首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
An increase in salinity of freshwater can affect the physiology and metal uptake in fish. In the present study, Nile tilapia Oreochromis niloticus were exposed to copper (1.0 mg/l) in increased salinities (2, 4, and 8 ppt) for 0, 1, 3, 7, and 14 days. Following the exposures, the activities of Na+/K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase were measured in the gill, kidney, and intestine to evaluate the changes in osmoregulation of fish. Results showed that increases in salinity and Cu exposure of fish significantly altered the ATPase activities depending on the tissue type, salinity increase, and exposure durations. Salinity-alone exposures increased Na+/K+-ATPase activity and decreased Ca2+-ATPase activity. Na+/K+-ATPase activity decreased following Cu exposure in 2 and 4 ppt salinities, though the activity increased in 8 ppt salinity. Ca2+-ATPase activity decreased in the gill and intestine in all salinities, while the activity mostly increased in the kidney. However, there were great variations in Mg2+-ATPase activity following exposure to salinity alone and salinity+Cu combination. Cu accumulated in the gill and intestine following 14 days exposure and accumulation was negatively correlated with salinity increase. Data indicated that ATPases were highly sensitive to increases in salinity and Cu and might be a useful biomarker in ecotoxicological studies. However, data from salinity increased freshwaters should carefully be handled to see a clear picture on the effects of metals, as salinity affects both metal speciation and fish osmoregulation.  相似文献   

3.
The present study aimed to assess the possible preventive and reparative effects of isoleucine (Ile) against copper (Cu)-induced oxidative stress in fish enterocytes in vitro. In experiment 1, enterocytes were preincubated with increasing concentrations of Ile (0, 50, 120, 190, 260, and 330 mg L?1) for 72 h followed by exposure to 6 mg L?1 Cu for 24 h. In experiment 2, the enterocytes were pretreated with 6 mg L?1 Cu for 24 h and then treated with 0–330 mg L?1 Ile for 72 h to investigate its potential reparative role. The results of experiment 1 showed that Cu exposure increased lactate dehydrogenase (LDH) activity and malondialdehyde and protein carbonyl (PC) content; these changes were completely suppressed by pretreatment with Ile at optimum concentrations (P < 0.05). Moreover, Ile pretreatment prevented the decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the enterocytes exposed to Cu (P < 0.05). Additionally, cells exposed to Cu exhibited adaptive increases in glutathione-S-transferase (GST) activity. In experiment 2, the LDH activity and protein oxidation induced by Cu were completely reversed by Ile posttreatment. Meanwhile, the Cu-induced decrease in SOD, GPx, and GST activity was completely reversed by subsequent Ile treatment, but the reduced glutathione content was not restored. Collectively, these results indicate that Ile suppresses Cu-induced oxidative damage via preventive and reparative pathways in primary enterocytes and thus protects the structural integrity of enterocytes in fish.  相似文献   

4.
In the present study, three different copper (Cu) concentrations (control, 10 and 100 μM, respectively) and three incubation times (24, 48 and 96 h) were chosen to assess in vitro effect of Cu on lipid metabolism in hepatocytes of grass carp Ctenopharyngodon idellus. Increased glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and carnitine palmitoyltransferase I activities were observed in hepatocytes with increasing Cu concentration and exposure duration. Cu decreased mRNA levels of several lipogenic and lipolytic genes at 24 h. However, at 48 h, Cu down-regulated the process of lipogenesis but up-regulated that of lipolysis. The Cu-driven up-regulation of lipolytic genes was maintained after 96 h and accompanied by a decreased intracellular triglyceride accumulation, while no effect on lipogenic genes was shown. Thus, 96-h Cu exposure induced lipid depletion, possibly due to the up-regulation of lipolysis. Although in this process, lipogenesis might be up-regulated, it was not enough to compensate lipid consumption. Our study represents the first approach to concentration- and time-dependent in vitro effects of Cu on lipid metabolism of fish hepatocytes and provides new insights into Cu toxicity in fish at both enzymatic and molecular levels.  相似文献   

