首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

2.
Natural variations of the 13C/12C ratio have been frequently used over the last three decades to trace C sources and fluxes between plants, microorganisms, and soil. Many of these studies have used the natural-13C-labelling approach, i.e. natural δ13C variation after C3-C4 vegetation changes. In this review, we focus on 13C fractionation in main processes at the interface between roots, microorganisms, and soil: root respiration, microbial respiration, formation of dissolved organic carbon, as well as microbial uptake and utilization of soil organic matter (SOM). Based on literature data and our own studies, we estimated that, on average, the roots of C3 and C4 plants are 13C enriched compared to shoots by +1.2 ± 0.6‰ and +0.3 ± 0.4‰, respectively. The CO2 released by root respiration was 13C depleted by about −2.1 ± 2.2‰ for C3 plants and −1.3 ± 2.4‰ for C4 plants compared to root tissue. However, only a very few studies investigated 13C fractionation by root respiration. This urgently calls for further research. In soils developed under C3 vegetation, the microbial biomass was 13C enriched by +1.2 ± 2.6‰ and microbial CO2 was also 13C enriched by +0.7 ± 2.8‰ compared to SOM. This discrimination pattern suggests preferential utilization of 13C-enriched substances by microorganisms, but a respiration of lighter compounds from this fraction. The δ13C signature of the microbial pool is composed of metabolically active and dormant microorganisms; the respired CO2, however, derives mainly from active organisms. This discrepancy and the preferential substrate utilization explain the δ13C differences between microorganisms and CO2 by an ‘apparent’ 13C discrimination. Preferential consumption of easily decomposable substrates and less negative δ13C values were common for substances with low C/N ratios. Preferential substrate utilization was more important for C3 soils because, in C4 soils, microbial respiration strictly followed kinetics, i.e. microorganisms incorporated heavier C (? = +1.1‰) and respired lighter C (? = −1.1‰) than SOM. Temperature and precipitation had no significant effect on the 13C fractionation in these processes in C3 soils. Increasing temperature and decreasing precipitation led, however, to increasing δ13C of soil C pools.Based on these 13C fractionations we developed a number of consequences for C partitioning studies using 13C natural abundance. In the framework of standard isotope mixing models, we calculated CO2 partitioning using the natural-13C-labelling approach at a vegetation change from C3 to C4 plants assuming a root-derived fraction between 0% and 100% to total soil CO2. Disregarding any 13C fractionation processes, the calculated results deviated by up to 10% from the assumed fractions. Accounting for 13C fractionation in the standard deviations of the C4 source and the mixing pool did not improve the exactness of the partitioning results; rather, it doubled the standard errors of the CO2 pools. Including 13C fractionations directly into the mass balance equations reproduced the assumed CO2 partitioning exactly. At the end, we therefore give recommendations on how to consider 13C fractionations in research on carbon flows between plants, microorganisms, and soil.  相似文献   

3.
Radiocarbon analysis of soil CO2 can provide information on the age, source and turnover rate of soil organic C. We developed a new method for passively trapping respired CO2 on molecular sieve, allowing it to be returned to the laboratory and recovered for C isotope analysis. We tested the method on a soil at a grassland site, and using a synthetic soil created to provide a contrasting isotopic signature. As with other passive sampling techniques, a small amount of fractionation of the 13C isotope occurs during sampling, which we have quantified, otherwise the results show that the molecular sieve traps a sufficiently large and representative sample of CO2 for C isotope analysis. Since 14C results are routinely corrected for mass-dependent fractionation, our results show that passive sampling of soil respiration using molecular sieve offers a reliable method to collect soil-respired CO2 for 14C analysis.  相似文献   

