首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Production of yellow-seeded Brassica napus through interspecific crosses   总被引:12,自引:0,他引:12  
M. H. Rahman   《Plant Breeding》2001,120(6):463-472
Yellow‐seeded Brassica napus was developed from interspecific crosses between yellow‐seeded Brassica rapa var.‘yellow sarson’ (AA), black‐seeded Brassica alboglabra (CC), yellow‐seeded Brassica carinata (Bbcc) and black‐seeded B. napus (AACC). Three different interspecific crossing approaches were undertaken. Approaches 1 and 2 were designed directly to develop yellow‐seeded B. napus while approach 3 was designed to produce a yellow‐seeded CC genome species. Approaches 1 and 2 differed in the steps taken after trigenomic interspecific hybrids (ABC) were generated from B. carinata×B. rapa crosses. The aim of approach 1 was to transfer the yellow seed colour genes from the A to the C genome as an intermediate step in developing yellow‐seeded B. napus. For this purpose, the ABC hybrids were crossed with black‐seeded B. napus and the three‐way interspecific hybrids were self‐pollinated for a number of generations. The F7 generation resulted in the yellowish‐brown‐seeded B. napus line, No. 06. Crossing this line with the B. napus line No. 01, resynthesized from a black‐seeded B. alboglabra x B. rapa var.‘yellow sarson’ cross (containing the yellow seed colour genes in its AA genome), yielded yellow‐seeded B. napus. This result indicated that the yellow seed colour genes were transferred from the A to the C genome in the yellowish‐brown seed colour line No. 06. In approach 2, trigenomic diploids (AABBCC) were generated from the above‐mentioned trigenomic haploids (ABC). The seed colour of the trigenomic diploid was brown, in contrast to the yellow seed colour of the parental species. Trigenomic diploids were crossed with the resynthesized B. napus line No. 01 to eliminate the B genome chromosomes, and to develop yellow‐seeded B. napus with the AA genome of ‘yellow sarson’ and the CC genome of B. carinata with yellow seed colour genes. This interspecific cross failed to generate any yellow‐seeded B. napus. Approach 3 was to develop yellow‐seeded CC genome species from B. alboglabra×B. carinata crosses. It was possible to obtain a yellowish‐brown seeded B. alboglabra, but crossing this B. alboglabra with B. rapa var.‘yellow sarson’ failed to produce yellow seed in the resynthesized B. napus. The results of approaches 2 and 3 demonstrated that yellow‐seeded B. napus cannot be developed by combining the yellow seed colour genes of the CC genome of yellow‐seeded B. carinata and the AA genome of ‘yellow sarson’.  相似文献   

2.
Available material of oilseed (Brassica napus L., AACC) comprises two yellow-flowered breeding lines and a white/pale-flowered line of resynthesized rape. The flower colour white/pale is dominant over yellow, and is controlled by a gene located in the C-genome. The yellow-flowered genotypes acted as restorer lines and the white/pale-flowered genotype as a maintainer line in a cytoplasmic male sterility system. The segregation pattern of flower colour and male fertility restorer characters were studied in F2 generations of crosses between these lines, also in a three-way cross additionally including a yellow flowered B. campestris (AA) line. Evidense was obtained in support of the conclusion that the flower colour and male fertility restorer characters are monogenically controlled and independently inherited. Whether the male fertility restorer gene is located in the A or C genome remains to be determined.  相似文献   

3.
芥菜型油菜黄籽性状的遗传、基因定位和起源探讨   总被引:6,自引:1,他引:5  
油菜种皮颜色既是一个形态指示性状, 又与种子休眠和品质有关。以芥菜型油菜种皮颜色分离的2个BC6F2群体为作图群体,用微卫星(SSR)等标记进行连锁定位, 并用定位标记对22份材料进行关联分析, 通过反转录-聚合酶链反应(RT-PCR)分析12份材料种皮中4-二氢黄酮醇还原酶(DFR)、花色素合酶(ANS)和花色素还原酶(ANR)基因的表达, 对6份黄籽材料的种皮颜色基因等位性进行测定, 结果将芥菜型油菜控制种皮颜色的2个基因位点分别定位到A9和B3连锁群, 并找到其两侧紧密连锁标记, 发现黄籽材料种皮颜色基因位点附近0.9 cM和1.5 cM区域高度保守, 所有黑色种皮中DFR、ANS和ANR基因均表达, 所有黄色种皮中DFR和ANS均不表达,但ANR基因表达或不表达,黄籽材料的种皮颜色基因等位。根据这些结果结合前人研究, 认为芥菜型油菜种皮颜色基因是调控基因,黄籽为单一起源。  相似文献   

