首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo compare the sedative effects of intramuscular xylazine alone or combined with levomethadone or ketamine in calves before cautery disbudding.Study designRandomized, blinded, clinical trial.AnimalsA total of 28 dairy calves, aged 21 ± 5 days and weighing 61.0 ± 9.3 kg (mean ± standard deviation).MethodsCalves were randomly allocated to three groups: xylazine (0.1 mg kg–1) and levomethadone (0.05 mg kg–1; group XL), xylazine (0.1 mg kg–1) and ketamine (1 mg kg–1; group XK) and xylazine alone (0.2 mg kg–1; group X). Local anaesthesia (procaine hydrochloride) and meloxicam were administered subcutaneously 15 minutes after sedation and 15 minutes before disbudding. The calves’ responses to the administration of local anaesthesia and disbudding were recorded. Sedation was assessed at baseline and at intervals up to 240 minutes postsedation. Times of recumbency, first head lift and first standing were recorded. Drug plasma concentrations were measured.ResultsData were obtained from 27 animals. All protocols resulted in sedation sufficient to administer local anaesthesia and to perform disbudding. Sedation scores significantly correlated with drug plasma concentrations (p ≤ 0.002). Times to recumbency did not differ among protocols (2.8 ± 0.3, 3.1 ± 1.1 and 2.1 ± 0.8 minutes for groups XL, XK and X, respectively), whereas interval from drug(s) administration until first head lift was significantly shorter in group XK than X (47.3 ± 14.1, 34.4 ± 5.3 and 62.6 ± 31.9 minutes for groups XL, XK and X, respectively). The area under the time-sedation curve was significantly greater in group X than XK or XL (754 ± 215, 665 ± 118 and 1005 ± 258 minutes for groups XL, XK and X, respectively).Conclusions and clinical relevanceLevomethadone or ketamine with a low dose of xylazine produced short but sufficient sedation for local anaesthesia and disbudding with minimum resistance.  相似文献   

2.
ObjectiveTo investigate a combination of azaperone, detomidine, butorphanol and ketamine (DBK) in pigs and to compare it with the combination of azaperone, tiletamine and zolazepam (TZ).Study designProspective, randomized, blinded, cross–over study.AnimalsTwelve clinically healthy crossbred pigs aged about 2 months and weighing 16–25 kg.MethodsPigs were pre–medicated with azaperone (4 mg kg?1). Ten minutes later anaesthesia was induced with intramuscular DBK (detomidine 0.08 mg kg?1, butorphanol 0.2 mg kg?1, ketamine 10 mg kg?1) or TZ (tiletamine and zolazepam 5 mg kg?1). The pigs were positioned in dorsal recumbency. Heart and respiratory rates, posture, anaesthesia score, PaO2, PaCO2, pH and bicarbonate concentration were measured. t–test was used to compare the areas under time–anaesthesia index curve (AUCanindex) between treatments. Data concerning heart and respiratory rates, PaO2, PaCO2 and anaesthesia score were analysed with anova for repeated measurements. Wilcoxon signed rank test was used for the data concerning the duration of sedation and anaesthesia.ResultsThe sedation, analgesia and anaesthesia lasted longer after DBK than TZ. The AUCanscore were 863 ± 423 and 452 ± 274 for DBK and TZ, respectively (p = 0.002). The duration of surgical anaesthesia lasted a median of 35 minutes (0–105 minutes) after DBK and a median of 15 minutes (0–35 minutes) after TZ (p = 0.05). Four pigs after DBK and six after TZ did not achieve the plane of surgical anaesthesia. The heart rate was lower after DBK than after TZ. Both treatments had similar effects on the other parameters measured.ConclusionsAt the doses used DBK was more effective than TZ for anaesthesia in pigs under field conditions.Clinical relevanceThe combinations can be used for sedation and minor field surgery in pigs. The doses and drugs chosen were insufficient to produce a reliable surgical plane of anaesthesia in these young pigs.  相似文献   