4.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

5.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

6.
Woody plant encroachment into grasslands and savannas is a globally extensive land-cover change that alters biogeochemical processes and frequently results in soil organic carbon (SOC) accrual. We used soil physical fractionation, soil respiration kinetics, and the isotopic composition of soil respiration to investigate microbial degradation of accrued SOC in sandy loam soils along a chronosequence of C3woody plant encroachment into a C4-dominated grassland in southern Texas. Our previous work in this system demonstrated significant changes in the chemistry and abundance of lignin and aliphatic biopolymers within particulate soil fractions during the first 40 yrs of woody plant encroachment, indicating selective accrual of purportedly more recalcitrant plant chemicals. However, during the long-term soil laboratory incubation presented herein, a greater proportion of SOC was mineralized in soils from older woody stands (34-86 yrs) than in soils from younger woody stands (14-23 yrs) and grasslands, providing no evidence for greater biochemical recalcitrance as a controlling mechanism for SOC accrual. In addition, δ13C values of respired CO2 indicate that the mineralized SOC was predominately of C3 origin from all woody stands along the chronosequence, and that respired CO2 was primarily derived from the free light fraction (density <1.0 g/cm3) and macroaggregate-sized soil fraction. Our data suggested that the location of SOC among soil fractions was more important than plant polymer chemistry in determining SOC turnover rates during incubation. Surprisingly, estimates of the size and turnover rate of the active SOC pool based on respiratory kinetics did not increase with woody encroachment, and the turnover rate of the slower SOC pool decreased, again supporting the notion that increases in biochemically recalcitrant biopolymers did not hinder decomposition in the lab. These data indicate environmental conditions that may allow for C accrual in the field were alleviated during the controlled incubation. Therefore, C accrual in these sandy loam soils following woody encroachment should not be assumed stable, and this factor should be taken into account when considering responses of SOC to climate change or when making management decisions regarding land cover impacts on SOC.  相似文献   

7.
On the basis of CO2 evolution rate, O2 uptake rate, and 13C isotopic signature of respired CO2, the metabolic response to the addition of 13C labelled n-hexadecane and palmitic acid each with supplementary nitrogen was studied for two topsoils, one under continuous agricultural management and the other under beech forest. The CO2 evolution rate was immediately stimulated in the agricultural soil and the respiratory quotient (RQ) decreased from 0.8 to 0.4 mol CO2 evolution rate per mol O2 uptake rate, which was below the theoretically expected value of 0.65 and 0.70 for the degradation of n-hexadecane and palmitic acid, respectively. The microbial response was delayed in the forest soil, but developed better than in the agricultural soil throughout the subsequent 2-4 weeks. Consequently, the respiration rate returned earlier to the initial level for the beech forest soil and the δ13C of respired CO2 and RQ approached values before hydrocarbon addition. Based on the link among respiration rates, RQ and 13C-CO2 value, the added oil-analogue compounds induced a more rapid response in the agricultural soil and were degraded more completely in the forest soil. We concluded that the resilience, which we defined here as the capacity of the soil microbiota to buffer perturbance and to reorganise in response to change resulting in a more desirable system, was higher in our forest soil than for the agricultural soil.  相似文献   

8.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

9.
A theoretical approach to the partitioning of carbon dioxide (CO2) efflux from soil with a C3 vegetation history planted with maize (Zea mays), a C4 plant, into three sources, root respiration (RR), rhizomicrobial respiration (RMR), and microbial soil organic matter (SOM) decomposition (SOMD), was examined. The δ13C values of SOM, roots, microbial biomass, and total CO2 efflux were measured during a 40-day growing period. A three-source isotopic mass balance based on the measured δ13C values and on assumptions made in other studies showed that RR, RMR, and SOMD amounted to 91%, 4%, and 5%, respectively. Two assumptions were thoroughly examined in a sensitivity analysis: the absence of 13C fractionation and the conformity of δ13C of microbial CO2 and that of microbial biomass. This approach strongly overestimated RR and underestimated RMR and microbial SOMD. CO2 efflux from unplanted soil was enriched in 13C by 2.0‰ compared to microbial biomass. The consideration of this 13C fractionation in the mass balance equation changed the proportions of RR and RMR by only 4% and did not affect SOMD. A calculated δ13C value of microbial CO2 by a mass balance equation including active and inactive parts of microbial biomass was used to adjust a hypothetical below-ground CO2 partitioning to the measured and literature data. The active microbial biomass in the rhizosphere amounted to 37% to achieve an appropriate ratio between RR and RMR compared to measured data. Therefore, the three-source partitioning approach failed due to a low active portion of microbial biomass, which is the main microbial CO2 source controlling the δ13C value of total microbial biomass. Since fumigation-extraction reflects total microbial biomass, its δ13C value was unsuitable to predict δ13C of released microbial CO2 after a C3-C4 vegetation change. The second adjustment to the CO2 partitioning results in the literature showed that at least 71% of the active microbial biomass utilizing maize rhizodeposits would be necessary to achieve that proportion between RR and RMR observed by other approaches based on 14C labelling. The method for partitioning total below-ground CO2 efflux into three sources using a natural 13C labelling technique failed due to the small proportion of active microbial biomass in the rhizosphere. This small active fraction led to a discrepancy between δ13C values of microbial biomass and of microbially respired CO2.  相似文献   