4.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

5.
X. P. Liu    J. X. Tu    B. Y. Chen  T. D. Fu 《Plant Breeding》2005,124(1):9-12
A yellow‐seeded doubled haploid (DH) line no. 2127‐17, derived from a resynthesized Brassica napus L., was crossed with two black‐seeded Brassica cultivars ‘Quantum’ and ‘Sprint’ of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ‘Quantum’× no. 2127‐17. Seed colour analysis was performed with the colorimeter CR‐300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self‐pollinated seeds of the respective black‐ and yellow‐seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow‐brown seeds that were darker in colour than the seeds of no. 2127‐17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black‐ and yellow‐seeded plants fit well with a 1 : 1 ratio. In the cross with ‘Quantum’, the frequencies of yellow‐seeded and black‐seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow‐seeded and black‐seeded plants in the F2 progeny of the cross with ‘Sprint’. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow‐seeded gene (Y) was identified in no. 2127‐17 that had epistatic effects on the two independent dominant black‐seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments.  相似文献   

6.
Brassica napus L. was resynthesized through interspecific hybridization between B. alboglabra Bailey and B campestris L. with the objective or developing yellow-seeded forms of this species. For hybridization, one black-seeded form and one light brown-seeded form of B. alboglabra (a subordinate of B. oleracea) and one brown and ten yellow-seeded forms of B. campestris were chosen as parents. Crosses with B. alboglabra as the female parent were more successful than crushes with B. campestris as female. The use of the embryo rescue culture technique greatly increased the number of surviving hybrid embryos. Colchicine treatment was required for doubling the chromosome number of the amphihaploid hybrid plants. In the newly-resynthesized rape forms, the white petal of B. alboglabra was partially epistatic over the yellow petal of B. campestris. The self compatibility of B. alboglabra was hypostatic to the self incompatibility of B. campestris. The black-seeded character of B. alboglabra and the brown-seeded character of B. campestris were completely eptstatic over the yellow-seeded character of B. campestris and the light brown-seeded character of B. alboglabra. Implications of the results from this study in breeding yellow-seeded B. napus are discussed.  相似文献   

7.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

8.
The primary aim of this study was to optimize in vitro culture protocols to establish an efficient reproducible culture system for different Brassica interspecific crosses, and to synthesize yellow-seeded Brassica napus (AACC) for breeding and genetical studies. Reciprocal crosses were carried out between three B. rapa L. ssp. oleifera varieties (AA) and five accessions of B. oleracea var. acephala (CC). All the parental lines were yellow-seeded except one accession of B. oleracea. Hybrids were obtained through either ovary culture from crosses B. rapa × B. oleracea, or embryo culture from crosses B. oleracea × B. rapa. A higher rate of hybrid production was recorded when ovaries were cultured at 4–7 days after pollination (DAP). Of different culture media, medium E (MS with half strength macronutrients) showed good response for ovaries from all the crosses, the highest rate of hybrid production reaching 45% in B. rapa (1151) × B. oleracea (T2). In embryo culture, the hybrid rate was significantly enhanced at 16–18 DAP, up to 48.1% in B. oleracea (T3) × B. rapa (JB2). The combinations of optimal DAP for excision and media components increased recovery of hybrids for ovary and embryo culture, and constituted an improved technique for B. rapa × B. oleracea crosses. In addition, yellow seeds were obtained from progenies of two crosses, indicating the feasibility of developing yellow-seeded B. napus through the hybridization between yellow-seeded diploids B. rapa and B. oleracea var. acephala.  相似文献   

9.
The inheritance of siliqua orientation and seed coat colour in Brassica tournefortii was investigated using four genotypes varying in these two characters. The F1, F2 and backcross generations of two crosses were used for studying the segregation pattern of the traits. The plants were classified for seed colour as having brown or yellow seeds and for siliqua orientation as having upright, semi‐spread or spread siliqua. Seed colour was found to be under monogenic control with brown being dominant over yellow. Siliqua orientation was under digenic polymeric gene action: upright siliqua was produced by the presence of two dominant genes and spread siliqua by two recessive genes. The absence of even a single dominant gene resulted in a third type of siliqua orientation, semi‐spread siliqua.  相似文献   

10.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop in which genes for low erucic acid content of the seed oil have not yet been found. In order to solve this problem the potential of rapeseed (B. napus L.) varieties as a source of these genes has been tested. Reciprocal F1 hybrids between B. carinata and a low erucic acid variety of B. napus, F2, and backcrosses with B. carinata were obtained. The fatty acid composition was determined in half seeds of F1 and segregating generations from reciprocal interspecific crosses. The genetic analysis indicated that the erucic acid content of the seed oil of B. carinata is controlled by two genes with no dominance and additive in action.  相似文献   

11.
C. M. Lu    B. Zhang    F. Kakihara  M. Kato 《Plant Breeding》2001,120(5):405-410
Fifteen lines of Brassica napus were resynthesized via ovule culture through 24 interspecific crosses between four Brassica oleracea and three Brassica campestris accessions. The degree of success in the interspecific crosses was significantly influenced by maternal genotypes. The interspecific hybrid production rate (HPR) varied with combinations from 0 to 76.9%, with a mean HPR of 24.7% for the crosses with B. campestris as the female parent and 6.9% for the crosses with B. oleracea as female parent. Twenty‐four crosses between seven natural and six resynthesized B. napus gave, on average, 10.3 seeds per pod, and ranged from 1.2 to 22.0 seeds per pod, depending on genotypes of both parents. Resynthesized lines of B. napus showed high erucic acid content and variable content of linolenic acid, ranging from 3.4% to 9.9%. The fatty acid composition in hybrid seeds between natural and resynthesized B. napus was dominated by the embryo genotypes; an additive mode was shown for erucic acid and positive over‐dominance for linolenic acid content.  相似文献   

