首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which complex interrelationships between plants and microorganisms influence organic matter dynamics is critical to our understanding of global C cycles in changing environments. We examined the hypothesis that patterns of soil microbial activity and functional composition differ among vegetation types in northern peatland ecosystems. Microbial characteristics were compared among peatlands differing in plant growth form (tree, shrub/moss, sedge) in two regions (New York State and West Virginia). Microbial activity (basal respiration) was greater in surface (0-15 cm) than subsurface (15-30 cm) peat and from sites dominated by shrubs and Sphagnum moss (3.9±0.65 μg C g−1 h−1) compared to forested (1.8±0.20 μg C g−1 h−1) or sedge-dominated sites (1.9±0.38 μg C g−1 h−1). Microbial activity was not related to decomposability of peat organic matter among vegetation types, and activity was unexpectedly higher in sites with lower peat pH and higher water table level. Substrate-induced respiration (SIR) did not show a clear pattern among vegetation types, but was greater in surface than subsurface peat. Microbial responsiveness to added glucose was very low. The ratio of basal respiration to SIR varied between 0.39 and 0.72 and, like activity, was highest in shrub/Sphagnum sites. Microbial substrate utilization patterns (assayed with BIOLOG® GN plates) also differed between shrub/Sphagnum sites and forest or sedge sites, suggesting that C fluxes were mediated by different assemblages of microorganisms in shrub/Sphagnum peatlands. Principal component (PC) scores indicated more utilization of N-containing compounds and carboxylic acids, and less utilization of carbohydrates by microbial communities in shrub/Sphagnum sites. PC scores were much more variable both within and among vegetation types for sites in West Virginia than in New York State, and a greater diversity of C sources were utilized in WV (57±3) than NYS (47±2) peat. Our results suggest a link between microbial respiratory activity and microbial functional composition as they vary among these peatland vegetation types.  相似文献   

2.
We developed and tested a new method to collect CO2 from the surface to deep layers of a peatland for radiocarbon analysis. The method comprises two components: i) a probe equipped with a hydrophobic filter that allows entry of peat gases by diffusion, whilst simultaneously excluding water, and, ii) a cartridge containing zeolite molecular sieve that traps CO2 passively. We field tested the method by sampling at depths of between 0.25 and 4 m at duplicate sites within a temperate raised peat bog. CO2 was trapped at a depth-dependent rate of between ∼0.2 and 0.8 ml d−1, enabling sufficient CO2 for routine 14C analysis to be collected when left in place for several weeks. The age of peatland CO2 increased with depth from modern to ∼170 BP for samples collected from 0.25 m, to ∼4000 BP at 4 m. The CO2 was younger, but followed a similar trend to the age profile of bulk peat previously reported for the site (Langdon and Barber, 2005). δ13C values of recovered CO2 increased with depth. CO2 collected from the deepest sampling probes was considerably 13C-enriched (up to ∼+9‰) and agreed well with results reported for other peatlands where this phenomenon has been attributed to fermentation processes. CO2 collected from plant-free static chambers at the surface of the mire was slightly 14C-enriched compared to the contemporary atmosphere, suggesting that surface CO2 emissions were predominantly derived from carbon fixed during the post-bomb era. However, consistent trends of enriched 13C and depleted 14C in chamber CO2 between autumn and winter samples were most likely explained by an increased contribution of deep peat CO2 to the surface efflux in winter. The passive sampling technique is readily portable, easy to install and operate, causes minimal site disturbance, and can be reliably used to collect peatland CO2 from a wide range of depths.  相似文献   