5.
The size of a fish is an important factor in its physiology, and metal uptake is affected by animal physiology. In this study, small and large tilapias (Oreochromis niloticus) differing approximately twofold in length and fivefold in weight were compared for their antioxidant response. Both groups were exposed to Cu or Cr (1.0 μg/mL) in a freshwater (?80 mg CaCO3/L, conductivity 1.77 mS/cm) using 2 exposure protocols (20 μM for 48 h and 10 μM for 6 days). Following the exposures, the antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione (GSH) levels were measured in the liver of fish. Results showed that small fish was affected from exposure conditions much more than large ones as their antioxidant parameters significantly decreased even in controls. Metal exposures of small fish caused significant increases in SOD and CAT activity in acute Cu or Cr exposures. Subchronic Cr exposure of small fish also caused significant increases in CAT, GPx and GST activities, while there was no significant change in Cu-exposed ones. Large fish, however, showed different antioxidant responses as their levels mostly decreased. This study demonstrated that the response of antioxidant system in the liver of tilapia varied in relation to fish sizes and emphasized using different size groups in environmental monitoring and also in evaluation of fish biomarkers.  相似文献   

6.
This study was conducted to characterize the alterations in reduced glutathione (GSH) level, catalase (CAT) activity and proteins electrophoretic patterns in response to sublethal copper (Cu) exposure in Cyprinus carpio and to determine whether these responses are related to Cu accumulation in gills, chosen as target tissue. Fish were exposed to 0.1 and 1.0 mg/l Cu for 10 and 20 days. There were increasing level of Cu in the gill with increasing concentrations of metal in the exposure medium, and with increasing duration of exposure. GSH level and CAT activity increased in fish exposed to 1.0 mg/l Cu for both exposure periods, while no change was detected at the lower Cu concentration. Electrophoretic patterns of gill proteins by sodium dodecyl sulphate gel electrophoresis (SDS–PAGE) consist of 25-, 26-, 30-, 44- and 48-kDA medium molecular weight proteins (MMP) for five bands and 64-, 72-, 90- and 101-kDA high molecular weight proteins (HMP) for four bands in both control and treatment groups. The levels of 25-, 26- and 30-kDA MMP and 72- and 90-kDA HMP increased in response to Cu exposure. The present study demonstrated that Cu caused stress in fish gills and an acclimation with induction of GSH, CAT, MMP and HMP, which were important in the protection against metal damage, was observed.  相似文献   

7.
The aim of the present study was to evaluate bioaccumulation of metals in various tissues of the freshwater fish Cyprinus carpio L. exposed to cadmium and copper (a xenobiotic and a microelement). The fish were subjected to short-term (3 h, Cd-S and Cu-S) or long-term (4 weeks, Cd-L and Cu-L) exposures to 100 % 96hLC50 or 10 % 96hLC50, respectively. Blood, gill, liver, head and trunk kidney were isolated weekly from 5 fish of each group for 4 weeks (post-short-term exposure and during long-term exposure). Atomic absorption spectrophotometry technique was applied to measure concentrations of metals (Cd and Cu) in fish tissues. Initial concentrations of copper in fish tissues were higher than levels of cadmium. Cadmium and copper levels increased in all tissues of metal-exposed fish. After short-term exposures (at higher concentration) and during long-term exposures (at lower concentration), similar changes in metal concentrations were observed. The values of accumulation factor (ratio of final to initial metal concentration) were higher for cadmium as compared to copper. Comparison of metal levels and accumulation factors in various tissues revealed that cadmium and copper showed very high affinity to head kidney of common carp (higher than to other tissues), but accumulation factors for cadmium in trunk, head kidney and liver were much higher than for copper. The concentrations of copper in organs of Cu-exposed fish increased only slightly and quickly returned to the control level, which shows that fish organism easily buffered metal level. On the other hand, concentrations of cadmium considerably increased and remained elevated for a long time which suggests that activation of mechanisms of sequestration and elimination of cadmium required more time.  相似文献   