10.
Stable Isotope Probing (SIP) is a powerful tool for analysing the fate of pesticides in soil. Together with FAME (Fatty Acid Methyl Esters), it can help identify biodegradation pathways and recycling into the microbial biomass. The fate of ring-labelled 13C-2,4-dichlorophenoxyacetic acid or 2,4-D (C2,4-D) was determined in soil during a 6-month incubation. The distribution of 13C among the microbial biomass, the CO2 respired, the water, methanol and dichloromethane soluble fractions, and the residual non-extracted bulk soil was measured. Molecular analyses were carried out on the lipid and the non-extractable fractions. After 8 days, about half of the initial amount of C2,4-D was mineralised; the other half remained in soil as non-extractable residues (NER). C2,4-D continued to be mineralised, suggesting that NER were still bioavailable. Analysis of C2,4-D-enriched FAME contained in the lipid fraction suggested that a succession of microbial populations was involved in 2,4-D biodegradation. This is possibly due to the change of 2,4-D availability. The C2,4-D yield coefficient and degrader diversity evolved during the incubation, providing corroboratory evidence that different physiological groups were active during the incubation. The 13C-labelled microbial community was always less diverse than the total community, even at the end of the incubation, suggesting that the cross-feeding community is also a specific part of the total community. This work shows that molecular analysis of 13C-labelled pesticides is a useful tool for understanding both chemical and biological aspects of their fate in soil.  相似文献   

11.
Bioenergy production from renewable organic material is known to be a clean energy source and therefore its use is currently much promoted in many countries. Biogas by-products also called biogas residues (BGR) are rich in partially stable organic carbon and can be used as an organic fertilizer for crop production. However so far, many environmental issues relevant when BGR are applied to agricultural land (soil C sequestration, increased denitrification and nutrient leaching) still have to be studied. Therefore a field experiment was set up to investigate the degradation of BGR and its impact on the decomposition of native soil organic matter based on a natural abundance stable isotope approach. Maize, a C4 plant has been used as bioenergy crop, therefore the δ13C of total C in BGR was −16.0‰PDB and soil organic matter was mostly derived from C3 plant based detritus, SOM thus showed a δ13C of −28.4‰PDB. Immediately after BGR application, soil-emitted CO2 showed unexpectedly high δ13C of up to +23.6‰PDB, which has never been reported earlier. A subsequent laboratory scale experiment confirmed the positive δ13C of soil-emitted CO2 after BGR addition and showed that obviously, the added BGR led to a consumption of dissolved inorganic C in soils. Additionally, it was observed that the δ13C of CO2 driven from inorganic C of BGR (BGR-IC) by acid treatment was +35.6‰PDB. Therefore, we suggest that also under field conditions the transformation of BGR-IC into CO2 contributed largely to CO2 emissions in addition to the decomposition of organic matter, which affected both the amount and the carbon isotope signature of emitted CO2 in the initial period after BGR application. Positive δ13C of inorganic C contained in BGR was attributed to processes with strong fractionation of C isotopes during anaerobic fermentation in the biogas formation process.  相似文献   