3.
This study examines the recovery of the microbial compartment following active restoration of a North American ombrotrophic peatland extracted for horticultural peat-based substrates and restored by the Sphagnum moss transfer method. We used phospholipid fatty acids (PLFAs) to portrait the microbial community structure and Community Level Physiological Profiles (CLPP) to describe the functional diversity of the microbial communities. Our results indicate that the PLFA profiles were different between the beginning and the end of the growing season, but that it was impossible to distinguish five different vegetation classes found along the disturbance-recovery gradient on the basis of the microbial community structure. The pH, the cover of mosses, Ledum groenlandicum and Eriophorum vaginatum var. spissum were the best environmental predictors for the PLFA composition. The newly formed peat found in aerobic conditions beneath restored Sphagnum carpets had the highest decomposition capacity, whereas the lowest rates were found in the surface samples of non-restored conditions or in the deepest horizons of the natural samples. A large proportion of the variation in the physiological profiles was explained with variables related to the vegetation cover, the physicochemical environment and the microbial structure of the community, which is very promising for future monitoring studies. Overall, this study demonstrates that the recovery of particular plant groups, namely mosses and shrubs in restored peatlands might be the driver of changes occurring in the structure of the microbial communities in restored peatlands.  相似文献   

4.
In central Ontario, elevated SO4 concentrations and export have been measured in both upland and wetland-draining catchments following summer droughts, although the source of excess SO4 is unclear. The objective of this study was to determine the effects of drying and re-wetting and temperature, respectively, on the release of SO4 from the primary S pools in wetlands (Sphagnum and peat) and uplands (forest floor and mineral soil), using material collected from the PC1 catchment in Haliburton County, and from catchment S50 in the Turkey Lakes Watershed. Peat exhibited the most marked response to drying of the four materials considered, and within 24 h of re-wetting dried peat from both catchments released 3-4 times more SO4 (50-67 mg kg−1 S-SO4) than continuously moist peat (16 mg kg−1 S-SO4), although temperature had only a marginal effect on SO4 concentrations. There was no immediate response of Sphagnum to either drying or temperature, although S-SO4 concentrations in Sphagnum tended to increase over the 30-day (d) incubation. There was a small but immediate increase in S-SO4 concentrations in forest floor material (LFH) from both catchments within the first 24 h of incubation, which was greatest in treatments that were dried and/or incubated at a higher temperature. In contrast, neither temperature nor drying appeared to affect SO4 release from mineral soil collected from either site. Results of laboratory incubations suggest that increases in SO4 concentration that have been reported in wetland-draining streams immediately following summer dry periods may be quantitatively explained by drying and re-wetting of peat rather than increased mineralization in Sphagnum. Similarly, the higher SO4 concentrations that have been measured in upland streams following summer droughts may in part be due to enhanced SO4 release from the forest floor following drying and re-wetting. In contrast, while the mineral soil constitutes a large pool of total S, it does not appear to be responsive to changes in moisture or temperature in the short-term (<30 d) and therefore likely does not contribute to reported climate-related temporal variations in stream SO4.  相似文献   

5.
Comparisons among 4 peatland sites representing a gradient of increasing Fe, Al, Mn, and S loading revealed significant accumulation of total Fe, Al, and S, but not Mn, in surface (0 to 20 cm deep) peat along the gradient. Iron and Al accumulation were contributed mainly by organically bound fractions, with oxides contributing to a lesser extent. Although SO4 2? and Fe sulfides showed significant increases in concentration along the gradient, most of the accumulation of total S was contributed by organic, rather than inorganic S. Laboratory studies of Fe2+ adsorption by peat indicated that increasing the pH of added Fe2+ solutions (pH values of 3, 4, 5, and 6) did not significantly affect Langmuir equation estimates of either maximum Fe2+ adsorption capacity or the affinity of peat for Fe2+. Regardless of the pH of the added Fe2+ solutions, final solution pH values were relatively uniform, averaging about 3.4, reflecting a considerable bufferring capacity of Sphagnum peat. Factors affecting the accumulation of metals and S in peat remain topics for further investigation.  相似文献   

