设置花生单作和花生/茅苍术间作处理,于花生成熟期采集单作花生根际土壤、间作处理花生和茅苍术根际土壤,分析土壤线虫的数量、多样性和群落结构,以揭示茅苍术间作对土壤线虫群落的影响及对花生连作障碍的缓解机制。结果表明,与花生单作相比,间作处理花生的株高、主根长、秸秆干重和荚果干重显著增加(p0.05)。茅苍术间作减少了连作花生土壤线虫的总数,显著提高了花生根际土壤食细菌线虫、食真菌线虫和捕食/杂食线虫的相对丰度,降低了植物寄生线虫的相对丰度(p0.05)。与花生单作相比,间作提高了花生根际土壤线虫的Shannon-Wiener多样性指数(H′)和均匀度指数(J),而土壤线虫群落的优势度指数(λ)显著降低。间作处理花生根际土壤线虫的瓦斯乐斯卡指数(WI)和自由生活线虫成熟度指数(MI)显著升高,植物寄生线虫成熟度指数(PPI)显著降低,而线虫通道比(NCR)无显著变化。综合分析得出,茅苍术间作可以提高花生连作土壤线虫多样性、优化土壤线虫群落结构,进而增强有益线虫的生态功能、改善花生连作障碍。  相似文献   

3.
Woody plant encroachment is an important land cover change in dryland ecosystems throughout the world, and frequently alters above and belowground primary productivity, hydrology, and soil microbial biomass and activity. However, there is little known regarding the impact of this geographically widespread vegetation change on the biodiversity and trophic structure of soil fauna. Nematodes represent a major component of the soil microfauna whose community composition and trophic structure could be strongly influenced by the changes in ecosystem structure and function that accompany woody encroachment. Our purpose was to characterize nematode community composition and trophic structure along a grassland to woodland chronosequence in the Rio Grande Plains of southern Texas. Research was conducted at the La Copita Research Area where woody encroachment has been documented previously. Soil cores (0–10 cm) were collected in fall 2006 and spring 2007 from remnant grasslands and woody plant stands ranging in age from 15 to 86 years, and nematodes were extracted by sugar centrifugation. Neither nematode densities (3200–13,800 individuals kg−1 soil) nor family richness (15–19 families 100 g−1 soil) were altered by woody encroachment. However, family evenness decreased dramatically in woody stands >30 years old. This change in evenness corresponded to modifications in the trophic structure of nematode communities following grassland to woodland conversion. Although root biomass was 2–5× greater in wooded areas, root-parasitic nematodes decreased from 40% of all nematodes in grasslands to <10% in the older wooded areas, suggesting the quality (C:N or biochemical defenses) of woody plant root tissue could be limiting root-parasites. In contrast, bacterivores increased from 30% of nematodes in grasslands to 70–80% in older woody patches. This large increase in bacterivores may be a response to the 1.5–2.5× increase in soil microbial biomass (bacteria + fungi) following woody encroachment. Therefore, while energy flow through grassland nematode communities appears to be distributed nearly equally among herbivory, fungivory and bacterivory, the energy flow through nematode communities in wooded areas appears to be based primarily on bacterivory. We speculate that these shifts in nematode community composition and trophic structure could have important implications for ecosystem patterns and processes. First, the low abundance of root-parasitic nematodes (and presumably root herbivory) under woody plants may be one mechanism by which woody plants are able to establish and compete effectively with grasses during succession from grassland to woodland. Second, the large increase in bacterivores following woody encroachment likely accelerates microbial turnover and the mineralization of N, thereby providing a feedback that enables the persistence of N-rich woody plant communities.  相似文献   

4.
为研究施用过量的农用化学品对土壤线虫群落组成及多样性的影响,采用定点试验的方法,在哈尔滨市呼兰区选择典型农田生态系统进行试验,对比研究土壤线虫群落对施用过量的氮肥、磷肥、钾肥、除草剂及杀虫剂的响应。在试验田中共鉴定出土壤线虫27科45属,其中Cephalobus和Aphelenchus为优势属。施用不同浓度的各类农用化学品对土壤线虫群落组成、多样性均产生一定影响。线虫总数及食细菌线虫、食真菌线虫、植物寄生线虫数量在不同处理间均存在显著差异(P<0.05);其中,植物寄生线虫的相对丰度随化肥施用量的升高呈增加趋势。从土壤线虫的生态指数来看,除PPI(植物寄生线虫成熟指数)外,其他生态指数[MI(成熟度指数)、F/B(食真菌线虫与食细菌线虫数量比值)、Evenness(均匀度指数)、SR(丰富度指数)、H’(多样性指数)]在施用不同农用化学品处理之间也存在显著差异,并且,MI随着施用钾肥、氮肥浓度的增加而降低。土壤线虫可以作为揭示施用农用化学品过程中土壤质量变化的生物学指标,其群落及多样性的变化表明土壤线虫群落对农用化学品的过量施用产生了响应,过量施用农用化学品会增加土壤生态系统的干扰,对土壤环境造成威胁。  相似文献   