12.
By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-s) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how δ13CR-s is affected by both contributions of multiple carbon sources to respiration and fractionation due to soil gas transport. In this study, we measured potential isotopic sources to determine their contributions to δ13CR-s and we performed a series of experiments to investigate the impact of soil gas transport on δ13CR-s estimates. The objectives of these experiments were to: i) compare estimates of δ13CR-s derived from aboveground and belowground techniques, ii) evaluate the roles of diffusion and advection in a forest soil on the estimates of δ13CR-s, and iii) determine the contribution of new and old carbon sources to δ13CR-s for a Douglas-fir stand in the Pacific Northwest during our measurement period. We found a maximum difference of −2.36‰ between estimates of δ13CR-s based on aboveground vs. belowground measurements; the aboveground estimate was enriched relative to the belowground estimate. Soil gas transport during the experiment was primarily by diffusion and the average belowground estimate of δ13CR-s was enriched by 3.8-4.0‰ with respect to the source estimates from steady-state transport models. The affect of natural fluctuations in advective soil gas transport was little to non-existent; however, an advection-diffusion model was more accurate than a model based solely on diffusion in predicting the isotopic samples near the soil surface. Thus, estimates made from belowground gas samples will improve with an increase in samples near the soil surface. We measured a −1‰ difference in δ13CR-s as a result of an experiment where advection was induced, a value which may represent an upper limit in fractionation due to advective gas transport in forest ecosystems. We found that aboveground measurements of δ13CR-s may be particularly susceptible to atmospheric incursion, which may produce estimates that are enriched in 13C. The partitioning results attributed 69-98% of soil respiration to a source with a highly depleted isotopic signature similar to that of water-soluble carbon from foliage measured at our site.  相似文献   

13.
A miniaturised method developed to measure the mineralisation of 13C-labelled organic compounds in small soil samples is presented. Soil samples (<0.5 g) were placed in wells of microtiter plates with CO2 traps (NaOH-soaked glass microfiber filters) and amended with 13C-labelled substrate. The microtiter plate was covered with a seal and placed in a microplate clamp system to ensure that each well was airtight. After incubation, the CO2 traps were transferred to tightly sealed glass phials under CO2-free atmosphere and the 13C-labelled CO2 was released by addition of H3PO4. The CO2 was measured by micro-GC and its isotopic signature was determined using a GC-IRMS. The qualitative and quantitative efficiency of the microplate system was demonstrated by comparison with direct measurement of CO2 in the headspace of phials in which similarly treated soil samples had been incubated. The two methods showed similar mineralisation rates for added 13C-substrates but the apparent mineralisation of soil organic matter was greater with the microtiter plate method. The microplate system presented here is suitable for studying the mineralisation of different kinds of 13C-labelled substrates in small soil samples and allows analysis of functional and molecular characteristics on the same micro-samples.  相似文献   

14.
An empirical method to measure respiratory CO2 recycling using a fast growing agricultural cover crop as a model system was tested and compared with a theoretical method which uses a variation of the Keeling plot. Both methods gave values which were high and similar to each other. The theoretical method gave a value of respiratory based CO2 recycling of 0.41, while the empirical method gave a value of 0.49. Therefore close to half of the respired CO2 is refixed during daytime photosynthesis in this densely planted cover crop. Refixation of respired CO2 during the day should lead to an isotopic enrichment of the remaining respired CO2 leaving the canopy of the cover crop. Therefore, calculations of gross respiration and photosynthesis using isotopic mass balance equations that do not take this isotopic fractionation into account could be in error. We tested this premise by using isotopic mass balance equations to estimate average gross photosynthesis and respiration in this cover crop under two scenarios: (1) no recycling and (2) recycling of respired CO2. Values of gross photosynthesis and respiration were unrealistically low when it was assumed that no recycling occurs. On the other hand, realistic values similar to previous publications were observed when recycling was taken into account.  相似文献   