6.
Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured from experimental dung and urine patches placed on boreal pasture soil during two growing seasons and one autumn period until soil freezing. N2O emissions in situ were studied by a static chamber method. NO was measured with a dynamic chamber method using a NO analyser in situ. Mean emissions from the control plots were 47.6±4.5 μg N2ON m−2 h−1 and 12.6±1.6 μg NON m−2 h−1. N2O and NO emissions from urine plots (132±21.2 μg N2ON m−2 h−1 and 51.9±7.6 μg NON m−2 h−1) were higher than those from dung plots (110.0±20.1 μg N2ON m−2 h−1 and 14.7±2.1 μg NON m−2 h−1). There was a large temporal variation in N2O and NO emissions. Maximum N2O emissions were measured a few weeks after dung or urine application, whereas the maximum NO emissions were detected the following year. NO was responsible on average 14% (autumn) and 34% (summer) of total (NO+N2O)N emissions from the pasture soil. NO emissions increased with increasing soil temperature and with decreasing soil moisture. N2O emissions increased with increasing soil moisture, but did not correlate with soil temperature. Therefore we propose that N2O and NO were produced mainly during different microbial processes, i.e., nitrification and denitrification, respectively. The results show that the overall conditions and mechanism especially for emissions of NO are still poorly understood but that there are differences in the mechanisms regulating N2O and NO production.  相似文献   

7.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

8.
Methane fluxes were measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The CH4 fluxes in forest ecosystem ranged from −4.53 to 8.40 μg C m−2 h−1, in the oil palm ecosystem from −32.78 to 4.17 μg C m−2 h−1 and in the sago ecosystem from −7.44 to 102.06 μg C m−2 h−1. A regression tree approach showed that CH4 fluxes in each ecosystem were related to different underlying environmental factors. They were relative humidity for forest and water table for both sago and oil palm ecosystems. On an annual basis, both forest and sago were CH4 source with an emission of 18.34 mg C m−2 yr−1 for forest and 180 mg C m−2 yr−1 for sago. Only oil palm ecosystem was a CH4 sink with an uptake rate of −15.14 mg C m−2 yr−1. These results suggest that different dominant underlying environmental factors among the studied ecosystems affected the exchange of CH4 between tropical peatland and the atmosphere.  相似文献   

9.
Peatland restoration via rewetting aims to recover biological communities and biogeochemical processes typical to pristine peatlands. While rewetting promotes recovery of C accumulation favorable for climate mitigation, it also promotes methane (CH4) emissions. The potential for exceptionally high emissions after rewetting has been measured for Central European peatland sites previously grazed by cattle. We addressed the hypothesis that these exceptionally high CH4 emissions result from the previous land use. We analyzed the effects of cattle dung application to peat soils in a short- (2 weeks), a medium- (1 year) and a long-term (grazing) approach. We measured the CH4 production potentials, determined the numbers of methanogens by mcrA qPCR, and analyzed the methanogen community by mcrA T-RFLP-cloning-sequencing. Dung application significantly increased the CH4 production potential in the short- and the medium-term approach and non-significantly at the cattle-grazed site. The number of methanogens correlated with the CH4 production in the short- and the long-term approach. At all three time horizons, we found a shift in methanogen community due to dung application and a transfer of rumen methanogen sequences (Methanobrevibacter spp.) to the peatland soil that seemed related to increased CH4 production potential. Our findings indicate that cattle grazing of drained peatlands changes their methanogenic microbial community, may introduce rumen-associated methanogens and leads to increased CH4 production. Consequently, rewetting of previously cattle-grazed peatlands has the potential to lead to increased CH4 emissions. Careful consideration of land use history is crucial for successful climate mitigation with peatland rewetting.  相似文献   

10.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

11.
Root exudates and litter are the main sources of inputs of labile carbon into the microbial pool in successional ecosystems. Here we studied whether typical pioneer species (Eriophorum vaginatum, Eriophorum angustifolium and Calluna vulgaris) alter the functional response of the microbial community of a previously cutover peatland. Peat was sampled at three depths (0–5, 20–25 and 40–45 cm) from beneath these species and from bare soil areas. MicroResp analysis using ecologically relevant, radiolabelled, carbon sources showed significant separation in community level physiological profiles (CLPP) of soil microorganisms according to peat depth. This effect was also reflected in microbial biomass carbon, which also decreased with increasing depth. Furthermore, distinct differences in CLPP were observed between the three plant species and the bare soil in the absence of an effect on microbial biomass carbon or total soil carbon. The plant species effects were driven by differential utilisation of xylose, glutamic acid, lysine and phenylethylamine. The data suggest that ‘new’ carbon inputs from plants colonising abandoned cutover peatland may support communities of microorganisms that have functionally distinct roles in carbon turnover.  相似文献   

