首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Five hundred thirty-four steers were evaluated over a 2-yr period to determine the accuracy of ultrasonic estimates of carcass 12th-rib fat thickness (CFAT) and longissimus muscle area (CLMA). Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT) and longissimus muscle area (ULMA) using an Aloka 500V real-time ultrasound machine equipped with a 17.2-cm, 3.5-MHz linear transducer. Overall, correlation coefficients between ultrasound and carcass fat and longissimus muscle area were 0.89 and 0.86, respectively. Correlations for UFAT with CFAT were similar between years (0.86 and 0.90), whereas the relationship between ULMA and CLMA was stronger in yr 1 (r = 0.91; n = 282) than in yr 2 (r = 0.79; n = 252). Differences between ultrasonic and carcass measurements were expressed on both an actual (FDIFF and RDIFF) and absolute (FDEV and RDEV) basis. Mean FDIFF and RDIFF indicated that ultrasound underestimated CFAT by 0.06 cm and overestimated CLMA by 0.71 cm2 across both years. Overall mean FDEV and RDEV, which are indications of the average error rate, were 0.16 cm and 3.39 cm2, respectively. Analysis of year effects revealed that FDIFF, FDEV, and RDEV were greater (P < 0.01) in magnitude in yr 1. Further analysis of FDEV indicated that leaner (CFAT < 0.51 cm) cattle were overestimated and that fatter (CFAT > 1.02 cm) cattle were underestimated with ultrasound. Similarly, steers with small CLMA (< 71.0 cm2) were overestimated, and steers with large CLMA (> 90.3 cm2) were underestimated. The thickness of CFAT had an effect (P < 0.05) on the error of UFAT and ULMA measurements, with leaner animals being more accurately evaluated for both traits. Standard errors of prediction (SEP) adjusted for bias of ultrasound measurements were 0.20 cm and 4.49 cm2 for UFAT and ULMA, respectively. Differences in SEP were observed for ULMA, but not UFAT, by year. These results indicate that ultrasound can be an accurate estimator of carcass traits in live cattle when measurements are taken by an experienced, well-trained technician, with only small differences in accuracy between years.  相似文献   

2.
Steers from research crossbreeding projects (n = 406) were serially scanned using real-time ultrasound at 35-d intervals from reimplant time until slaughter. Cattle were evaluated for rump fat depth, longissimus muscle area (ULMA), 12th-rib fat thickness (UFAT), and percentage of intramuscular fat (IMF) to determine the ability of ultrasound to predict carcass composition at extended periods before slaughter. Additional background information on the cattle, such as live weight, ADG, breed of sire, breed of dam, implant, and frame score was also used. Carcass data were collected by trained personnel at "chain speed," and samples of the 12th-rib LM were taken for ether extract analysis. Simple correlation coefficients showed positive relationships (P < 0.01) between ultrasound measures taken less than 7 d before slaughter and carcass measures: ULMA and carcass LM area (CLMA, r = 0.66); UFAT and carcass 12th-rib fat thickness (CFAT, r = 0.74); and IMF and carcass numeric marbling score (r = 0.61). The same correlation coefficients for ultrasound measures taken 96 to 105 d before slaughter and carcass values (P < 0.01) were 0.52, 0.58, and 0.63, respectively. Steers were divided into source-verified and nonsource-verified groups based on the level of background information for each individual. Regression equations were developed for the carcass measurements; 46% of the variation could be explained for CLMA and 44% of CFAT at reimplant time, 46% of the variation in quality grade and 42% of the variation in yield grade could be explained. Significant predictors of quality grade were IMF (P < 0.001), natural log of 12th-rib fat thickness (LUFAT, P < 0.001), and ADG (P < 0.01), whereas LUFAT (P < 0.001), ULMA (P < 0.01), live weight (P < 0.001), hip height (P < 0.001), and frame score (P < 0.001) were significant predictors of yield grade. Regressions using ultrasound data taken 61 to 69 d before slaughter showed increasing R2. Live ultrasound measures at reimplant time are a viable tool for making decisions regarding future carcass composition.  相似文献   