3.
ObjectiveInvestigate physiological and sedative/anaesthetic effects of xylazine, medetomidine or dexmedetomidine combined with ketamine in free-ranging Bennett's wallabies.Study designProspective clinical trial.AnimalsTwenty-six adult free-ranging Bennett's wallabies.MethodsAnimals were darted intramuscularly with one of three treatments: xylazine and ketamine, 2.0 and 15.0 mg kg?1, respectively (XK): medetomidine and ketamine 0.1 and 5.0 mg kg?1 (MK) and dexmedetomidine and ketamine 0.05 and 5.0 mg kg?1 (DMK). Body weights were estimated. If the animal was still laterally recumbent after 45 minutes of anaesthesia, then an alpha-2 adrenoceptor antagonist, atipamezole, was administered (XK: 0.4 mg kg?1, MK: 5 mg kg?1, DMK: 2.5 mg kg?1). Heart rate (HR) and respiratory rate (fR) were recorded at 5-minute intervals and temperature at 10-minute intervals. Venous blood was taken 30 minutes after initial injection. Statistical analysis utilized anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in all groups. XK animals had muscle twitches, responded to external stimuli, and three animals required additional dosing; this was not observed in the MK and DMK groups. HR (mean ± SD beats minute?1) in XK (81 ± 4) was significantly higher than MK (74 ± 2) and DMK (67 ± 4). There were no differences in fR, temperature, blood-gas and biochemical values between groups. More animals in MK (9/10) and DMK (5/6) needed antagonism of anaesthesia compared with XK (1/10). There were no adverse effects after anaesthesia.Conclusion and clinical relevanceCardio-respiratory effects were similar in all groups. There were fewer muscle twitches and reactions to external stimuli in MK and DMK. Duration of anaesthesia was shorter in XK; most animals in MK and DMK needed atipamezole to assist recovery. All three treatments provided satisfactory sedation/anaesthesia and are suitable for use in Bennett's wallabies.  相似文献   

4.
ObjectiveTo establish an accurate anaesthetic dose for chemical restraint of African mole-rats using ketamine and xylazine.Study designProspective nonrandomized laboratory study.AnimalsSixteen adult Ansell’s mole-rats (Fukomys anselli) and eight giant mole-rats (F. mechowii).MethodsFukomys anselli of different ages, sexes and reproductive status were systematically anaesthetized starting with an intramuscular injection of ketamine (2.5 mg kg−1) and increasing the doses in steps of 0.5 mg kg−1 until loss of the righting reflex (LRR) was observed. Xylazine was added to a constant dose of ketamine, starting at 0.5 mg kg−1 that was increased by 0.5 mg kg−1 in further trials. Once an effective combination was established and evaluated in F. anselli, it was also tested in F. mechowii. Heart and respiratory rates and rectal temperatures were measured during anaesthesia. anova for repeated measures and Student’s t-test were used to compare means.ResultsChemical restraint was accomplished at a dose of 6 mg kg−1 ketamine combined with 2.5 mg kg−1 xylazine. LRR lasted on average mean 56 ± SD 19 minutes (F. anselli) and 140 ± 41 minutes (F. mechowii). Loss of pedal withdrawal reflex (LPR) lasted for 20 ± 15 minutes (F. anselli) and for 29 ± 2 minutes (F. mechowii), respectively. All animals recovered satisfactorily. Heart and respiratory rates were stable during anaesthesia, but rectal temperature fell significantly in F. mechowii after losing the righting reflex (LRR) from T1 (32.6 ± 0.6 °C) to T3 (30.4 ± 0.9 °C).Conclusions and Clinical relevanceAfrican mole-rats (Bathyergidae) live in closed burrow systems under particular conditions (hypercapnia, hypoxia, stable temperature, humidity, darkness) and show several physiological adaptations. Injectable anaesthetics in the dose rates used in other rodents are not appropriate for use in these subterranean species. Here, a reliable protocol for chemical restraint is provided.  相似文献   