5.
Trees have a key role in determining the composition of soil biota via both above and belowground resource-based mechanisms, and by altering abiotic conditions. We conducted an outdoor mesocosm experiment to investigate the relative impact of above and belowground tree inputs on soil nematode trophic composition, and examine whether tree-driven impacts differed between contrasting species (birch and pine). For both species, we created a factorial design of litter addition and root presence treatments. The litter addition treatment was equivalent to natural levels of litterfall; tree saplings were planted in mesocosms for the root presence treatment and an unplanted control treatment was established that had no litter or root inputs. Litter addition had a limited impact on soil nematode community composition: it primarily decreased omnivore and predatory nematode abundance in birch but had few other effects on the nematode community. By contrast, root presence markedly altered nematode community composition through changes in a range of trophic groups. For both birch and pine, there were significant increases in total, fungivore and predatory nematode abundance in root presence treatments, and furthermore, total and fungivore abundances were positively related to root biomass. Root presence of these contrasting tree species also had a distinctive impact on some specific nematode trophic groups; pine roots promoted bacterivore abundance while birch roots promoted root-hair feeding nematode abundance. These findings suggest strong bottom-up effects of belowground tree inputs, and indicate that particular components of the nematode community may be affected differently by resource quantity and quality. Consequently, we suggest that, in the short-term, belowground rather than aboveground tree inputs have a strong impact on soil food web structure and complexity.  相似文献   

6.
红壤旱地和水田土壤用量对线虫分离效果的影响   总被引:1,自引:0,他引:1  
植物群落研究中样方面积的大小直接影响群落组成和多样性调查的结果,而对于地下部生态系统可能存在同样的问题。土壤动物的分离效率是研究土壤动物群落组成的基础。至今在土壤线虫分离研究方面仍缺乏关于土壤样品最佳用量范围的优化。本研究选择江西红壤地区旱地和水田两种典型农业利用方式下的土壤,基于改进的贝尔曼漏斗法,即浅盘分离法,选择10、30、50、100、150、200、300、500 g(对应0.70~3.51 cm的土壤厚度)的土壤用量梯度,旨在探讨土壤线虫分离中土壤用量对于线虫群落特征分析结果的影响。结果表明,在10~200 g(0.70~1.51 cm)土壤用量之间单位土壤线虫数量无显著差异,而大于200 g时显著下降(P0.05)。线虫属数随着土壤用量的增加而增加。土壤线虫营养类群比例在10~200 g(0.70~1.51 cm)之间几乎没有显著性差异。线虫群落的丰富度指数、成熟度指数、富集指数和结构指数等生态指数在30~500 g(0.72~3.51 cm)之间基本无显著差异。土壤厚度在10~150 g之间无差异,大于150 g各处理间均形成显著差异。总之,基于土壤线虫群落特征的不同参数与样品用量关系的权衡,建议在分离线虫时选择土壤样品量在50~150 g范围内或保证土壤厚度低于1.00 cm条件下增加土壤用量,以获得对供试土壤线虫群落的全面了解。  相似文献   

7.
设施菜地长期施肥对土壤线虫群落结构和多样性的影响   总被引:2,自引:0,他引:2  
基于设施菜田肥料定位试验地,研究了长期施用化肥对土壤线虫群落结构及多样性的影响,为设施蔬菜的合理施肥和可持续生产提供理论依据。研究期间,共鉴定土壤线虫38个属,其中假海矛属(Pseudhalenchus)、短体属(Pratylenchus)和真滑刃属(Aphelenchus)为优势属。长期施用化肥显著增加各研究土层的线虫总数,并改变线虫的群落结构。长期施化肥对0~10 cm土层线虫各生态指数的影响不显著。在10~20 cm和20~40 cm土层,长期施用化肥显著提高食真菌与食细菌线虫比例(F/B)而降低线虫通路比值(NCR),表明其促进以食真菌为主的腐屑食物网分解通道;其显著提高优势度指数(λ)而降低香农指数(H)'、均匀度指数(J)和丰富度指数(SR),表明长期施用化肥导致土壤线虫多样性降低。土壤线虫可以作为评价施肥对土壤质量影响的生物指标。  相似文献   