3.
Data from 534 steers representing six sire breed groups were used to develop live animal ultrasound prediction equations for weight and percentage of retail product. Steers were ultrasonically measured for 12th-rib fat thickness (UFAT), rump fat thickness (URPFAT), longissimus muscle area (ULMA), and body wall thickness (UBDWALL) within 5 d before slaughter. Carcass measurements included in USDA yield grade (YG) and quality grade calculations were obtained. Carcasses were fabricated into boneless, totally trimmed retail products. Regression equations to predict weight and percentage of retail product were developed using either live animal or carcass traits as independent variables. Most of the variation in weight of retail product was accounted for by live weight (FWT) and carcass weight with R2 values of 0.66 and 0.69, respectively. Fat measurements accounted for the largest portion of the variation in percentage of retail product when used as single predictors (R2 = 0.54, 0.44, 0.23, and 0.54 for UFAT, URPFAT, UBDWALL, and carcass fat, respectively). Final models (P < 0.10) using live animal variables included FWT, UFAT, ULMA, and URPFAT for retail product weight (R2 = 0.84) and UFAT, URPFAT, ULMA, UBDWALL, and FWT for retail product percentage (R2 = 0.61). Comparatively, equations using YG variables resulted in R2 values of 0.86 and 0.65 for weight and percentage of retail product, respectively. Results indicate that live animal equations using ultrasound measurements are similar in accuracy to carcass measurements for predicting beef carcass composition, and alternative ultrasound measurements of rump fat and body wall thickness enhance the predictive capability of live animal-based equations for retail yield.  相似文献   

4.
Five hundred thirty-four steers were evaluated over a 2-yr period to develop and validate prediction equations for estimating carcass composition from live animal ultrasound measurements and to compare these equations with those developed from carcass measurements. Within 5 d before slaughter, steers were ultrasonically measured for 12th-rib fat thickness (UFAT), longissimus area (ULMA), rump fat thickness (URPFAT), and body wall thickness (UBDWALL). Carcasses were fabricated to determine weight (KGRPRD) and percentage (PRPRD) of boneless, totally trimmed retail product. Data from steers born in Year 1 (n = 282) were used to develop prediction equations using stepwise regression. Final models using live animal variables included live weight (FWT), UFAT, ULMA, and URPFAT for KGRPRD (R2 = 0.83) and UFAT, URPFAT, ULMA, FWT, and UBDWALL for PRPRD (R2 = 0.67). Equations developed from USDA yield grade variables resulted in R2 values of 0.87 and 0.68 for KGRPRD and PRPRD, respectively. When these equations were applied to steers born in Year 2 (n = 252), correlations between values predicted from live animal models and actual carcass values were 0.92 for KGRPRD, and ranged from 0.73 to 0.76 for PRPRD. Similar correlations were found for equations developed from carcass measures (r = 0.94 for KGRPRD and 0.81 for PRPRD). Both live animal and carcass equations overestimated (P < 0.01) actual KGRPRD and PRPRD. Regression of actual values on predicted values revealed a similar fit for equations developed from live animal and carcass measures. Results indicate that composition prediction equations developed from live animal and ultrasound measurements can be useful to estimate carcass composition.  相似文献   

5.
Prediction of eventual carcass traits in stocker cattle at the conclusion of grazing could be useful for culling, co-mingling of animals, feedlot pen assignments, and making management decisions in the feedyard. Ultrasound measures of 12th to 13th rib longissimus area (ULA) and fat thickness (UFAT), and off-pasture BW (OPBW) were collected from yearling cattle (n = 261) at the conclusion of grazing in two experiments that evaluated stocking rate and grazing management effects on rye (Secale cereale L.) annual ryegrass (Lolium multiflorum Lam.) pastures. Carcasss data were subsequently recorded at harvest following feedyard finishing to a visual 1-cm backfat. Correlations were analyzed to determine relationships between carcass traits and ULMA, UFAT, body condition measure (BCM), and OPBW. Ultrasound measures, breed type (BRDT; n = 4), gender (steers and heifers), and feedlot days on feed (DOF) were evaluated in multiple regression models to determine whether these variables influence eventual carcass percentage retail product, kilograms retail product (KRP), hot carcass weight (HCW), and marbling score. Ultrasound FAT and BCM were negatively correlated with percentage retail product, KRP, and HCW and were positively correlated with marbling score. All reduced regression models had R2 values of between 0.15 and 0.63, and models with inputs of UFAT and OPBW consistently had the numerically greatest R2 values and least RMSE. Multiple regression analyses indicated that prediction of carcass traits from stocker cattle ultrasonic measurements at the conclusion of grazing were possible, but improvement in the models will be necessary to reduce error and improve reliability.  相似文献   