12.
Decomposition of organic materials, oxygen consumption, and carbon dioxide emission were investigated in Masukata mire, a small minerotrophic mire in central Japan. We selected three dominant community types in the mire, a Sphagnum palustre community, a Phragmites australis community, and an Alnus japonica community, for the decomposition study sites. Decomposition rates were measured in the field by examining mass loss of peat and cellulose for 6 months. The oxygen consumption rate was measured in the field using a closed chamber equipped with an oxygen electrode. The carbon dioxide emission rate of the peat was measured by an infrared gas analyser in the laboratory under controlled conditions. Results of these measurements were tested by correlation analysis. The rate of mass loss of peat positively correlated with the CO2 emission rate. The cellulose decomposition rate showed significant differences among community types, and it had significant positive correlation with the oxygen consumption rate. Although oxygen consumption measurement is not generally used to estimate peatland soil respiration, the oxygen consumption method can be used for predicting long-term decomposition rate according to different vegetation types within a short time.  相似文献   

13.
Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions to help resolve the debate about control of organic carbon mineralization by resource availability (e.g. carbon and nutrient chemistry) versus environmental conditions (e.g. temperature, moisture, pH). The four peat soils were derived from Sphagnum (bog moss). Two transplant sites were in mid‐boreal Alberta, Canada, two were in low‐boreal Ontario, Canada, and two were in the temperate United States. After 3 years in the field, CH4 production varied significantly as a function of peat type, transplant site, and the type–site interaction. All four peat soils had very small rates of CH4 production (< 20 nmol g?1 day?1) after transplant into two sites, presumably caused by acid site conditions (pH < 4.0). One peat soil had small CH4 production rates regardless of transplant site. A canonical discriminant analysis revealed that large rates of CH4 production (4000 nmol g?1 day?1) correlated with large holocellulose content, a large concentration of p‐hydroxyl phenolic compounds in the Klason lignin, and small concentrations of N, Ca and Mn in peat. Significant variation in rates of CO2 production correlated positively with holocellulose content and negatively with N concentrations, regardless of transplant site. The temperature response for CO2 production varied as a function of climate, being greater for peat formed in a cold climate, but did not apply to transplanted peat. Although we succeeded in elucidating some aspects of peat chemistry controlling production of CH4 and CO2 in Sphagnum‐derived peat soils, we also revealed idiosyncratic combinations of peat chemistry and site conditions that will complicate forecasting rates of peat carbon mineralization into the future.  相似文献   

14.
Recognition of peatlands as a key natural store of terrestrial carbon has led to new initiatives to protect and restore them. Some afforested bogs are being clear-felled and restored (forest-to-bog restoration) to recover pre-afforestation ecosystem function. However, little is known about differences in the peat properties between intact, afforested and restored bogs. A stratified random sampling procedure was used to take 122 peat cores from three separate microforms associated with intact (hollows; hummocks; lawns), afforested and restored bogs (furrows; original surface; ridges) at two raised and two blanket bog locations in Scotland. Common physical and chemical peat properties at eight depths were measured in the laboratory. Differences in bulk density, moisture and carbon content between the afforested (mean = 0.103 g cm−3, 87.8% and 50.9%, respectively), intact (mean = 0.091 g cm−3, 90.3% and 51.3%, respectively) and restored bogs (mean = 0.095 g cm−3, 89.7% and 51.1%, respectively) were small despite their statistical significance. The pH was significantly lower in the afforested (mean = 4.26) and restored bogs (mean = 4.29) than the intact bogs (mean = 4.39), whereas electrical conductivity was significantly higher (mean: afforested = 34.2, restored = 38.0, intact = 25.3 μS cm−1). While significant differences were found between treatments, effect sizes were mainly small, and greater differences in pH, electrical conductivity, specific yield and hydraulic conductivity existed between the different intact bogs. Therefore, interactions between geographic location and land management need to be considered when interpreting the impacts of land-use change on peatland properties and functioning.  相似文献   