5.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

6.
ObjectiveTo describe the pharmacokinetics, cortisol response and behavioral changes associated with administration of sub-anesthetic xylazine and ketamine prior to castration.Study designProspective, randomized experiment.AnimalsTwenty-two male beef calves (260-310 kg).MethodsCalves were randomly assigned to receive the following treatment immediately prior to surgical or simulated castration; 1) uncastrated, placebo-treated control (CONT) (n = 4), 2) Castrated, placebo treated control (CAST) (n = 6), 3) castrated with intravenous xylazine (X) (0.05 mg kg?1) (n = 6), and 4) castrated with IV xylazine (X) (0.05 mg kg?1) combined with ketamine (K) (0.1 mg kg?1) (n = 6). Blood samples collected over 10 hours post-castration were analyzed by LC-MS-MS for drug concentrations and chemiluminescent immunoassay for cortisol determination.ResultsDrug concentrations during the first 60 minutes post-castration fit a one-compartment open model with first-order elimination. The harmonic mean elimination half-lives (± pseudo SD) for X, X with K and K were 12.9 ± 1.2, 11.2 ± 3.1 and 10.6 ± 2.8 minutes, respectively. The proportion of the total area under the effect curve (AUEC) for cortisol during this period was significantly lower in the X group (13 ± 3%; p = 0.006) and the X+K group (14 ± 2%; p = 0.016) compared with the CAST calves (21 ± 2%). However, after 300 minutes the AUEC in the X group was higher than CAST. Significantly more calves demonstrated attitude that was unchanged from pre-manipulation behavior in the CONT (p = 0.021) and X+K treated calves (p = 0.0051) compared with the CAST calves.ConclusionsBehavioral changes and lower serum cortisol concentrations during the first 60 minutes post-castration were associated with quantifiable xylazine and ketamine concentrations.Clinical relevanceLow doses of xylazine and ketamine administered immediately prior to castration may offer a safe, efficacious and cost-effective systemically administered alternative or adjunct to local anesthesia.  相似文献   

7.
ObjectiveTo evaluate a combination of acepromazine, dexmedetomidine and ketamine (ADK) on induction and recovery from anaesthesia, and on physiological parameters in hares undergoing non‐invasive procedures.Study designProspective clinical study.AnimalsSixteen European hares (Lepus europaeus), seven males and nine females, aged (mean ± SD) 3.25 ± 0.9 months and weight 2.1 ± 0.6 kg.MethodsAcepromazine 1% (A), dexmedetomidine 0.05% (D) and ketamine 5% (K) were mixed and given intramuscularly (IM) at 0.25 mL kg?1, representing 10 mg kg?1 K, 0.25 mg kg?1 A, 12.5 μg kg?1 D. If the righting reflex was present after four minutes, a second injection of 0.15 mL kg?1 (6 mg kg?1 K, 0.15 mg kg?1 A, 7.5 μg kg?1 D) was administered IM. Surgical anaesthesia was judged as present when righting, palpebral, ear‐pinch and pedal withdrawal reflexes were absent. Anaesthetized hares were tagged, and underwent blood sampling and ocular ultrasound examination. Physiological parameters were recorded every ten minutes, and were compared by Kruskal‐Wallis tests.ResultsA single dose induced loss of righting reflex in 11/16 (69%) hares within four minutes; the second dose was effective in the remaining hares. Ten minutes after the loss of the righting reflex, a surgical plane of anaesthesia was present in all hares. Sleep time to regaining righting reflex was 34 ± 11 (range 21–62) minutes and recovery was calm. Although there were some statistical differences over time, cardiovascular parameters remained within an acceptable range but there was respiratory depression and hares were hypoxemic.Conclusions and clinical relevanceThe ADK mixture produced a smooth and rapid induction of anaesthesia, a low incidence of untoward side effects and full recovery after four hours. Supplementary oxygen might be advisable if a deeper plane of anaesthesia was required. Chemical restraint was adequate to perform non‐invasive procedures.  相似文献   