6.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in frame size, muscle score, and carcass fat thickness to study the effectiveness of live evaluation and ultrasound as predictors of carcass composition. Three trained personnel evaluated cattle for frame size, muscle score, fat thickness, longissimus muscle area, and USDA quality and yield grade. Live and carcass real-time ultrasound measures for 12th-rib fat thickness and longissimus muscle area were taken on a subset of the cattle. At the time of slaughter, carcass ultrasound measures were taken at "chain speed." After USDA grade data were collected, one side of each carcass was fabricated into boneless primals/subprimals and trimmed to .64 cm of external fat. Simple correlation coefficients showed a moderately high positive relationship between 12th rib fat thickness and fat thickness measures obtained from live estimates (r = .70), live ultrasound (r = .81), and carcass ultrasound (r = .73). The association between estimates of longissimus muscle area and carcass longissimus muscle area were significant (P < .001) and were higher for live evaluation (r = .71) than for the ultrasonic measures (live ultrasound, r = .61; carcass ultrasound, r = .55). Three-variable regression equations, developed from the live ultrasound measures, explained 57% of the variation in percentage yield of boneless subprimals, followed by live estimates (R2 = .49) and carcass ultrasound (R2 = .31). Four-variable equations using frame size, muscle score, and selected fat thickness and weight measures explained from 43% to 66% of the variation for the percentage yield of boneless subprimals trimmed to .64 cm. Live ultrasound and(or) live estimates are viable options for assessing carcass composition before slaughter.  相似文献   

7.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as carcass adjusted 12th-rib fat thickness. After collection of USDA carcass grade data, one side of each carcass was fabricated into boneless primals, subprimals, and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the knuckle, tri-tip, and tenderloin, which were trimmed of all fat. Forced four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at the three fat trim levels as influenced by sex class, frame size, muscle score, and adjusted 12th-rib fat thickness. Independent variables that had the most influence on percentage yield of primals and boneless subprimals were adjusted 12th-rib fat thickness and sex class. Within the same phenotypic group, percentage of trimmable fat increased by 2.32% as 12th-rib fat thickness increased by .75 cm. Estimated percentage yield of the major subprimals from the loin and round tended to be higher or relatively equal for heifer carcasses at all trim levels compared with those subprimals from steer carcasses. Holding frame size, sex class, and fat thickness constant, there was a higher percentage yield of chuck roll, rib eye roll, and strip loin for carcasses from thick-muscled cattle than for those from average- and thin-muscled cattle. Frame size had little effect on percentage yield of boneless subprimals.  相似文献   

8.
This study was conducted to determine the ability of additional ultrasound measures to enhance the prediction accuracy of retail product and trimmable fat yields based on weight and percentage. Thirty-two Hereford-sired steers were ultrasonically measured for 12th-rib fat thickness, longissimus muscle area, rump fat thickness, and gluteus medius depth immediately before slaughter. Chilled carcasses were evaluated for USDA yield grade factors and then fabricated into closely trimmed, boneless subprimals with 0.32 cm s.c. fat. The kilogram weight of end-point product included the weight of trimmed, boneless subprimals plus lean trim weights, chemically adjusted to 20% fat, whereas the fat included the weight of trimmed fat plus the weight of fat in the lean trim. Prediction equations for carcass yield end points were developed using live animal or carcass measurements, and live animal equations were developed including ultrasound ribeye area or using only linear measurements. Multiple regression equations, with and without ultrasound rump fat thickness and gluteus medius depth, had similar R2 values when predicting kilograms of product and percentages of product, suggesting that these alternative variables explained little additional variation. Final unshrunk weight and ultrasound 12th-rib fat thickness explained most of the variation when predicting kilograms of fat. Rump fat and gluteus medius depth accounted for an additional 10% of the variation in kilograms of fat, compared with the equation containing final weight, ultrasound ribeye area, and ultrasound 12th-rib fat thickness; however, the two equations were not significantly different. Prediction equations for the cutability end points had similar R2 values whether live animal ultrasound measurements or actual carcass measurements were used. However, when ultrasound ribeye area was excluded from live animal predictions, lower R2 values were obtained for kilograms of product (0.81 vs 0.67) and percentages of product (0.41 vs 0.17). Conversely, the exclusion of ultrasound ribeye area had little effect on the prediction accuracy for kilograms of fat (0.75 vs 0.74) and percentage fat (0.50 vs 0.40). These data substantiate the ability of live animal ultrasound measures to accurately assess beef carcass composition and suggest that the alternative ultrasound measures, rump fat and gluteus medius depth, improve the accuracy of predicting fat-based carcass yields.  相似文献   