15.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

16.
Vegetational changes during the restoration of cutover peatlands leave a legacy in terms of the organic matter quality of the newly formed peat. Current efforts to restore peatlands at a large scale therefore require low cost and high throughput techniques to monitor the evolution of organic matter. In this study, we assessed the merits of using Fourier transform infrared (FTIR) spectra to predict the organic matter composition in peat samples at various stages of peatland regeneration from five European countries. Using predictive partial least squares (PLS) analyses, we were able to reconstruct peat C:N ratio and carbohydrate signatures with reasonable accuracy, but not the micromorphological composition of vegetation remains. Despite utilising different size fractions, both carbohydrate (<200 μm fraction) and FTIR (bulk soil) analyses report on the composition of plant cell wall constituents in the peat and therefore essentially reveal the composition of the parent vegetational material. The accuracy of the FTIR-based PLS models for C:N ratios and carbohydrate signatures was adequate to allow for their use as initial screening tools in the evaluation of the present and future organic matter composition of peat during monitoring of restoration efforts.  相似文献   

17.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

18.
In soil incubation experiments we examined if there are differences in the kinetic parameters of atmospheric methane (CH4) oxidation in soils of upland forests and forested peatlands. All soils showed net uptake of atmospheric CH4. One of the upland forests included also managed (clear-cut with or without previous liming or N-fertilization) study plots. The CH4 oxidation in the forested peat soil had a higher Km (510 μl l−1) and Vmax (6.2 nmol CH4 cm−3 h−1) than the upland forest soils (Km from 5 to 18 μl l−1 and Vmax from 0.15 to 1.7 nmol CH4 cm−3 h−1). The forest managements did not affect the Km-values. At atmospheric CH4 concentration, the upland forest soils had a higher CH4 oxidation activity than the forested peat soil; at high CH4 concentrations the reverse was true. Most of the soils oxidised CH4 in the studied pH range from 3 to 7.5. The pH optimum for CH4 oxidation varied from 4 to 7.5. Some of the soils had a pH optimum for CH4 oxidation that was above their natural pH. The CH4 oxidation in the upland forest soils and in the peat soil did not differ in their sensitivities to (NH4)2SO4 or K2SO4 (used as a non-ammonium salt control). Inhibition of CH4 oxidation by (NH4)2SO4 resulted mainly from a general salt effect (osmotic stress) though NH4+ did have some additional inhibitory properties. Both salts were better inhibitors of CH4 oxidation than respiration. The differences in the CH4 oxidation kinetics in the forested peat soil and in the upland forest soils reveal that there are differences in the physiologies of the CH4 oxidisers in these soils.  相似文献   

19.
Using a soilless culture system mimicking tropical acidic peat soils, which contained 3 mg of gellan gum and 0.5 mg NO3?-N per gram of medium, a greenhouse gas, N2O emitting capability of microorganisms in acidic peat soil in the area of Palangkaraya, Central Kalimantan, Indonesia, was investigated. The soil sampling sites included a native swamp forest (NF), a burnt forest covered by ferns and shrubs (BF), three arable lands (A-1, A-2 and A-3) and a reclaimed grassland (GL) next to the arable lands. An acid-tolerant Janthinobacterium sp. strain A1-13 (Oxalobacteriaceae, β-proteobacteria) isolated from A-1 soil was characterized as one of the most prominent N2O-emitting bacteria in this region. Physiological characteristics of the N2O emitter in the soilless culture system, including responses to soil environments, substrate concentration, C-source concentration, pH, and temperature, suggest that the N2O emitting Janthinobacterium sp. strain A1-13 is highly adapted to reclaimed open peatland and primarily responsible for massive N2O emissions from the acidic peat soils. Regulation of N2O emitters in the reclaimed peatland for agricultural use is therefore one of the most important issues in preventing the greenhouse gas emission from acidic peat soil farmlands.  相似文献   

20.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号