8.
Soil nematode communities were investigated at eight semi-natural steppe grasslands in the National Park Seewinkel, eastern Austria. Four sites were moderately grazed by horses, cattle and donkeys, four were ungrazed. Nematodes were sampled on four occasions from mineral soil, and their total abundance, diversity of genera, trophic structure and functional guilds were determined. Altogether 58 nematode genera inhabited the grasslands, with Acrobeloides, Anaplectus, Heterocephalobus, Prismatolaimus, Aphelenchoides, Aphelenchus, Tylenchus and Pratylenchus dominating. Mean total abundance at sites was 185–590 individuals per 100 g soil. Diversity indices did not separate communities well, but cluster analysis showed distinct site effects on nematode generic structure. Within feeding groups the relative proportion of bacterial-feeding nematodes was the highest, followed by the fungal- and plant-feeding group. Omnivores and predators occurred in low abundance. The maturity indices and plant parasite indices were characteristic for temperate grasslands, but the abundance of early colonizers (c-p 1 nematodes) was low. A high density of fungal-feeding c-p 2 families (Aphelenchoidae, Aphelenchoididae) resulted in remarkably high channel index values, suggesting that decomposition pathways are driven by fungi. Nematode community indices of all sites pointed towards a structured, non-enriched soil food web. At most sites, grazing showed little or no effect on nematode community parameters, but total abundance was higher at ungrazed areas. Significant differences in the percentage of omnivorous nematodes, the sum of the maturity index, the number of genera and Simpson's index of diversity were found at one long-term grazed pasture, and this site was also separated by multi-dimensional scaling (MDS).  相似文献   

9.
Nematode body size is a trait that could be responsive to environmental changes, such as agricultural management practices, and adopted as a standard trait-based indicator in soil community analysis. Our study investigated how body size in the nematode community responded to fertilization in a double-cropping system with paddy rice and upland wheat. Four fertilizer treatments were examined: an unfertilized control (CK), chemical fertilizer (CF), manure plus chemical fertilizer (MCF) and manure plus straw plus chemical fertilizer (MSCF). The community-weighted mean (CWM) of body size was the trait-based indicator used for nematode community analysis. A trend of increasing body size in fertilized plots was observed for most genera, with a relatively small increase in the size of small-bodied bacterivores and fungivores and a relatively large increase in the size of large-bodied omnivores. Fertilized plots had significantly greater CWM of body size than the CK treatment, although total nematode abundance increased significantly in the MSCF treatment only. Discriminant and multiple regression analyses showed that CWM of body size was positively correlated with the soil organic C, total N, available P and available K concentrations, which responded to fertilizer inputs. In contrast, soil fertility was weakly related to total body size in the wheat phase and the following abundance-based indicators: Margalef's richness index, Shannon's diversity index, summed maturity index (∑MI) and enrichment index (EI) in both phases. Since fertilization resulted in larger body size but no other change in the nematode community (i.e. diversity and abundance were generally unaffected by fertilization), this implies that nematodes have a plastic growth habit that does not necessarily result in greater reproduction or fitness of offspring. We suggest that CWM of body size is a reliable trait-based indicator of the soil nematode community response to fertilization, but this requires further testing across a wider range of fertilized agroecosystems.  相似文献   