9.
Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th- to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th- to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th- to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 × RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 × RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 × CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 × CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th- to 11th-rib section precisely estimated carcass percentages of water and EE. These regressions can accurately predict carcass and empty body compositions for Nellore, Guzerah, and Caracu breeds.  相似文献   

10.
7头商品鲁西牛胴体第11肋后缘截面的客观测量值及相应的其它屠宰数据应用SAS软件对胴体产肉率进行了回归分析,结果表明半胴体重、皮下脂肪厚、背眼肌面积、腔脂%组建的四元方程对后腿分割肉产率的预测力最大,其次是后躯分割肉产率、全部可食肉产率、主要分割肉产率对全部分割肉产率的预测力最小。眼肌面积是主要分割肉产率最重要的独立预测指标;腔脂%对全部分割肉产率、全部可食肉产率、后躯分割肉产率单独的预测作用最大  相似文献   

11.
Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P < 0.001). Consequently, ultrasound backfat (27%), carcass 12th-rib fat (31%), ultrasound marbling (14%), and carcass marbling (15%) were less in Charolais- than Angus-sired steers (P < 0.001). Conversely, carcass LM area (P = 0.05) and carcass lean meat yield (P < 0.001) were greater in Charolais- compared with Angus-sired steers. Steers with greater serum leptin concentration also had greater DMI (P < 0.001), greater residual feed intake (P = 0.04), and partial efficiency of growth (P = 0.01), but did not differ in feed conversion ratio (P > 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were generally greater than the phenotypic correlations and included ultrasound backfat (r = 0.76 +/- 0.19), carcass 12th-rib fat (r = 0.54 +/- 0.23), ultrasound marbling (r = 0.27 +/- 0.22), carcass marbling (r = 0.76 +/- 0.21), ultrasound LM area (r = -0.71 +/- 0.19), carcass LM area (r = -0.75 +/- 0.20), lean meat yield (r = -0.59 +/- 0.22), and yield grade (r = 0.39 +/- 0.26). Serum leptin concentration can be a valuable tool that can be incorporated into appropriate selection programs to favorably improve the carcass merit of cattle.  相似文献   

12.
Carcass measurements for weight, longissimus muscle area, 12-13th-rib fat thickness, and marbling score, as well as for live animal measurements of weight at the time of ultrasound, ultrasound longissimus muscle area, ultrasound 12-13th-rib fat thickness, and ultrasound-predicted percentage ether extract were taken on 2,855 Angus steers. The average ages for steers at the time of ultrasound and at slaughter were 391 and 443 d, respectively. Genetic and environmental parameters were estimated for all eight traits in a multivariate animal model. In addition to a random animal effect, the model included a fixed effect for contemporary group and a covariate for measurement age. Heritabilities for carcass weight, carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound weight, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.48, 0.45, 0.35, 0.42, 0.55, 0.29, 0.39, and 0.51, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, carcass marbling score and ultrasound-predicted percentage ether extract, and carcass and ultrasound weight were 0.69, 0.82, 0.90, and 0.96, respectively. Additional estimates were derived from a six-trait multivariate animal model, which included all traits except those pertaining to weight. This model included a random animal effect, a fixed effect for contemporary group, as well as covariates for both measurement age and weight. Heritabilities for carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.36, 0.39, 0.40, 0.17, 0.38, and 0.49, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, and carcass marbling and ultrasound-predicted percentage ether extract were 0.58, 0.86, and 0.94, respectively. The high, positive genetic correlations between carcass and the corresponding real-time ultrasound traits indicate that real-time ultrasound imaging is an alternative to carcass data collection in carcass progeny testing programs.  相似文献   