15.
A laboratory-based aerobic incubation was conducted to investigate nitrogen(N) isotopic fractionation related to nitrification in five agricultural soils after application of ammonium sulfate((NH4)2SO4). The soil samples were collected from a subtropical barren land soil derived from granite(RGB),three subtropical upland soils derived from granite(RQU),Quaternary red earth(RGU),Quaternary Xiashu loess(YQU) and a temperate upland soil generated from alluvial deposit(FAU). The five soils varied in nitrification potential,being in the order of FAU YQU RGU RQU RGB. Significant N isotopic fractionation accompanied nitrification of NH+4. δ15N values of NH+4 increased with enhanced nitrification over time in the four upland soils with NH+4 addition,while those of NO-3 decreased consistently to the minimum and thereafter increased. δ15N values of NH+4 showed a significantly negative linear relationship with NH+4-N concentration,but a positive linear relationship with NO-3-N concentration. The apparent isotopic fractionation factor calculated based on the loss of NH+4 was 1.036 for RQU,1.022 for RGU,1.016 for YQU,and 1.020 for FAU,respectively. Zero- and first-order reaction kinetics seemed to have their limitations in describing the nitrification process affected by NH+4 input in the studied soils. In contrast,N kinetic isotope fractionation was closely related to the nitrifying activity,and might serve as an alternative tool for estimating the nitrification capacity of agricultural soils.  相似文献   

16.
Analyses of the spatial and temporal variations in the natural abundance of 13C are frequently employed to study transformations of plant residues and soil organic matter turnover on sites where long continued vegetation with the C3-type photosynthesis pathway has been replaced with a C4-type vegetation (or vice versa). One controversial issue associated with such analyses is the significance of isotopic fractionation during the microbial turnovers of C in complex substrates. To evaluate this issue, C3-soil and quartz sand were amended with maize residues and with faeces from sheep feed exclusively on maize silage. The samples were incubated at 15 °C for 117 days (maize residues) or 224 days (sheep faeces). CO2 evolved during incubation was trapped in NaOH and analysed for C isotopic contents. At the end of incubation, 63 and 50% of the maize C was evolved as CO2 in the soil and sand, respectively, while 32% of the faeces C incubated with soil and with sand was recovered as CO2. Maize and faeces showed a similar decomposition pattern but maize decomposed twice as fast as faeces. The δ13C of faeces was 0.3‰ lower than that of the maize residue (δ13C −13.4‰), while the δ13C of the C3-soil used for incubation was −31.6‰. The δ13C value of the CO2 recovered from unamended C3-soil was similar or slightly lower (up to −1.5‰) than that of the C3-soil itself except for an initial flush of 13C enriched CO2. The δ13C values of the CO2 from sand-based incubations typically ranged −15‰ to −17‰, i.e. around −3‰ lower than the δ13C measured for maize and faeces. Our study clearly demonstrates that the decomposition of complex substrates is associated with isotopic fractionation, causing evolved CO2 to be depleted in 13C relative to substrates. Consequently the microbial products retained in the soil must be enriched in 13C.  相似文献   

17.
Laser spectroscopy is an emerging technique to analyze the stable isotopic composition of soil-respired CO213Cresp, δ18Oresp) in situ and at high temporal resolution. Here we present the first application of a quantum cascade laser-based spectrometer (QCLS) in a closed soil-chamber system to determine simultaneously δ13Cresp and δ18Oresp. In a Swiss beech forest, a total of 90 chamber measurements with 20 min sampling time each were performed. The instrument measured the δ13C and δ18O of the CO2 in the chamber headspace at every second with a precision of 0.25‰, resulting in Keeling plots with 1200 data points. In addition, we calculated δ13Cresp directly from the flux ratio of 13CO2 and 12CO2. The flux-ratio values were 0.8‰ lower than the Keeling plot intercepts when the flux rates were derived from quadratic curve fits of the CO2 increase. The δ18O-Keeling plots showed a significant bending very likely due to the equilibration of chamber CO2 with the 18O of surface soil water. Therefore, we used a quadratic curve fit of the Keeling plots to estimate δ18Oresp. Our results also revealed that δ13Cresp was not constant throughout the CO2 accumulation in the closed soil chambers: there were significant but non-systematic variations in δ13Cresp for the first 10 min, and systematic shifts in δ13Cresp of on average 1.9 ‰ in the second part of the 20-min measurements. These biases were probably caused by non-steady-state conditions in the soil-chamber system. Our study illustrates that the high temporal resolution of QCLS measurements allows the detection of non-linearities in the isotopic effluxes of CO2 from the soil due to soil-chamber feedbacks. This information can be used to improve the estimates for δ13Cresp and δ18Oresp.  相似文献   