8.
ObjectiveTo compare three anaesthetic protocols for umbilical surgery in calves regarding adequacy of analgesia, and cardiopulmonary and hormonal responses.Study designProspective, randomised experimental study.AnimalsThirty healthy German Holstein calves (7 female, 23 male) aged 45.9 ± 6.4 days.MethodsAll calves underwent umbilical surgery in dorsal recumbency. The anaesthetic protocols were as follows: group INH (n = 10), induction 0.1 mg kg?1 xylazine IM and 2.0 mg kg?1 ketamine IV, maintenance isoflurane in oxygen; Group INJ (n = 10), induction 0.2 mg kg?1 xylazine IM and 5.0 mg kg?1 ketamine IV, maintenance 2.5 mg kg?1 ketamine IV every 15 minutes or as required; group EPI (n = 10), high volume caudal epidural anaesthesia with 0.2 mg kg?1 xylazine diluted to 0.6 mL kg?1 with procaine 2%. All calves received peri-umbilical infiltration of procaine and pre-operative IV flunixin (2.2 mg kg?1). Cardiopulmonary variables were measured at preset intervals for up to 2 hours after surgery. The endocrine stress response was determined. Intra-operative nociception was assessed using a VAS scale. Data were compared between groups using appropriate statistical tests. A value of p < 0.05 was considered significant.ResultsAll three protocols provided adequate anaesthesia for surgery although, as judged by the VAS scale, intra-operative response was greatest with INJ. Lowest mean cortisol levels during surgery occurred in EPI. Heart rate and cardiac output did not differ between groups, but mean arterial blood pressure, systemic vascular resistance, and partial pressure of carbon dioxide were higher and arterial pH lower in groups INH and INJ than in Group EPI. Group INJ became hypoxaemic and had a significantly greater vascular shunt than did the other groups.Conclusion and clinical relevanceGroups INH and EPI both proved acceptable protocols for calves undergoing umbilical surgery, whilst INJ resulted in variable anti-nociception and in hypoxaemia. High volume caudal epidural anaesthesia provides a practical inexpensive method of anaesthesia for umbilical surgery.  相似文献   

9.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

10.
ObjectiveEvaluate antinociception, anesthesia, and recovery in llamas given tiletamine-zolazepam (TZ) with either morphine, xylazine, morphine and xylazine, or saline.Study designRandomized crossover experimental study.AnimalsSix healthy, adult intact male llamas.MethodsLlamas were given each of four treatments intramuscularly with a 1-week washout: TZ (2 mg kg?1) combined with either morphine (0.5 mg kg?1; M), xylazine (0.15 mg kg?1; X), morphine (0.5 mg kg?1) and xylazine (0.15mg kg?1) (MX), or saline (C). Llamas breathed room air during the experiment. Characteristics of anesthesia, recovery, and selected cardiopulmonary variables were recorded. Antinociception was assessed by clamping a claw at 5-minute intervals. Data were analyzed using a mixed-model anova and Tukey-Kramer test, and are expressed as least squares mean ± SEM. Significance was set at p < 0.05.ResultsNo llama in the control group demonstrated antinociception. Antinociception was longest with treatment MX, followed by treatments X and M, respectively. Heart rates in llamas given treatments X and MX were significantly lower than with other treatments. The respiratory rate in llamas given treatment C was greater (p < 0.05) than for all other treatments, however, the respiratory rate was not significantly different among treatments X, M and MX. The PaO2 for llamas given MX remained <60 mmHg throughout the 20 minute period of blood gas analysis. Mean arterial blood pressure in llamas in treatment MX was less than for treatments M or C.Conclusion and clinical relevanceThe combination of morphine (0.5 mg kg?1) and xylazine (0.15 mg kg?1) increased the duration of antinociception compared with xylazine alone, in TZ-anesthetized llamas. Treatments X, M and MX were associated with hypoxemia (PaO2 < 60 mmHg).  相似文献   