13.
In order to estimate genetic parameters, abattoir carcass data on 1,713 Angus and 1,007 Hereford steers and heifers were combined with yearling live-animal ultrasound measurements on 8,196 Angus and 3,405 Hereford individuals from seedstock herds. Abattoir measures included carcass weight (CWT), percentage of retail beefyield (RBY), near-infrared measured intramuscular fat percentage (CIMF), preslaughter scanned eye muscle area (CEMA), and subcutaneous fat depth at the 12th rib (CRIB) and at the P8 site (CP8). Ultrasound scans on yearling animals included 12th-rib fat depth (SRIB), rump fat depth at the P8 site (SP8), eye muscle area (SEMA), and percentage of intramuscular fat (SIMF). Records on CWT were adjusted to 650-d slaughter age, and the remaining abattoir traits were adjusted to 300-kg CWT. Scan data were analyzed treating records on males and females as different traits. Multivariate analyses were performed on a variety of trait combinations using animal model and REML algorithm. Heritability (h2) estimates for CWT, RBY, CIMF, CP8, CRIB, and CEMA were .31, .68, .43, .44, .28, and .26, respectively, for Angus and .54, .36, .36, .08, .27, .38, respectively, for Hereford. Pooled across sexes, h2 estimates for SIMF, SP8, SRIB, and SEMA were .33, .55, .51, and .42, respectively, for Angus and .20, .31, .18, and .38, respectively, for Hereford. Genetic correlations (r(g)) between the same pair of carcass traits measured at yearling through scanning and directly at the abattoir were moderate to strongly positive, suggesting that selection using yearling ultrasound measurements of seedstock cattle should result in predictable genetic improvement for abattoir carcass characteristics. Estimates of r(g) between the scanned fat measurements and RBY were negative, ranging from -.85 for Angus heifers to -.05 for Hereford heifers. Also, the estimates of r(g) between SEMA and the fat records measured at the abattoir were negative and ranged from -.94 in Hereford heifers to -.02 in Angus heifers.  相似文献   

14.
Postweaning growth, feed efficiency, and carcass traits were analyzed on 1,422 animals obtained by mating F1 cows to F1 (Belgian Blue x British breeds) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC IIIHereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British breeds), Tuli, Boran, Brahman, or Belgian Blue sires. Breed groups were fed in replicated pens and slaughtered serially in each of 2 yr. Postweaning average daily gain; live weight; hot carcass weight; fat depth; longissimus area; estimated kidney, pelvic, and heart fat (percentage); percentage Choice; marbling score; USDA yield grade; retail product yield (percentage); retail product weight; fat yield (percentage); fat weight; bone yield (percentage); and bone weight were analyzed in this population. Quadratic regressions of pen mean weight on days fed and of cumulative ME consumption on days fed were used to estimate gain, ME consumption and efficiency (Mcal of ME/kg of gain) over time (0 to 200 d on feed), and weight (300 to 550 kg) intervals. Maternal grandsire breed was significant (P < 0.01) for all traits. Maternal granddam breed (Hereford, Angus, or MARC III)was significant (P < 0.05) only for fat depth, USDA yield grade, retail product yield, fat yield, fat weight, and bone yield. Sire breed was significant (P < 0.05) for live weight, hot carcass weight, longissimus area, and bone weight. Sex class was a significant (P < 0.001) source of variation for all traits except for percentage Choice, marbling score, retail product yield, and fat yield. Interactions between maternal grandsire and sire breed were nonexistent. Sire and grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

15.
The objective of this study was to characterize breeds representing diverse biological types for postweaning growth and carcass composition traits in terminal crossbred cattle. Postweaning growth and carcass traits were analyzed on 434 steers and 373 heifers obtained by mating F1 cows to Charolais sires. Maternal grandsires represented Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British Breeds), Norwegian Red, Swedish Red and White, Wagyu, or Friesian breeds. Breed groups were slaughtered serially in each of 2 yr (2002 and 2003). Postweaning ADG, slaughter weight, hot carcass weight, dressing percentage, percentage Choice, LM area, marbling score, USDA yield grade, fat thickness, retail product yield (percentage), retail product weight, fat yield (percentage), fat weight, bone yield (percentage), and bone weight were analyzed. Maternal grandsire breed was significant (P < 0.05) for all traits except dressing percentage, percentage Choice, and LM area. Marbling score for animals with Norwegian Red, Wagyu, Swedish Red and White, British Breeds, and Friesian inheritance was 550, 544, 532, 530, and 515, respectively (SEM = 8). Retail product weight for these animals was 224, 211, 227, 223, and 223 kg, respectively (SEM = 2 kg). Maternal granddam breed was not significant for any of the traits analyzed. Grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

16.
Seven hundred and three native and crossbred Chinese Yellow cattle (mean live weight: 523 ± 38 kg) were slaughtered, chilled and segmented. The hot carcass weight (HCW, kg), fat thickness (FT, cm) and rib eye area (REA, cm2) were measured to predict weights and percentages of beef cattle retail cuts. A correlation analysis showed that the HCW and REA were positively correlated with the weights of the total retail cuts (TRC, kg), top grade retail cuts, prime retail cuts and percentage of total carcass weight. A regression analysis indicated that HCW and REA were the best predictors for the weight of total retail cuts (Y = ?16.71 + 0.382 HCW + 0.593 REA), and the HCW explained more of the variation than REA. Meanwhile, HCW and REA accounted for 62% of the variation of percentage of total retail cuts (Y = 43.24 ? 0.025 HCW + 0.170 REA), whereas the REA was more valuable than the HCW. The FT contributed little in estimating weight or percentage of retail cuts.  相似文献   