18.
The initial reaction of microbial transformation and turnover of soil carbon inputs may influence the magnitude of longer-term net soil C storage. The objective of this study was to test the merit of the hypothesis that the more rapid substrates are initially utilized, the longer the residual products remain in the soil. We used simple model C compounds to determine their decomposition rates and persistence over time. Pure 14C compounds of glucose, acetate, arginine, oxalate, phenylalanine, and urea were incubated in soil for 125 days at 24°C. Total respired CO2 and 14CO2 was quantitatively measured every day for 15 days and residual soil 14C after 125 days. The percent 14C remaining in the soil after 125 days of incubation was positively and significantly correlated with the percent substrate utilized in the first day of incubation. The 14C in the microbial biomass ranged from 4–15% after 15 days and declined through day 125, contributing significantly to the 14C that evolved over the longer time period. Priming of 12C soil organic matter (SOM) was negative at day 3 but became positive, reaching a maximum on day 12; the total increase in soil C from added substrates was greater than the primed C. The primed C came from 12C SOM rather than the microbial biomass. This data supports the concept that the more rapidly a substrate is initially mineralized, the more persistent it will be in the soil over time.  相似文献   

19.
As concentrations of atmospheric CO2 increase, it is important to know whether this may result in feedbacks that could modify the rate of increase of CO2 in the atmosphere. Soil organic matter (SOM) represents one of the largest pools of C and mineralization rates are known to be temperature dependent. In this study, we investigated whether different OM fractions present in a forest soil (F/A1 horizon) would respond in a similar manner to elevated temperatures. We examined the trends in isotopic content (12C, 13C, and 14C) of soil respired CO2 at various temperatures (10, 20, and 35 0C) over a two year period in the laboratory. We also examined the total C, total N, and C : N ratio in the remaining soil and isolated humic fractions, and the distribution of the individual amino acids in the soil after 5 years of laboratory incubation at the various temperatures. We found that the rate at which C mineralization increases with temperature was occasionally greater than predicted by most models, more C from recalcitrant OM pools being mineralized at the higher temperature. This confirmed that the relationship between soil organic matter decomposition and temperature was complex and that the different pools of organic matter did respond in differing ways to elevated temperatures.  相似文献   

20.
Many researchers are interested in the variability of root-respired δ13CO2 as an indication of linkages between belowground plant respiration and canopy processes. Most studies in this area have, however, relied upon the assumption that temporal variability of total soil respired δ13CO2 reflects autotrophic soil processes, but in fact few supporting measurements of purely autotrophic soil respiration (partitioned from total soil respiration) are available. Here we use a combination of physical and isotopic partitioning methodologies to track the variability in autotrophic and heterotrophic soil δ13CO2 at five sites in Eastern Canada during a very dry growing season. Three dimensional modeling of soil isotopic transport dynamics in the static sampling chambers allow us to constrain measurement bias and to eliminate non-steady-state effects as a potential driver of observed variability. We provide experimental results that support a pivotal assumption made in prior interpretations of soil δ13CO2 dynamics: we observed minimal isotopic variability in soil microbial δ13CO2 efflux, but appreciable temporal variability in root-respired δ13CO2 at sites where near drought conditions were observed, suggesting that isotopic discrimination is likely linked to seasonal variations in transpirational demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号