8.
The extensive use of pharmaceuticals in human and veterinary medicine may enter the aquatic environment and pose a serious threat to non-target aquatic organisms like fish. In this study, Indian major carp Cirrhinus mrigala was exposed to different concentrations (1, 10 and 100 μg L?l) of most commonly used pharmaceutical drugs clofibric acid (CA) and diclofenac (DCF) to evaluate its impacts on certain enzymological parameters during short- and long-term exposures. During short-term (96 h) exposure period, plasma glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and gill Na+/K+-ATPase activity were significantly altered at all concentrations of both the CA- and DCF-treated fish. In long-term exposure (35 days), gill Na+/K+-ATPase activity was found to be significantly increased at all concentration of CA and DCF exposures throughout the study period (except at the end of 7th day in 10 and 100 µg L-1) . However, a biphasic trend was observed in plasma GOT and GPT activity when compared to the control groups. In both short- and long-term exposure, a significant (P < 0.01 and P < 0.05) changes were observed in all enzymological parameters of fish C. mrigala exposed to different concentrations of CA and DCF. The alterations of these enzymological parameters can be effectively used as potential biomarkers in monitoring of pharmaceutical toxicity in aquatic environment and organisms.  相似文献   

9.
The effect of abrupt and 5-day gradual salinity transfers from freshwater (FW) to 11 ‰ Caspian Sea brackish water (BW) was investigated in juvenile Persian sturgeon Acipenser persicus with three different weight groups: 1–2 g (1.62 ± 0.27 g), 2–3 g (2.55 ± 0.41 g) and 3–5 g (4.28 ± 0.76 g). Mortality rates, blood osmotic pressure, gill morphology and branchial Na+, K+-ATPase (NKA) activity were measured 4 and 10 days after abrupt transfer and 9 and 15 days after the initial gradual transfer (i.e. 4 and 10 days after reaching Caspian Sea salinity). Fish under 3 g could not survive increased salinity, and the blood osmotic pressure of the remaining surviving fish increased and remained elevated. However, heavier fish were able to survive and successfully acclimate, even to rapid salinity change with osmotic pressure reduced to Caspian Sea osmolality levels. At the gill level, the developmental increase in chloride cell volume and a higher NKA content most probably allow juveniles weighing more than 2 g to sharply increase NKA activity if the fish are transferred to BW. The rapid chloride cell proliferation occurring with increased salinity should strengthen this acclimation response. Therefore, a drastic physiological change occurs when fish weigh more than 2 g that allows migration to higher salinities. The triggering signal on chloride cells must be further investigated in order to optimize this functional step.  相似文献   

10.
Little is known about the effects of brominated flame retardants in teleosts and some of the information currently available is inconsistent. This study examined effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on thyroid condition, body mass and size, and gonadal development of zebrafish. Pubertal, 49-day-old (posthatch) fish were fed diets without BDE-47 (control) or with 1, 5 or 25 μg/g BDE-47/diet. Treatments were conducted in triplicate 30-L tanks each containing 50 zebrafish, and 15 fish per treatment (5 per tank) were sampled at days 40, 80 and 120 of exposure. Measurements were taken of body mass, standard length, head depth and head length. Sex (at 40–120 days of exposure), germ cell stage (at 40 days) and thyroid condition (at 120 days; follicular cell height, colloid depletion, angiogenesis) were histologically determined. Whole-body BDE-47 levels at study completion were within the high end of levels reported in environmentally exposed (wild) fishes. Analysis of variance was used to determine differences among treatments at each sampling time. No effects were observed on thyroid condition or germ cell stage in either sex. Reduced head length was observed in females exposed to BDE-47 at 80 days but not at 40 or 120 days. In males, no apparent effects of BDE-47 were observed at 40 and 80 days, but fish exposed to 25 μg/g had lower body mass at 120 days compared to control fish. These observations suggest that BDE-47 at environmentally relevant whole-body concentrations does not affect thyroid condition or pubertal development of zebrafish but does affect growth during the juvenile-to-adult transition, especially in males.  相似文献   

11.
Atlantic stingrays, Dasyatis sabina, are common residents of shallow-water seagrass habitats that experience natural cycles of severe hypoxia during summer months. We hypothesized that stingrays exposed to hypoxic episodes would improve their hypoxia tolerance by increasing branchial surface area and altering blood oxygen-carrying capacity. To this end, we compared critical oxygen minimum, gill morphology, and hemoglobin/hematocrit levels in a control group of Atlantic stingrays held at continuous oxygen saturations of 80–90 % (≥5.5 mg/l), to treatment groups exposed to a 7-h hypoxic interval at 55 % (~4.0 mg/l), or 30 % oxygen saturation (~2.0 mg/l). Stingrays in hypoxic treatment groups significantly improved their hypoxia tolerance. Critical oxygen minimum values fell from 0.7 ± 0.11 mg/l in control fish to 0.4 ± 0.05 and 0.4 ± 0.06 mg/l in the 55 and 30 % saturation treatment groups, respectively. Mass-specific gill surface area between control fish and the 30 % saturation treatment group increased by 1.7-fold, from 85 to 142 mm2/g. Although stingrays did not show an increase in hematocrit or hemoglobin levels, production of more efficient hemoglobin isoforms could not be ruled out. An increase in hypoxia tolerance allows Atlantic stingrays to forage for longer times and across a wide range of hypoxic habitats that are less accessible to predators and competitors.  相似文献   

