首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules.  相似文献   

2.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni.  相似文献   

3.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

4.
Summary Spores of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus clarum obtained from sweet potatoes grown in soil inoculated with this fungus and with an enrichment culture of Acetobacter diazotrophicus contained A. diazotrophicus and several other bacteria, including a diazotrophic Klebsiella sp. Inoculation of micropropagated sweet potatoes with G. clarum and A. diazotrophicus enhanced spore formation in soil compared to VAM inoculation alone. Plants inoculated with VAM spores containing the bacteria showed additional increases in the number of spores formed within roots. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM or when present within VAM spores. Micropropagated sugarcane seedlings inoculated with the same VAM spores containing the diazotrophs also contained much higher numbers of A. diazotrophicus in aerial parts than seedlings inoculated in vitro with the bacteria alone. When grown in non-sterile soil, the sugarcane seedlings again showed the greatest infection of aerial parts after inoculation with VAM spores containing the diazotrophs. This treatment also increased VAM colonization and the numbers of spores formed within roots. Similar effects were observed in sweet sorghum except that the aerial plant parts were not infected by A. diazotrophicus.  相似文献   

5.
Plants inoculated with arbuscular mycorrhizal (AM) fungi utilize more soluble phosphorus from soil mineral phosphate than non-inoculated plants. However, there is no information on the response of soil microflora to mineral phosphate weathering by AM fungi and, in particular, on the catabolic diversity of soil microbial communities.The AM fungus, Glomus intraradices was examined for (i) its effect on the growth of Acacia holosericea, (ii) plant-available phosphate and (iii) soil microbial activity with and without added rock phosphate.After 4-months culture, AM fungal inoculation significantly increased the plant biomasses (by 1.78× and 2.23× for shoot and root biomasses, respectively), while mineral phosphate amendment had no effect in a sterilized soil. After 12-months culture, the biomasses of A. holosericea plants growing in a non-sterilized soil amended with mineral phosphate were significantly higher than those recorded in the control treatment (by 2.5× and 5× for shoot and root biomasses, respectively). The fungal inoculation also significantly stimulated plant growth, which was significantly higher than that measured in the mineral phosphate treatment. When G. intraradices and mineral phosphate were added together to the soil, shoot growth were significantly stimulated over the single treatments (inoculation or amendment) (1.45×). The P leaf mineral content was also higher in the G. intraradices+mineral phosphate treatment than in G. intraradices or rock phosphate amendment. Moreover, the number of fluorescent pseudomonads has been significantly increased when G. intraradices and/or mineral phosphate were added to the soil. By using a specific type of multivariate analysis (co-inertia analysis), it has been shown that plant growth was positively correlated to the metabolization of ketoglutaric acid, and negatively linked to the metabolisation of phenylalanine and other substrates, which shows that microbial activity is also affected.G. intraradices inoculation is highly beneficial to the growth of A. holosericea plants in controlled conditions. This AM symbiosis optimises the P solubilization from the mineral phosphate and affects microbial activity in the hyphosphere of A. holosericea plants.  相似文献   

6.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

7.
Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and bacteria from the genus Paenibacillus (P. macerans and P. polymyxa) were examined in a greenhouse pot experiment with Cucumis sativus with and without organic matter amendment (wheat bran). P. polymyxa markedly suppressed AM fungus root colonization irrespective of wheat bran amendment, whereas P. macerans only suppressed AM fungus root colonization in combination with wheat bran amendment. Dual inoculation with P. macerans and G. intraradices in combination with wheat bran amendment also caused severe plant growth suppression. Inoculation with G. intraradices was associated with increased levels of dehydrogenase activity and available P in the growth substrate suggesting that mycorrhiza formation accelerated the decomposition of organic matter resulting in mobilization of phosphorus. Inoculation with both Paenibacillus species increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the AM fungus biomarker 16:1ω5, which was reduced, though not significantly. Similarly, inoculation with G. intraradices increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the Gram-positive bacteria biomarker 15:0 anteiso, which was overall decreased by G. intraradices inoculation. In combination with wheat bran amendment G. intraradices inoculation caused a 39% reduction in the amount of 15:0 anteiso in the treatment with P. polymyxa, suggesting that G. intraradices suppressed P. polymyxa in this treatment. In conclusion, plant growth promoting species of Paenibacillus may have suppressive effects of AM fungi and plant growth, especially in combination with organic matter amendment. The use of an inert plant growth media in the present study allowed us to study rhizosphere microbial interactions in a relative simple substrate with limited interference from other soil biota. However, the results obtained in the present work mainly show potential interactions and should not be directly extrapolated to a soil situation.  相似文献   