10.
《Soil biology & biochemistry》2012,44(12):2374-2383
Soil food webs respond to anthropogenic and natural environmental variables and gradients. We studied abundance, connectance (a measure of the trophic interactions within each channel), and diversity in three different channels of the soil food web, each comprised of a resource-consumer pair: the microbivore channel (microbes and their nematode grazers), the plant–herbivore channel (plants and plant-feeding nematodes), and the predator–prey channel (predatory nematodes and their nematode prey), and their associations with different gradients in a heterogeneous agricultural landscape that consisted of intensive row crop agriculture and grazed non-irrigated grasslands in central California. Samples were taken at three positions in relation to water channels: water’s edge, bench above waterway, and the adjacent arable or grazed field. Nematode communities, phospholipid fatty acid (PLFA) biomarkers, and soil properties (NH4+-N, NO3-N, total N, total C, pH, P, bulk density and soil texture) were measured, and riparian health ratings were scored. Environmental variables were obtained from publicly-available data sources (slope, elevation, available water capacity, erodability, hydraulic conductivity, exchangeable cation capacity, organic matter, clay and sand content and pH).The abundance and richness in most food web components were higher in grazed grasslands than in intensive agricultural fields. Consumers contributed less than their resources to the abundance and richness of the community in all channels. The association between richness and abundance for each component was strongest for the lowest trophic links (microbes, as inferred by PLFA) and weakest for the highest (predatory nematodes). The trophic interactions for the predator–prey and plant–herbivore channels were greater in the grassland than in the cropland. Fields for crops or grazing supported more interactions than the water’s edge in the plant–herbivore and microbivore channels. Connectance increased with the total richness of each community. Higher connectance within the microbivore and predator–prey soil food web channels were associated with soil NO3-N and elevation respectively, which served as surrogate indicators of high and low agricultural intensification.  相似文献   

11.
Soil food webs respond to anthropogenic and natural environmental variables and gradients. We studied abundance, connectance (a measure of the trophic interactions within each channel), and diversity in three different channels of the soil food web, each comprised of a resource-consumer pair: the microbivore channel (microbes and their nematode grazers), the plant–herbivore channel (plants and plant-feeding nematodes), and the predator–prey channel (predatory nematodes and their nematode prey), and their associations with different gradients in a heterogeneous agricultural landscape that consisted of intensive row crop agriculture and grazed non-irrigated grasslands in central California. Samples were taken at three positions in relation to water channels: water’s edge, bench above waterway, and the adjacent arable or grazed field. Nematode communities, phospholipid fatty acid (PLFA) biomarkers, and soil properties (NH4+-N, NO3-N, total N, total C, pH, P, bulk density and soil texture) were measured, and riparian health ratings were scored. Environmental variables were obtained from publicly-available data sources (slope, elevation, available water capacity, erodability, hydraulic conductivity, exchangeable cation capacity, organic matter, clay and sand content and pH).The abundance and richness in most food web components were higher in grazed grasslands than in intensive agricultural fields. Consumers contributed less than their resources to the abundance and richness of the community in all channels. The association between richness and abundance for each component was strongest for the lowest trophic links (microbes, as inferred by PLFA) and weakest for the highest (predatory nematodes). The trophic interactions for the predator–prey and plant–herbivore channels were greater in the grassland than in the cropland. Fields for crops or grazing supported more interactions than the water’s edge in the plant–herbivore and microbivore channels. Connectance increased with the total richness of each community. Higher connectance within the microbivore and predator–prey soil food web channels were associated with soil NO3-N and elevation respectively, which served as surrogate indicators of high and low agricultural intensification.  相似文献   

12.
We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups; grasses, legumes and forbs. The same plant species composition was maintained in the plots through weeding and resowing during the experimental period. The hypotheses were (i) that the nematode community would shift towards a more diverse and mature fauna over time and (ii) that the effects of both plant species identity and plant species richness would increase over time. As hypothesized, the Bongers’ Maturity Index (a measure of nematode responses to disturbance) increased over time, but not nematode diversity. Instead, the nematode community development in the present grassland experiment seemed to be more characterized by shifts in dominance patterns than by colonization of new taxa. Clear temporal trends were found for plant-feeders and Adenophorea bacterial-feeders which increased in abundance over time in almost all plant treatments. Rhabditidae bacterial-feeders decreased in abundance over time, in particular in plots with legumes. Fungal-feeders, omnivores/predators and the two nematode indices PPI (Bongers’ Plant Parasitic Index) and NCR (Nematode Channel Ratio) had significant interactions between plant composition and time giving some support to our second hypothesis. Our results highlight the need for long-term experiments to examine plant species effects on soil fauna, especially on taxa belonging to higher trophic levels. The results also stress the importance of plant composition for belowground soil faunal communities.  相似文献   