12.
The present study was designed to compare the responses in freshwater fish Oreochromis niloticus exposed to a synthetic pyrethroid, cypermethrin (CYP); an essential metal, copper (Cu); and a nonessential metal, lead (Pb). Fish were exposed to 0.05 μg/l CYP, 0.05 mg/l Cu, and 0.05 mg/l Pb for 4 and 21 days, and the alterations in serum enzyme activities, metabolite, and ion levels were determined. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased in response to CYP, Cu, and Pb exposures at both exposure periods. While elevations in alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities and in cholesterol level were observed in pesticide-exposed fish at 4 and 21 days, they increased in Cu- and Pb-exposed fish at 21 days. Although metal-exposed fish showed increases in cortisol and glucose levels at 4 days followed by a return to control levels at the end of the exposure period, their levels elevated in pesticide-exposed fish at both exposure periods. Total protein levels decreased in Pb- and pesticide-exposed fish at 21 days. Na+ and Cl levels decreased in pesticide-exposed fish at both exposure periods and in Cu- and Pb-exposed fish at 21 days. The exposures of pesticide and metals caused an elevation in K+ level at the end of the exposure period. The present study showed that observed alterations in all serum biochemical parameters of fish-treated pesticide were higher than those in fish exposed to metals.  相似文献   

13.
Bioaccumulation of mercury and histomorphological changes in the olfactory epithelium of Labeo rohita were investigated after exposing the fish to two sublethal concentrations of HgCl2 (66 and 132 μg/L) for 15 and 30 days. Mercury deposition increased in the tissue significantly (p < 0.05) with dose- and duration-dependent manner. Severe damage to the olfactory epithelium was evident. When fish exposed to 66 μg/L for 15 days, the histology of olfactory epithelium exhibited that mucous cell proliferation was upregulated and cell size was significantly increased from the control. Similar trends were found in 30 days exposure in both treated groups. Histology showed that mercury induced degeneration of columnar sensory cells, supporting cells and ciliated non-sensory cells and induced basal cell proliferation. Basal cell hyperplasia led to form intraepithelial proliferative lesion, thickening of epithelium, basal lamina disruption and cyst formation. Scanning electron microscopy revealed that mercury exposure at 66 μg/L caused clumping and loss of cilia, erosion in microridges on the supporting cells and proliferation of mucous cell opening. Complete degeneration of ciliated cells and cyst formation was observed in the fish when exposed to 132 μg/L HgCl2. This result suggests that prolonged exposure to mercury might cause irreversible damage to the olfactory epithelium and impair the olfactory function of fish.  相似文献   

14.
The effects of tank color on the growth, stress responses, and skin color of snakeskin gourami (Trichogaster pectoralis) were investigated in this study. Fish with initial body weights of 5.03±0.00 g were reared in five experimental tank colors (white, red, green, blue, and black) for 8 weeks. Each tank color was tested in triplicate with an initial stocking density of 15 fish per tank. Fish were fed with commercial sinking pellets at 4% of the average body weight per day. Growth performance, feed utilization efficiency, stress indicators (hematocrit, blood glucose, plasma cortisol levels), and skin color parameters were investigated. The fish reared in blue tanks had a significantly higher average final body weight (9.73?±?0.14 g) and significantly lower average feed conversion ratio (3.42?±?0.12) than the fish reared in black tanks (P?<?0.05). The fish reared in black tanks exhibited higher average hematocrit (36.63?±?1.11%), blood glucose (48.33?±?1.45 mg dL?1), and plasma cortisol (9.00?±?0.56 μg dL?1) levels than those reared in the other tank colors. However, the blood glucose levels in only the fish reared in black tanks were significantly higher than those in the fish reared in the other tank colors. The fish skin color ranged from very pale (high skin lightness) in the white tanks to very dark (low skin lightness) in the black tanks, and 80% of the variation in skin lightness were explained by the tank lightness. The use of a blue tank resulted in normal skin color; hence, blue tanks will not affect the customer acceptance of the fish. Our study revealed that blue is the most appropriate tank color for culturing snakeskin gourami.  相似文献   