8.
A greenhouse experiment was conducted at the University of Çukurova, Rhisosphere Lab, Adana, Turkey, on a growth medium to assess the impact of several selected mycorrhiza including indigenous AMF-maize hybrid combinations on spore production, plant growth and nutrient uptake. In the experiment, six maize (Zea mays L.) (Luce, Vero, Darva, Pegasso, P.3394, and P.32K61) genotypes were used. Control, Glomus mossea, G. caledonium, G. etunicatum, G. clarium, G. macrocarpum, G. fasciculatum, G. intraradices, Dr. Kinkon (Japanese species), indigenous mycorrhizae (Balcal? series) and cocktail mycorrhizae species spores were used. The growth of maize genotypes was found to depend on the mycorrhizal species. For shoot and root dry weight production G. intraradices is one of the most efficient mycorrhiza species on average on all maize genotypes. Genotypes P.3394 and P.32K61 produced the highest shoot and root dry weight as well. Pagasso and Darva genotypes compared to the other genotypes have high root colonization percentages. On average G. clarium inoculated plants also have high percentages of root colonization. It has been found that the P.32K61 genotype has a high phosphorus (P)% content and Pagasso genotypes have higher zinc (Zn) content uptake than other genotypes. G. clarium inoculated maize genotype plant tissues have high P% and Zn content. G. intraradices is also efficient for P and Zn uptake. Mycorrhizal dependent maize genotypes showed variability in P efficiency from inefficient to efficient genotypes.  相似文献   

9.
The effect of Bacillus thuringiensis (B.t.) inoculation on plant growth and on the intra- and extraradical mycorrhizal development of lettuce roots colonized by Glomus mosseae or Glomus intraradices was examined in an inert, soil-less substrate. Histochemical determination of succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities which indicate active fungal metabolism was carried out at two phosphorus (P) levels. The presence of B.t. increased extra- and intraradical colonization [measured as frequency (%F), intensity (%I) and percentage of arbuscules (%A)] for both arbuscular mycorrhizal fungi (AMF) rather than plant growth or nutrition regardless P level. Under the lowest level of P fertilization, B.t. enhanced to a similar extent the extra- and intraradical development of both endophytes, but the proportion of fungal tissue showing SDH or ALP was increased in G. intraradices-colonized plants. [SDH: 458% (M) and 512% (A); ALP: 358% (M) and 300% (A)]. P supply decreased G. intraradices colonization to a higher extent than G. mosseae. Nevertheless, the totality of G. intraradices structures developed in P-amended medium showed intraradical o extraradical activity, while in G. mosseae-colonized roots, SDH and ALP activities highly decreased relative to fungal tissue determined by TB staining as affected by P. Our results show that bacterial inoculation compensates the negative effect of P on the intraradical fungal growth and vitality. P amendment reduced in a higher extent G. intraradices infection intensity (non-vital and vital staining) and G. mosseae activity (ALP staining). Thus, big differences in the proportion of SDH-active infection showing ALP activity in mycelium developed by each endophyte were noted at the highest P level. Physiological plant parameters such as photosynthetic activity did not explain specific changes on each arbuscular-mycorrhizal fungus as affected by P or B.t. inoculation. The increased extraradical mycelium development and metabolic fungal activity as a result of B.t. inoculation positively affected N and P plant content and photosynthetic rate in G. intraradices-colonized plants under the lowest P conditions. In general, the increased metabolically active fungal biomass in co-inoculated plants was irrespective of P level and was not related to the P plant uptake from the inert soil-less substrate. These results show the bacterial effect increasing the physiological and metabolic status of AM endophytes, which not only confirms but also extends previous findings on arbuscular mycorrhizae-bacteria interactions. The present study emphasizes the ecological and practical importance of rhizosphere free-living bacteria as mycorrhizae-helper microorganisms.  相似文献   

10.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

11.
Interactions between the biocontrol fungus Clonostachys rosea IK 726 and a tomato/Glomus intraradices BEG87 symbiosis were examined with and without wheat bran, which served as a food base for C. rosea. In soil without wheat bran amendment, inoculation with C. rosea increased plant growth and altered shoot nutrient content resulting in an increase and decrease in P and N content, respectively. Inoculation with G. intraradices had no effect on plant growth, but increased the shoot P content. Dual inoculation with G. intraradices and C. rosea followed the pattern of C. rosea in terms of plant growth and nutrient content. Wheat bran amendment resulted in marked plant growth depressions, which were counteracted by both inoculants and dual inoculation increased plant growth synergistically. Amendment with wheat bran increased the population density of C. rosea and reduced mycorrhizal fungus colonisation of roots. The inoculants were mutually inhibitory, which was shown by a reduction in root colonisation with G. intraradices in treatments with C. rosea and a reduction in colony-forming units (cfu) of C. rosea in treatments with G. intraradices, irrespective of wheat bran amendment. Moreover, both inoculants markedly influenced soil microbial communities examined with biomarker fatty acids. Inoculation with G. intraradices increased most groups of microorganisms irrespective of wheat bran amendment, whereas the influence of C. rosea on other soil microorganisms was affected by wheat bran amendment. Overall, inoculation with C. rosea increased and decreased most groups of microorganisms without and with wheat bran amendment, respectively. In conclusion, despite mutual inhibition between the two inoculants this interaction did not impair their observed plant growth promotion. Both inoculants also markedly influenced other soil microorganisms, which should be further studied in relation to their plant growth-promoting features.  相似文献   