11.
12.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

13.
ObjectiveTo determine the thermal and mechanical antinociceptive effects of two different subanesthetic constant rate infusions of racemic ketamine in cats.Study designProspective, randomized, blinded, experimental study.AnimalsEight healthy adult domestic shorthair cats (two intact females and six neutered males).MethodsThe thorax and the lower thoracic limbs of each cat were shaved for thermal (TT) and mechanical threshold (MT) testing and a cephalic catheter was placed. Three intravenous treatments of equivalent volume were given as loading dose (LD) followed by an infusion for 2 hours: (K5) 0.5 mg kg?1 ketamine followed by 5 μg kg?1 minute?1 ketamine infusion, (K23) 0.5 mg kg?1 ketamine followed by 23 μg kg?1 minute?1 ketamine infusion or (S) 0.9% saline solution. Effects on behavior, sedation scores, MT and TT were obtained prior to drug treatment and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.25, 2.5 2.75, 3 hours then every 0.5 hours for 7 hours and 10, 12, 14 and 26 hours after loading dose administration.ResultsKetamine induced mild sedation for the period of the infusion, no adverse behavioral effects were observed. Thermal threshold was significantly higher than baseline (K5: 44.5 ± 0.7 °C; K23: 44.5 ± 0.5 °C) at 15 minutes in the K5 group (46.8 ± 3.5 °C) and at 45 minutes in the K23 group (47.1 ± 4.1 °C). In the K23 group TT was significantly increased compared to S and K5 at 45 minutes. In K5 at 15 minutes MT (9.6 ± 4.0 N) was different to baseline (6.1 ± 0.8 N) and to the S group (5.9 ± 2.3 N).Conclusion and clinical relevanceLow dose rate ketamine infusions minimally affect thermal and mechanical antinociception in cats. Further studies with different nociceptive testing methods are necessary to assess whether ketamine could be a useful analgesic in cats.  相似文献   

14.
ObjectiveTo characterise the anaesthetic effects of alfaxalone administered intramuscularly (IM) at 10, 20, and 30 mg kg?1.Study designProspective, randomized cross-over study.AnimalsTen juvenile green iguanas (Iguana iguana) of mean body weight (±SD) 480 ± 134 g.MethodsAlfaxalone was administered IM in the triceps of both thoracic limbs. Times for anaesthetic induction, plateau and recovery periods were recorded. Skeletal muscle tone of the jaw, neck, thoracic limbs, pelvic limbs, and tail was scored. The palpebral, corneal and righting reflexes, and the response to painful stimuli were also assessed. Pulse rate and respiratory rate were recorded. Comparisons between different dosages and over time were made using anova.ResultsTimes are given for 10, 20 and 30 mg kg?1 dosages respectively: mean time to maximal effect was 7.7 ± 2.2, 5.4 ± 1.7 and 3.9 ± 1.2 minutes; duration of the plateau phase was 11.3 ± 3.8, 22.1 ± 6.5 and 39.1 ± 11.5 minutes; recovery time was 10 ± 2.4, 17.5 ± 8.6 and 25 ± 7.1 minutes; and total anaesthetic duration was 29 ± 35.7, 45 ± 8.2 and 68 ± 9.8 minutes. Endotracheal intubation was possible in 40% of the subjects given 10 mg kg?1 and in 100% subjects given both 20 and 30 mg kg?1. Loss of response to a painful stimulus was seen in 0/10, 8/10 and 9/10 animals at 10, 20, and 30 mg kg?1 respectively. There was an initial dose-dependent depression of respiration followed by a significant increase in frequency over time. In contrast, pulse rates decreased by 20% over the duration of the anaesthetic events.Conclusions and clinical relevanceIntramuscular administration of alfaxalone is a simple, rapid and reliable means of achieving relatively brief sedation or anaesthesia in healthy green iguanas. A dosage of 10 mg kg?1 provides light sedation, appropriate for examination and venipuncture; 20 mg kg?1 provides a level suitable for minor procedures or for endotracheal intubation and supplementation with inhalational anaesthesia; 30 mg kg?1 produces an anaesthetic plane suitable for surgical procedures of limited duration (up to 40 minutes).  相似文献   