15.
Most water bodies in Brazil, and in the world, are contaminated by some types of pollutants, ranging from sewage to metal/chemicals, carcinogenic products, and biodegradable detergents. Despite the extensive knowledge on their effects on fish biology and especially on gill morphology, research that concerns their impacts on gill rakers and implications in parameters such as food consumption cannot be found in the literature. Gill rakers are vital because, together with gills, they are responsible for the defense and protection of the organism and for selecting appropriate food for survival. When detergents, which can act as toxic chemical agents, get in contact with the body of the fish, they can cause severe effects that must be understood. Therefore, our study investigated ultramorphological changes in gill rakers of Astyanax altiparanae (Lambeth) caused by the exposure to biodegradable detergents. Fish were exposed to a 1 mg/L dilution of a mixture of detergents and pure water from an artesian well for 5 months. Results revealed that the first month of exposure to detergent caused dilation of chemical receptors in taste buds and the rise of a large number of orifices for mucus release among pavement cells in gill rakers, although only a small amount of mucus was found in fish exposed both to pure water and the detergent dilution. After 5 months, there was an increase in the dilation of these chemoreceptors, excess mucus on gill rakers of detergent groups, and the emergence of microbridges between microridges in pavement cells.  相似文献   

16.
In the current study, laboratory evaluations were made to assess the immunomodulatory effect of cypermethrin on fingerlings of common carp (Cyprinus carpio L.). Results showed that 96-h LC50 of cypermethrin in common carp was estimated at 0.85 μg/L. Fish were exposed for 21 days to cypermethrin at three sub-lethal concentrations of 0.042, 0.085, and 0.17 μg/L that represented 5, 10, and 20%, respectively, of the 96-h LC50 of the pesticide for this fish species. Blood samples were taken after 7, 14, and 21 days of exposure. Immunological indices and resistance against bacterial infection were determined. Compared to the control group, the fish exposed to cypermethrin showed a significant increase in neutrophil ratio but exhibited a significant decrease in leukocyte number and lymphocyte ratio in treatments exposed to 0.17 and/or 0.085 μg/L after 21 days of exposure (p < 0.05). Serum protein level was significantly decreased in group exposed to 0.17 μg/L on day 14 and also in groups exposed to 0.085 and 0.17 μg/L on day 21 (p < 0.05). Immunoglobulin value was significantly reduced in groups exposed to 0.085 and 0.17 μg/L after 21 days of exposure (p < 0.05). Serum lysozyme activity and phagocytic activity were significantly decreased following exposure to 0.17 μg/L determined on days 14 and 21, post-exposure (p < 0.05). Mortality rate following the challenge with Aeromonas hydrophila significantly increased in fish exposed to 0.17 μg/L of cypermethrin. Overall, the present results indicate severe immunotoxicological effects of cypermethrin in common carp. Therefore, the use of cypermethrin in the proximities of common carp farms should be carefully considered.  相似文献   

17.
The effects of Cd and Cu on embryos and larvae of the ide Leuciscus idus were evaluated. The ide is an European cyprinid fish, natural populations of which tend to decrease. The ide is also used as a bioindicator organism to evaluate water quality. However, sensitivity of ide early developmental stages to heavy metal intoxication is not known. Fish were exposed to Cd or Cu (100 μg/L) during embryonic, larval or both developmental periods. Survival of the embryos, time of hatching, size and quality of newly hatched larvae were evaluated at the end of embryonic period. Correctly developed larvae from the control and Cd or Cu-exposed groups were transferred to clean water, Cd or Cu solutions (100 μg/L) immediately after hatching. Larval development was observed, and the larvae were photographed. Time of yolk sac resorption, onset of active feeding and swim bladder inflation were evaluated, and the measurements were done on body and swim bladder size. The results showed that exposure of embryos to Cd and Cu significantly reduced embryonic survival and increased frequency of body malformations and death in newly hatched larvae and delayed hatching. Exposure to Cd and Cu during larval period reduced larval survival, growth and delayed development (yolk utilization, beginning of active feeding and swim bladder inflation). Cadmium was more toxic to the ide embryos and larvae than copper. Exposures to metals during embryonic period alone caused adverse impact on larval performance even when larval development took place in clean water. However, exposure of embryos to Cu reduced toxic impact of metal on larvae in continuous Cu exposure compared to the non-preexposed fish, but no such an effect occurred in case of Cd exposure. The results show that even a short-term exposure to Cd or Cu during early development of ide may adversely affect recruitment of this species. Among the measured endpoints, quality of newly hatched larvae (frequency of body malformations and larvae dead immediately after hatching) and swim bladder size were the most sensitive to intoxication with both metals. Embryos were more sensitive to Cu intoxication than larvae, while in case of Cd, sensitivity of both stages was similar.  相似文献   