12.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

13.
黄籽油菜的遗传研究是实现油菜籽粒高含油量且饼粕低纤维素、低单宁、低色素等育种目标的重要途径。为了对不同来源的黄籽油菜进行遗传分类和多样性研究,对黄籽材料进行遗传等位性测验及聚类分析。结果表明,经过遗传测验,按照相互杂交F1、F2粒色是否分离将11份黄籽材料分为5组,‘油研10’、CZV55、E718、Arm为一组,为一般显性遗传;Q33、D615为一组,为不完全显性遗传;2006C、X2006、740C为一组;Polo为一组;HY15为一组,后3组为一般隐性遗传。但是,2006C、‘油研10’等的黄籽性状的遗传根据杂交测验亲本的不同而呈现显性或隐性的变化。依据SSR标记检测结果进行聚类分析,将35份黄籽材料分为甘蓝型油菜、白菜型、芥菜型三大组。甘蓝型油菜又可再分为8个亚组,各自代表材料有2006C和740C、油研系统、Q33;法国Ramiro、陕西的GQ4、源自加拿大的Arm、prof;源自波兰的Polo等。不同材料按照系谱关系、育种单位、地理来源聚集在一起。研究结果为黄籽油菜杂种优势利用奠定理论基础。  相似文献   

14.
M. H. Rahman   《Plant Breeding》2001,120(3):197-200
The inheritance of petal (flower) colour and seed colour in Brassica rapa was investigated using two creamy‐white flowered, yellow‐seeded yellow sarson (an ecotype from Indian subcontinent) lines, two yellow‐flowered, partially yellow‐seeded Canadian cultivars and one yellow‐flowered, brown‐seeded rapid cycling accession, and their F1, F2, F3 and backcross populations. A joint segregation of these two characters was examined in the F2 population. Petal colour was found to be under monogenic control, where the yellow petal colour gene is dominant over the creamy‐white petal colour gene. The seed colour was found to be under digenic control and the yellow seed colour (due to a transparent coat) genes of yellow sarson are recessive to the brown/partially yellow seed colour genes of the Canadian B. rapa cvs.‘Candle’ and ‘Tobin’. The genes governing the petal colour and seed colour are inherited independently. A distorted segregation for petal colour was found in the backcross populations of yellow sarson × F1 crosses, but not in the reciprocal backcrosses, i.e. F1× yellow sarson. The possible reason is discussed in the light of genetic diversity of the parental genotypes.  相似文献   

15.
Bruchid beetles or seed weevils are the most devastating stored pests of grain legumes causing considerable loss to mungbean (Vigna radiata (L.) Wilczek). Breeding for bruchid resistance is a major goal in mungbean improvement. Few sources of resistance in cultivated genepool were identified and characterized, however, there has been no study on the genetic control of the resistance. In this study, we investigated the inheritance of seed resistance to Callosobruchus chinensis (L.) and C. maculatus (F.) in two landrace mungbean accessions, V2709BG and V2802BG. The F1, F2 and BC generations were developed from crosses between the resistant and susceptible accessions and evaluated for resistance to the insects. It was found that resistance to bruchids in seeds is controlled by maternal plant genotype. All F1 plants derived from both direct and reciprocal crosses exhibited resistance to the bruchids. Segregation pattern of reaction to the beetles in the F2 and backcross populations showed that the resistance is controlled by a major gene, with resistance is dominant at varying degrees of expressivity. Although the presence of modifiers was also observed. The gene is likely the same locus in both V2709BG and V2802BG. The resistant gene is considered very useful in breeding for seed resistance to bruchids in mungbean.  相似文献   

16.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

17.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

18.
Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.  相似文献   

19.
Resistance responses of resynthesized Brassica napus lines to infection with Plasmodiophora brassicae were investigated. Lines that were derived from interspecific crosses between clubroot-resistant B. rapa and resistant B. oleracea exhibited very broad and effective resistance in both greenhouse and field tests. When clubroot resistance was introduced into resynthesized lines from the B. oleracea parent only, the plants were mainly susceptible. Interspecific hybrids from the most resistant parental genotypes, i.e. B. campestris ECD-04 and the B. oleracea cultivars ECD-15 or ‘Bohmerwaldkohf’, were used to initiate a B. napus resistance-breeding programme. These artificial rapeseed lines were resistant to isolates that were virulent on all B. napus differential lines and/or parental lines. Preliminary segregation analysis suggests that their resistance is due to at least two dominant and unlinked genes. In some cases progenies from selfed resynthesized plants exhibited resistance reactions that differed from those of the parental hybrid plant; this may have been the result of cytological instability.  相似文献   

20.
Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号