13.
Carbon nanomaterials have been widely used in industry and inevitably enter the environment. However, there is little information about their influence on the abundance and diversity of soil nematode community. We evaluated the impact of three kinds of carbon nanomaterials (graphene, graphene oxide, and carbon nanotubes) on the abundance and diversity of soil nematodes after growing tall fescue for 130 d using a laboratory pot experiment. A total of 29 genera of nematodes were identified in all the treatments. Carbon nanomaterials significantly increased the abundance of total nematodes and plant parasites. The presence of graphene and graphene oxide increased the numbers of bacterivores, and graphene benefited fungivores. The total nematode abundance was 1.9-2.9 times greater in the carbon nanomaterial treatments than in the control with no carbon nanomaterial addition. However, graphene oxide and carbon nanotubes decreased the values of nematode community parameters, e.g., diversity, species richness, and structure index. Compared with the control, the addition of graphene resulted in a community with a higher plant-parasitic index (i.e., the maturity index of the plant-parasitic nematodes). Overall, our findings highlight that the addition of carbon nanomaterials has a negative influence on the composition and diversity of the nematode community, simplifying the community structure.  相似文献   

14.
Soil nematodes were used as bioindicators to compare possible differences in soil ecological conditions in Douglas-fir forests harvested by clearcutting and by two partialharvesting systems, namely shelterwood and extended rotation. An unlogged forest block was used as a control treatment. The pre- and post-harvest comparisons were based on total abundance of the nematodes, their trophic structure, and relative abundance of the nematode taxa found in the four blocks. The nematode and soil data were obtained bimonthly over a year. Pre-harvest nematode abundance and taxonomic composition were similar at the four blocks. Post-harvest data were obtained 6-7 months after the harvesting treatments were instituted. The post-harvest abundance at the three logged blocks was reduced to varying levels as compared to the control block, and analysis of variance showed that the severity of impact of the harvesting treatments on nematode abundance ranked as: clearcut shelterwood > extended rotation unlogged control. However, the taxonomic and trophic structures of the nematode community, which consisted of 48 taxa in these forests, were only slightly altered by any of the harvesting treatments as shown by maturity and diversity indices and by multivariate analysis.  相似文献   

15.
Cover crops are increasingly being used in agriculture, primarily for weed or erosion management. The addition of cover crops increases the primary productivity of the system and diversifies basal resources for higher trophic levels. How increases in the quality and quantity of basal resources affect bottom-up and top-down control remains a key question in soil food web ecology. We evaluated the response of the nematode community to the introduction of cover crops between rows of a banana plantation. We measured changes in nematode food web structure and inferred the prevalence of bottom-up and top-down effects on the abundance of phytophagous nematodes (i.e., plant-feeding and root-hair-feeding species) 1.5 years after plots with cover crops (Poaceae or Fabaceae species) or bare soil were established. The addition of a cover crop greatly affected the structure and the abundance of the soil nematode community 1.5 years after planting. The abundance of all trophic groups except for plant-feeding nematodes tended to increase with the addition of cover crops. The Shannon–Weaver diversity index and the enrichment index increased with the addition of cover crops, indicating that opportunistic, bacterivorous and fungivorous nematodes benefited from the added resources. Plant-feeding nematodes were least abundant in plots with Poaceae cover crops, while bacterivorous, omnivorous, and root-hair-feeding nematodes were more abundant with Fabaceae cover crops than with bare soil, indicating that cover crop identity or quality greatly affected soil food web structure. Bottom-up effects on all trophic groups other than plant-feeding nematodes were evident with Poaceae cover crops, suggesting an top-down control of plant-feeding nematodes by omnivorous nematodes. Conversely, plant-feeding nematodes were evidently not suppressed in Fabaceae cover crops, perhaps because bottom-up effects on omnivorous nematodes were weaker (hence, top-down control by omnivorous nematodes was weaker), and because Fabaceae cover crops probably served as good hosts for some plant-feeding nematodes.  相似文献   

16.
17.
Four major tea management practices (organic, pollution‐free, conventional, and semi‐natural) are employed in Chinese tea plantations at present. These practices can induce changes in the physiochemical parameters, microorganism community and enzyme activity in tea plantation soil. However, understanding of their effects on soil nematodes is still scarce. This study aimed to investigate whether and how different management practices affect the biodiversity, function, and structure of soil nematode communities in tea plantation habitats. The soil nematode community structures and ecological indices were determined from the soil samples collected more than 6 y after their respective farming practices were first applied, and different management practices did not greatly affect soil nematode community evenness or species diversity, but organic practice increased nematode trophic diversity, common species diversity, and species richness. Pollution‐free practice considerably increased fungivorous nematodes, and both pollution‐free and conventional practice decreased bacterivorous nematodes markedly in the subsurface layers of soil. Predator and omnivorous nematodes were found to be more abundant in semi‐natural plantation. Organic practice was more sustainable and suitable for tea cultivation, with the greatest biodiversity, best nutrient conditions, higher and more stable C/N ratio and lower interference in the food web.  相似文献   

