首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于结构光三维点云的棉花幼苗叶片性状解析方法   总被引:1,自引:0,他引:1  
针对传统的棉花叶片表型测量方法主观、低效,对复杂性状如卷叶程度、黄叶占比等很难量化的问题,提出一种基于结构光三维成像的棉花幼苗叶片性状解析方法。首先,采用结构光扫描仪获取棉花幼苗的三维点云数据;然后,利用直通滤波、超体聚类、条件欧氏距离算法,实现叶片点云的识别与分割;最后,基于分割的叶片点云,采用三角面片化、随机采样一致性、Lab颜色分割等处理,实现叶片面积、周长、生长角度、卷曲度、黄叶占比等参数的快速、准确、无损提取。对40株棉花幼苗进行三维结构光成像试验,结果表明,3D叶片面积、周长测量的平均绝对误差分别为2. 59%、2. 85%,具有较高的测量精度,还证明叶片卷曲度和黄叶占比能显著区分病叶和正常叶。  相似文献   

2.
基于深度信息的草莓三维重建技术   总被引:1,自引:0,他引:1  
刘刚  张雪  宗泽  郭彩玲 《农业机械学报》2017,48(4):160-165,172
以盆栽和高架两种栽培模式生长环境下的草莓植株为研究对象,提出了一种基于深度信息分割聚类的草莓冠层结构形态三维重建算法。首先,以深度信息的不连续性特征作为草莓植株逐层分割的重要依据,以深度二维图像作为全局参考指标,提出深度信息步进方法,自动提取冠层点云;其次,改进密度聚类算法,有效滤除随机、跳边和背景噪声;最后,改进基于Harris算子的多源图像融合算法,实现彩色图像与强度图像的配准及点云颜色的映射,三维重建出具有颜色信息的草莓冠层结构形态。为验证该算法的有效性,将三维重建后冠层的平均单叶长度及A-B线距离作为评价指标,试验结果表明,模型的平均单叶长度计算正确率为93%左右,A-B线距离计算正确率为97%左右,研究结果可为草莓采摘机器人果实识别过程中枝叶空间结构关系的构建提供技术支持。  相似文献   

3.
针对植物果实形状特点,提出基于坐标变换的点云快速重建方法。对于生长在茎干上的果实,首先计算茎干方向即果实的中心轴方向,将点云直角坐标转为球坐标,利用中值滤波沿半径方向对点云数据去噪,判断果实的长扁特征,计算果实中心轴的经纬度;然后以果实的中心轴作为球坐标的中心轴再次对原始点云进行坐标变换,进行去噪和填空点处理,最后采用B样条曲面对果实进行重建。本文方法的计算效率高于传统方法的2.5倍以上,随着点云数据量的增加,计算速度可加快几十倍,而且重建结果与实际点云误差小于2.2%。  相似文献   

4.
基于RGB-D相机的果树三维重构与果实识别定位   总被引:4,自引:0,他引:4  
为实现对果园果实机器人采摘提供科学可靠的技术指导,提出了一种基于RGB-D相机的苹果果树三维重构以及进行果实立体识别与定位的方法。使用RGB-D相机快速获取自然光照条件下果树的彩色图像和深度图像,通过融合果树图像彩色信息和深度信息实现了果树的三维重构;对果树的三维点云进行 R-G 的色差阈值分割和滤波去噪处理,获得果实区域的点云信息;基于随机采样一致性的点云分割方法对果实点云进行三维球体形状提取,得到每个果实质心的三维空间位置信息和果实半径。实验结果表明,提出的果树三维重构和果实立体识别与定位方法具有较强的实时性和鲁棒性,在0.8~2.0 m测量范围内,顺光和逆光环境中果实正确识别率分别达95.5%和88.5%;在果实拍摄面的点云区域被遮挡面积超过50%的情况下正确识别率达87.4%;果实平均深度定位偏差为8.1 mm;果实平均半径偏差为4.5 mm。  相似文献   