12.
The potential of interactions between saprophytic and arbuscular mycorrhizal (AM) fungi to improve Eucalyptus globulus grown in soil contaminated with Zn were investigated. The presence of 100 mg kg −1 Zn decreased the shoot and root dry weight of E. globulus colonized with Glomus deserticola less than in plants not colonized with AM. Zn also decreased the extent of root length colonization by AM and the AM fungus metabolic activity, measured as succinate dehydrogenase (SDH) activity of the fungal mycelium inside the E. globulus root. The saprophytic fungi Trametes versicolor and Coriolopsis rigida increased the shoot dry weight and the tolerance of E. globulus to Zn when these plants were AM-colonized. Both saprophytic fungi increased the percentage of AM root length colonization and elevated G. deserticola SDH activity in the presence of all Zn concentrations applied to the soil. In the presence of 500 and 1000 mg kg−1 Zn, there were higher metal concentrations in roots and shoots of AM than in non-AM plants; furthermore, both saprophytic fungi increased Zn uptake by E. globulus colonized by G. deserticola. The higher root to shoot metal ratio observed in mycorrhizal E. globulus plants indicates that G. deserticola enhanced Zn uptake and accumulation in the root system, playing a filtering/sequestering role in the presence of Zn. However, saprophytic fungi did not increase the root to shoot Zn ratio in mycorrhizal E. globulus plants. The effect of the saprophytic fungi on the tolerance and the accumulation of Zn in E. globulus was mediated by its effect on the colonization and metabolic activity of the AM fungi.  相似文献   

13.
The systemic effect of root colonization by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the susceptibility of old and modern barley varieties to the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici (Ggt) was studied in a split-root system. Plants were precolonized on one side of the split-root system with the AMF and thereafter the other side of the split-root system was inoculated with the pathogen. At the end of the experiment the level of bioprotection was estimated by quantifying lesioned roots and the determination of the root fresh weight. AM root colonization provided protection in some of the barley genotypes tested, but not in others. This protective effect seemed to vary in the oldest and the most modern barley variety tested.  相似文献   

14.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

15.
It is not known why sweet potato (Ipomoea batatas) cultivated in tropical regions tolerates acid soil. Here, we report the involvement of mycorrhizal symbiosis in this tolerance. Plants were grown in root-boxes filled with either acidic soil (pH 4.2) or the same soil amended with lime (pH 5.2) for 30 d in a growth chamber. In the inoculated treatments, the percentage of root length colonized by Gigaspora margarita was not affected by soil pH (23±9% at pH 4.2 vs. 30±12% at pH 5.2). The root and shoot dry weights of the non-mycorrhizal plants at pH 4.2 were 27 and 35%, respectively, of those at pH 5.2. The root and shoot dry weights of the mycorrhizal plants at pH 4.2 were 70 and 51% of those at pH 5.2. Growth promotion in mycorrhizal plants was significant only at pH 4.2 (2-fold increase in whole plant dry weight), but not at pH 5.2. As a result, no significant difference was detected in whole plant dry weight between the mycorrhizal plants at pH 4.2 and non-mycorrhizal plants at pH 5.2. The mycorrhizal plants at pH 4.2 showed reduced toxic symptoms of Mn (brown specks on mature leaves) and Al (poor root growth) compared to non-mycorrhizal ones, but tissue concentrations of P, K and Ca did not increase in mycorrhizal plants. We assume that the mycorrhizal colonization can reduce toxic effects of those elements while the exact mechanisms should be further investigated.  相似文献   

16.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

17.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

18.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

19.
Summary Wheat cultivars assumed to be non-susceptible to vesicular-arbuscular (VA) mycorrhizae became colonized, and this effect persisted under different growth conditions. Colonization of all cultivars was similar regardless of the amount of inoculum and the time interval of inoculation. Different plant growth temperatures and the support given by the culture media, inoculation with different endophytes, and inoculation with sterilized and unsterilized spores affected VA colonization levels, although the level of colonization reached in cv. Champlein was similar to that reached in cv. 7-Cerros under each condition. VA mycorrhizal colonization was also affected by different plant growth conditions. After VA reinoculation, the plant dry weight of Castan and 7-Cerros increased, but not Negrillo and Champlein cultivars. VA mycorrhizae increased the shoot dry weight of 7-Cerros only, but not of Champlein, when grown at 35/24°C, and had no effect on the dry weight of either cultivar grown at 18/12°C and 42/24°C. Inoculation with Glomus mosseae increased the dry weight of the cultivars more than inoculation with G. fasciculatum or G. agregatum. The effect on the plant dry weight was greater in plants grown in soil than in sand/vermiculite pots. Inoculation with sterilized and unsterilized spores of G. mosseae, either in soil pots or in sand/vermiculite tubes, did not increase the plant dry weight. Our results indicate that there was no close relationship between the level of root colonization and the effect on plant growth. The effects of accompanying microorganisms in the VA inoculum on VA mycorrhizal symbiosis are discussed.  相似文献   

20.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号