18.
Comparisons of agricultural and natural ecosystems reveal the magnitude of the effects of agricultural practices on the diversity and abundance of soil nematodes. Consequently, there is the need for testing ecological hypotheses, specifically with regard to nematode ecology, in natural and agricultural soils to seek strategies for biological control and environmental monitoring. We studied soil nematode assemblages and soil physical attributes of five soil layers (0–10, 10–20, 20–30, 30–40 and 40–50 cm) from sugarcane plantations and forest remnants in the sugarcane zone of Pernambuco State, Brazil. Structure and composition of the nematode assemblage and soil properties differed between forest and sugarcane soils, even in the same locality. The soil bulk density and the abundance of all nematodes and the diversity of plant‐parasitic nematodes were greater whereas soil porosity, soil respiration and abundance of predator nematodes were smaller in sugarcane than in forest areas. We suggest that sugarcane management practices result in changes in the soil properties and concomitantly alter the composition and structure of the nematode assemblages. Co‐inertia analysis indicated that others environmental factors also might be affecting the nematofauna.  相似文献   

19.
BackgroundSaffron cultivation is vital in the Taliouine-Taznakht regions, but the influence of agricultural practices on soil nematode communities, critical for soil health and plant productivity, is not well understood.This study characterizes nematode communities in saffron fields of the Taliouine-Taznakht regions, assessing the impact of various agricultural practices on these communities, with a focus on their diversity, functional roles, and potential as bio-indicators of soil health.A total of 163 soil samples were collected from saffron fields in Taliouine-Taznakht. Nematode communities were identified, quantified, and their functional diversity analyzed. Principal Component Analysis (PCA) was used to visualize relationships between nematode communities and sampling sites. Co-inertia analysis assessed the impact of agricultural practices on nematode diversity.The nematode communities were diverse and varied across regions. PCA identified unique nematode community compositions in different saffron fields. Omnivorous nematodes were strongly linked with Taouyalte (TA), and herbivorous ones were prevalent at Agadir Melloul (AM) and Sidi Hssaine (SH). Modern crop types, high-frequency irrigation, and alfalfa-barley rotation were positively correlated with predator nematode abundance, potentially controlling plant parasitic nematodes and encouraging nutrient cycling. Conversely, monocropping, traditional irrigation, and long plantation age correlated with reduced structure and maturity indices, suggesting a less stable ecosystem.This study unveils the intricate relationships between nematode communities in Taliouine-Taznakht saffron fields and agricultural practices. Findings indicate that specific practices, such as crop rotation and modern irrigation techniques, can foster beneficial nematode groups that improve soil health and potentially regulate harmful plant parasitic nematodes. This knowledge is crucial for crafting sustainable and effective saffron cultivation strategies.  相似文献   

20.
Human activities are causing climatic changes and alter the composition and biodiversity of ecosystems. Climate change has been and will be increasing the frequency and severity of extreme climate events and natural disasters like floods in many ecosystems. Therefore, it is important to investigate the effects of disturbances on ecosystems and identify potential stabilizing features of ecological communities. In this study, soil microbial and nematode communities were investigated in a grassland biodiversity experiment after a natural flood to investigate if plant diversity is able to attenuate or reinforce the magnitude of effects of the disturbance on soil food webs. In addition to community analyses of soil microorganisms and nematodes, the stability indices proportional resilience, proportional recovery, and proportional resistance were calculated. Generally, soil microbial biomass decreased significantly due to the flood with the strongest reduction in gram-negative bacteria, while gram-positive bacteria were less affected by flooding. Fungal biomass increased significantly three months after the flood compared to few days before the flood, reflecting elevated availability of dead plant biomass in response to the flood. Similar to the soil microbial community, nematode community structure changed considerably due to the flood by favoring colonizers (in the broadest sense r-strategists; c–p 1, 2 nematodes), particularly so at high plant diversity. None of the soil microbial community stability indices and few of the nematode stability indices were significantly affected by plant diversity, indicating limited potential of plant diversity to buffer soil food webs against flooding disturbance. However, plant diversity destabilized colonizer populations, while persister populations (in the broadest sense K-strategists; c–p 4 nematodes) were stabilized, suggesting that plant diversity can stabilize and destabilize populations depending on the ecology of the focal taxa. The present study shows that changes in plant diversity and subsequent alterations in resource availability may significantly modify the compositional shifts of soil food webs in response to disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号