15.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

16.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

17.
ObjectiveTo determine the effectiveness of yohimbine as an antagonist of ketamine-xylazine anaesthesia in captive Asiatic lions (Panthera leo persica), tigers (Panthera tigris) and leopards (Panthera pardus).Study designProspective clinical trial.AnimalsFifty-two healthy adult lions, 55 adult leopards and 16 adult male tigers.MethodsCaptive wild felids in Indian zoos were anaesthetized with a combination of ketamine (2.2-2.6 mg kg?1) and xylazine (1.1-1.3 mg kg?1) using a dart propelled from a blowpipe. Time to onset of anaesthesia, lateral recumbency and induction time were measured, and physiological variables (respiration, heart rate and rectal temperature) were recorded once after the onset of complete anaesthesia. Anaesthesia was antagonized at various time periods with an intravenous administration of either 0.1 or 0.15 mg kg?1 yohimbine. Onset of arousal and time to complete anaesthetic recovery were recorded.ResultsA total of 123 immobilizations were conducted between 2000 and 2005. Anaesthetic induction was achieved in 15-25 minutes in all animals. Incidents of sudden recovery or life-threatening effects associated with immobilizations were not observed. Yohimbine effectively antagonized anaesthesia in all animals within 10 minutes without any excitatory behaviour compared to control animals. No adverse reactions/side effects to yohimbine were recorded except that a few leopards exhibited seizure-like signs for a short period immediately after yohimbine administration. The duration of anaesthesia had no significant effect on the recovery time in any of the animals.Conclusion and clinical relevanceYohimbine antagonized the xylazine portion of ketamine-xylazine anaesthesia and thereby hastened recovery from anaesthesia in Asiatic lions, tigers and leopards.  相似文献   

18.
Objective To directly compare the time to onset and duration of analgesia produced by a lidocaine/xylazine combination with that produced by lidocaine and xylazine administered alone in the caudal epidural space of dairy cattle. Design Prospective randomized experimental study. Animals Nine adult (> 4 years of age) dairy cows (520–613 kg). Methods Caudal epidural analgesia was produced in all cows with 2% lidocaine (0.22 mg kg?1; 5.5 mL 500 kg?1), 10% xylazine (0.05 mg kg?1 diluted to 5.5 mL 500 kg?1 with sterile water), and 2% lidocaine/10% xylazine (0.22 mg kg?1/0.05 mg kg?1; total volume of 5.7 mL 500 kg?1), at no earlier than weekly intervals in a Latin square design. Time to onset, duration and cranial spread of analgesia were recorded, as were degree of sedation, ataxia and ptyalism. Results No significant difference (p > 0.05) was noted for time (mean ± SEM) of onset of analgesia between lidocaine (4.8 ± 1.0 minutes) and the lidocaine/xylazine combination (5.1 ± 0.9 minutes) but onset of analgesia following xylazine was significantly longer (11.7 ± 1.0 minutes) than either of the other two treatments. Lidocaine/xylazine (302.8 ± 11.0 minutes) produced analgesia of significantly longer duration than that of xylazine (252.9 ± 18.9 minutes) and both the lidocaine/xylazine combination and xylazine alone produced analgesia of significantly longer duration than that produced by lidocaine (81.8 ± 11.8 minutes). In all cattle, xylazine, administered either alone or with lidocaine, induced mild to moderate sedation and ataxia and cutaneous analgesia from the coccyx to T13. Mild ataxia was also present in those cattle receiving lidocaine alone. Conclusion The combination of xylazine and lidocaine produces analgesia of quicker onset and longer duration than xylazine administered alone and of longer duration than lidocaine administered alone. Clinical relevance Utilizing this combination, long‐duration obstetrical and surgical procedures could commence relatively soon after epidural injection and could be completed without re‐administration of anesthetic agents.  相似文献   