18.
The effect of feeding rotifers enriched with taurine on the growth performance and survival of larval amberjack Seriola dumerili was investigated. Rotifers were enriched with a commercial taurine supplement at four levels (0, 200, 400, and 800 mg/l). The larvae were fed the enriched rotifers in triplicate from 3 days post-hatch for 7 days under static conditions. The average taurine contents of the rotifers were 1.5, 2.7, 4.2, and 7.2 mg/g dry matter, respectively. The growth of the fish fed rotifers enriched with the taurine supplement at 800 mg/l was significantly (P < 0.05) improved compared with that of the fish fed the rotifers without taurine enrichment. The survival rate improved proportionally up to a taurine supplement level of 400 mg/l, but no significant differences in survival were observed among treatments. The fraction of the larvae with inflated swim bladders did not vary significantly between treatments. Taurine content in the whole fish body increased with the taurine level in the rotifers. These results suggest that taurine enrichment of rotifers is an effective method of enhancing the growth of amberjack larvae.  相似文献   

19.
We previously reported that the progression of staining-type hypermelanosis spontaneously ceased at a specific time and area in Japanese flounder Paralichthys olivaceus. To examine whether time is a limiting factor in the spontaneous cessation of staining, we experimentally controlled the initiation and duration of staining by manipulating the bottom substrate condition in the fish tanks. At 151 days post hatching (DPH; 11 weeks), spontaneous cessation of staining was observed in fish reared in tanks without a sandy substrate. However, staining resumed (or was initiated) in tanks where sand was removed from 11 weeks, indicating a strong but temporary effect of bottom sand and the absence of time limitation in the staining progression by 151 DPH. Extended duration of the inhibitory period of hypermelanosis expansion (9 weeks or more) aided in only a 20 % reduction of the final staining area because of the increased rate of staining expansion. The bottom sandy substrate decreased the visibility of the staining area in individuals, but this was observed only before the completion of the staining expansion. These findings are discussed in relation to possible presence of area limitation of future staining, as well as the fundamental nature of staining.  相似文献   

20.
Diet is the primary source of iron (Fe) for freshwater fish, and the absorption of Fe is believed to occur via the Nramp family of divalent metal transporters (also called DMT1). Presently, the homeostatic regulation of dietary Fe absorption in fish is poorly understood. This study examined the gastrointestinal mRNA expression of two Nramp isoforms, Nramp-β and Nramp-γ, in the freshwater rainbow trout (Oncorhynchus mykiss), following exposure to elevated dietary Fe [1,256 mg Fe/kg food vs. 136 mg Fe/kg food (control)] for 14 days. The physiological performance, plasma Fe status and tissue-specific accumulation of Fe were also evaluated. In general, the mRNA expression level of Nramp was higher in the intestine relative to the stomach. Interestingly, fish fed on a high-Fe diet exhibited a significant induction in Nramp expression after 7 days, followed by a decrease to the level observed in control fish on day 14. The increase in Nramp expression correlated with the elevated gastrointestinal and plasma Fe concentrations. However, the hepatic Fe concentration remained unchanged during the entire exposure period, indicating strong homeostatic regulation of hepatic Fe level in fish. Fish appeared to handle increased systemic Fe level by elevating the plasma transferrin level, thereby enhancing the Fe-binding capacity in the plasma. Overall, our study provides new interesting insights into the homeostatic regulation of dietary Fe uptake and handling in freshwater fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号