5.
为了克服人工家畜体尺测量耗时、应激大和工作强度大等问题,提出了一种基于单视角点云镜像的猪只体尺测量方法。首先使用单Xtion深度相机采集包含猪体的场景点云图像序列,并人工筛选出包含背部弯曲程度较小猪体的场景点云图像,然后基于随机采样一致性算法和聚类分割算法自动化分割目标猪体并对其进行姿态归一化,检测单视角猪体点云对称面,并利用对称面镜像获取完整猪体,最后利用自主研发的体尺测量软件测量猪只体尺。试验结果表明,利用该方法测量体长的平均相对误差为5.00%,臀宽测量的平均相对误差为7.40%,臀高测量的平均相对误差为5.74%。该方法为猪只体尺测量提供了切实可行的新途径。  相似文献   

6.
基于三维点云的叶面积估算方法   总被引:2,自引:0,他引:2  
为实现低成本无损精确测定叶片面积,基于运动恢复结构算法获取点云,提出了一种融合叶片点云分割、表面重建及叶片面积无损估测等过程的植物叶片面积提取方法。首先,基于运动结构恢复算法,以智能手机获取的可见光图像重建植物的三维点云;其次,为了还原叶片表面形状,基于HSV颜色空间,使用阈值分割法去除叶片点云的噪点;使用K-means聚类算法对点云的三维坐标矩阵进行分类,实现单片叶片点云的分割;基于滚球算法重建叶片的表面网格模型;最后,通过计算网格面积求得叶片面积。与常规叶面积测定方法进行了对比,本文方法的计算结果与扫描叶片法测定值相比平均误差为1.21cm2,误差占叶片面积的平均百分比为4.67%;与叶形纸称量法测定值相比平均误差为1.41cm2,误差占叶片面积的平均百分比为6.05%。结果表明,本文方法成本低、精确度高,可满足植物叶片面积无损精确测定的需求。  相似文献   

7.
刘刚  张伟洁  郭彩玲 《农业机械学报》2019,50(4):163-169,178
根据冠层点云的分布特征,提出一种基于动态K阈值的叶片点云聚类及生长参数提取方法。首先,采用地面三维激光扫描仪获取多站点云数据并完成配准、去噪和抽稀等预处理;然后,随机截取整株点云中的一枝作为研究对象,融合局部凹凸性算法(LCCP)并改进K-means算法,提出基于动态K阈值的叶片点云聚类方法;最后,采用主成分分析方法(PCA)计算叶片点云法平面方向向量,并根据叶片边界点与中心点的位置关系,计算叶宽、叶长等生长参数。试验结果表明,与传统的点云聚类方法相比,本文方法能够在不损失枝干点云的前提下,精确地分割单叶片,保证了聚类结果的完整性和彻底性;与传统的降维方法相比,本文基于真实三维空间信息提取叶片生长参数能够较大程度提高提取准确性,为进一步评价果树冠层光照分布及果园智能化管理提供技术支持。  相似文献   

8.
针对果园管理数字化程度低、构建方法较为单一等问题,本研究提出了一种基于激光点云的三维虚拟果园构建方法。首先采用手持式三维点云采集设备(3D-BOX)结合即时定位与地图构建-激光测距与测绘(Simultaneous Localization and Mapping-Lidar Odometry and Mapping,SLAM-LOAM)算法获取果园点云数据集;然后通过统计滤波算法完成点云数据离群点与噪声点的去除,并结合布料模拟算法(Cloth Simulation Filtering,CSF)与DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,实现地面去除与果树聚类分割,进而使用VoxelGrid滤波器降采样;最后利用Unity3D引擎,构建虚拟果园漫游场景,将作业机械的实时GPS(Global Positioning System)数据从WGS-84坐标系转换为高斯投影平面坐标系,并通过LineRenderer显示实时轨迹,实现作业机械运动轨迹控制与作业轨迹的可视化展示。为验证虚拟果园构建方法的有效性,在海棠果园与芒果园开展果园构建方法测试。结果表明,所提出的点云数据处理方法对海棠果树与芒果树聚类分割的准确率分别达到了95.3%与98.2%;通过与实际芒果园的果树行距、株距对比,虚拟芒果园的平均行间误差约为3.5%,平均株间误差约为6.6%。并且将Unity3D构建出的虚拟果园与实际果园相比,该方法能够有效复现果园三维实际情况,得到了较好的可视化效果,为果园的数字化建模与管理提供了一种技术方案。  相似文献   