19.
ObjectiveTo investigate the clinical efficacy of four analgesia protocols in dogs undergoing tibial tuberosity advancement (TTA).Study designProspective, randomized, blinded study.AnimalsThirty-two client owned dogs undergoing TTA-surgery.MethodsDogs (n= 8 per treatment) received an oral placebo (PM and PRM) or tepoxalin (10 mg kg?1) tablet (TM and TRM) once daily for 1 week before surgery. Epidural methadone (0.1 mg kg?1) (PM and TM) or the epidural combination methadone (0.1 mg kg?1)/ropivacaine 0.75% (1.65 mg kg?1) (PRM and TRM) was administered after induction of anaesthesia. Intra-operative fentanyl requirements (2 μg kg?1 IV) and end-tidal isoflurane concentration after 60 minutes of anaesthesia (Fe′ISO60) were recorded. Post-operative analgesia was evaluated hourly from 1 to 8 and at 20 hours post-extubation with a visual analogue scale (VAS) and the University of Melbourne Pain Scale (UMPS). If VAS > 50 and/or UMPS > 10, rescue methadone (0.1 mg kg?1) was administered IV. Analgesic duration (time from epidural until post-operative rescue analgesia) and time to standing were recorded. Normally distributed variables were analysed with an F-test (α = 0.05) or t-test for pairwise inter-treatment comparisons (Bonferonni adjusted α = 0.0083). Non-normally distributed data were analysed with the Kruskall–Wallis test (α = 0.05 or Bonferonni adjusted α = 0.005 for inter-treatment comparison of post-operative pain scores).ResultsMore intra-operative analgesia interventions were required in PM [2 (0–11)] [median (range)] and TM [2 (1–2)] compared to PRM (0) and TRM (0). Fe′ISO60 was significantly lower in (PRM + TRM) compared to (PM + TM). Analgesic duration was shorter in PM (459 ± 276 minutes) (mean ± SD) and TM (318 ± 152 minutes) compared to TRM (853 ± 288 minutes), but not to PRM (554 ± 234 minutes). Times to standing were longer in the ropivacaine treatments compared to TM.Conclusions and clinical relevanceInclusion of epidural ropivacaine resulted in reduction of Fe′ISO60, avoidance of intra-operative fentanyl administration, a longer duration of post-operative analgesia (in TRM) and a delay in time to standing compared to TM.  相似文献   

20.
ObjectiveTo compare isoflurane alone or in combination with systemic ketamine and lidocaine for general anaesthesia in horses.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses (ASA I-III) undergoing elective surgery.MethodsHorses were assigned to receive isoflurane anaesthesia alone (ISO) or with ketamine and lidocaine (LKI). After receiving romifidine, diazepam, and ketamine, the isoflurane end-tidal concentration was set at 1.3% and subsequently adjusted by the anaesthetist (unaware of treatments) to maintain a light plane of surgical anaesthesia. Animals in the LKI group received lidocaine (1.5 mg kg−1 over 10 minutes, followed by 40 μg kg−1 minute−1) and ketamine (60 μg kg−1 minute−1), both reduced to 65% of the initial dose after 50 minutes, and stopped 15 minutes before the end of anaesthesia. Standard clinical cardiovascular and respiratory parameters were monitored. Recovery quality was scored from one (very good) to five (very poor). Differences between ISO and LKI groups were analysed with a two-sample t-test for parametric data or a Fischer's exact test for proportions (p < 0.05 for significance). Results are mean ± SD.ResultsHeart rate was lower (p = 0.001) for LKI (29 ± 4) than for ISO (34 ± 6). End-tidal concentrations of isoflurane (ISO: 1.57% ± 0.22; LKI: 0.97% ± 0.33), the number of horses requiring thiopental (ISO: 10; LKI: 2) or dobutamine (ISO:8; LKI:3), and dobutamine infusion rates (ISO:0.26 ± 0.09; LKI:0.18 ± 0.06 μg kg−1 minute−1) were significantly lower in LKI compared to the ISO group (p < 0.001). No other significant differences were found, including recovery scores.Conclusions and clinical relevanceThese results support the use of lidocaine and ketamine to improve anaesthetic and cardiovascular stability during isoflurane anaesthesia lasting up to 2 hours in mechanically ventilated horses, with comparable quality of recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号