17.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

18.
The carcass characteristics of 27 market barrows and 27 market gilts were evaluated at various times (n = 8) with real-time ultrasound (Aloka 210 DX) from approximately 20 kg until slaughter at three end points. The pigs were randomly assigned to slaughter weight groups of 91, 104.5, and 118 kg at weaning time. Correlations were determined over slaughter weight group and sex, and the accuracies of ultrasound measurements were also evaluated. The regressions of ultrasound 10th-rib fat and ultrasound longissimus muscle area on live weight were also developed. Correlations between actual and ultrasound-measured last-rib fat, 10th-rib fat, and longissimus muscle area were high (r = .91, .63, and .53, respectively; P less than .01). The accuracy of ultrasound longissimus muscle area prediction was lower for 118-kg pigs than for the two lighter groups, whereas the accuracy for prediction of last-rib fat was lower for 91-kg pigs than for the two heavier groups, as indicated by higher absolute differences (P less than .05). Last-rib fat and longissimus muscle area tended to be overestimated and 10th-rib fat tended to be underestimated by real-time ultrasound. Prediction of last-rib fat by ultrasound was more accurate for gilts than for barrows, as indicated by a lower absolute difference (P less than .05).  相似文献   

19.
Over the past 3 yr, 100 carcasses (64 steers, 24 bulls, and 12 heifers) were fabricated into closely trimmed (6 mm maximum fat cover), boxed beef and further evaluated for percentage of retail yield at the Iowa State University Meat Laboratory. Hot carcass weight ranged from 235 to 399 kg with a least squares mean (LSM) and standard error across all sex classes of 318 +/- 3 kg. Additionally, fat cover ranged from .30 to 1.78 cm with an average of .91 +/- .05 cm. The LSM for longissimus muscle area (LMA) across all sex classes was 81.6 +/- 1.0 cm2. Bulls had significantly less subcutaneous fat (P less than .01) and greater LMA (P less than .01) than did either steers or heifers. Retail yield from the boxed chuck, expressed as a percentage of cold carcass weight, was 19.2 for bulls and 14.8 for steers. This difference was due primarily to a reduction of intermuscular fat. Similarly, bulls had a greater yield (P less than .01) of the boxed round than did steers. When cattle of differing frame sizes were compared, only percentage of retail yield of the boxed round was significant (P less than .01): large-framed cattle yielded 14.3 +/- .2%, compared with 12.8 +/- .2% for the small-framed cattle. When all possible regression analyses were run, sex class differences accounted for 25.7% of the variation in retail yield. The current USDA retail yield equation accounted for only 37.2% of the variation. Percentage of closely trimmed, boneless round had an R2-value of .57.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Data from 970 feedlot steers and bulls were used to evaluate effects of different age end points on the accuracy of prediction models for percentage of retail product, retail product weight, and hot carcass weight. Cattle were ultrasonically scanned three to five times for fat thickness, longissimus muscle area, and percentage of intramuscular fat. Live animal measures of body weight and hip height were also taken during some of the scan sessions. Before development of prediction equations, live and ultrasound data were adjusted to four age end points using individual animal regressions. Age end points represented mean age at slaughter (448 d), mean age at the second-to-last scan before slaughter (414 d), mean age at the third-to-last scan before slaughter (382 d), and an age end point of 365 d. Ultrasound and live animal measures accounted for a large proportion of the variation in the dependent variables regardless of the age end point considered. For all three traits, final models based on independent variables adjusted to earlier ages of 365 and 382 d showed better or at least similar model R2 and root mean square errors than those based on independent variables adjusted to a mean slaughter age of 448 d. Validation of the models using independent data from 282 steers resulted in a mean across-age rank correlation coefficient of .78, .88, and .83 between actual and predicted values of the percentage of retail product, hot carcass weight, and retail product weight, respectively. Mean across-age rank correlation of breeding values for the corresponding traits were .92, .89, and .82. The results of this study suggest that live and ultrasound traits measured as early as 365 d could be used to predict end product traits as accurately as similar measures made before slaughter at age 448 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号