9.
当前,能够实现作物表型参数高效、准确的测量和作物生育期表型参数的动态量化研究是表型研究和育种中亟待解决的问题之一。本研究以棉花为研究对象,采用三维激光扫描LiDAR技术获取棉花植株的多时序点云数据,针对棉花植株主干的几何特性,利用随机抽样一致算法(RANSAC)结合直线模型完成主干提取,并对剩余的点云进行区域增长聚类,实现各叶片的分割;在此基础上,完成植株体积、株高、叶长、叶宽等性状参数的估计。针对多时序棉花激光点云数据,采用匈牙利算法完成相邻时序作物点云数据的对齐、叶片器官对应关系的建立。同时,对各植株表型参数动态变化过程进行了量化。本研究针对3株棉花的4个生长点的点云数据,分别完成了主干提取、叶片分割,以及表型参数测量和动态量化。试验结果表明,本研究所采用的主干提取及叶片分割方法能够实现棉花的枝干和叶片分割。提取的株高、叶长、叶宽等表型参数与人工测量值的决定系数均趋近于1.0;同时,本研究实现了棉花表型参数的动态量化过程,为三维表型技术的实现提供了一种有效的方法。  相似文献   

10.
为了准确识别成熟的西红柿目标,提出了一种模糊C-均值聚类算法(Fuzzy Clustering Means,FCM)的西红柿目标分割方法。该方法首先利用FCM算法对西红柿图像进行模糊聚类,并对聚类后的果实图像与丢失的部分目标图像进行相加,以得到更加完整的西红柿目标;然后对西红柿目标进行二值化、去噪、开运算与闭运算等处理,完成西红柿目标的分割。为了验证算法的有效性,利用20幅图像进行了试验并与K-means算法和Otsu算法分割效果进行了对比。结果表明:利用文中算法所分割出的西红柿目标最高分割误差率均低于Kmeans算法和Otsu算法,平均分割错误率为1 6.5 5%,比K-means算法低了3.5 6%,比Otsu算法低了1 2.8 0%。这表明,将该方法应用于西红柿目标的识别是可行的。  相似文献   

11.
樱桃树的栽培密度影响其冠层的光照分布,通过研究群体樱桃树的三维结构,可分析不同栽植密度下温室甜樱桃树冠层光照分布规律,指导樱桃树的科学种植,进而提高甜樱桃产量和品质。高质量的点云数据是构建群体樱桃树三维结构的基础,而点云去噪和点云配准是点云数据预处理的关键环节。本文提出一种基于三维点云的群体樱桃树去噪和配准方法,搭建群体樱桃树三维信息采集平台,使用2台固定的DK深度相机获取群体樱桃树彩色点云数据;提出基于颜色区域生长的二分类方法,设置颜色阈值分割点云并进行二分类处理,可有效去除彩色点云数据中的异常无效点,并设置点云离散度和RGB值,作为点云去噪评价标准;结合人工标记法和双相机位姿矩阵,提出基于颜色特征改进的ICP方法,解决传统ICP配准算法多依赖初始位姿且配准速度较慢的问题。该方法通过对点云粗配准,得到较好的初始位姿,使用SIFT算法提取颜色特征点,将颜色特征与ICP算法结合进行点云精配准,然后使用PCL中随机采样一致性算法,去除错误匹配点,有效减少配准时间,提高配准精度。以夏季和冬季的群体樱桃树20组点云数据为实验对象,对比分析ICP算法、NDT算法、SAC-IA算法和本文配准方法的配准精度和配准时间,结果表明,本文配准方法平均耗时分别为5.01、4.30s,均方根误差分别为2.316、2.100cm,有效减少了配准时间和配准误差,验证了本文算法的有效性和普适性。  相似文献   

12.
针对植株冠层光照模型精度不高、采集效率低的问题,提出了一种基于Ray Tracing的数字植株冠层光照分布计算方法。首先,通过Kinect 2.0获取两种盆栽植株的三维点云,对其进行预处理和三维重建;其次,通过改进的光线跟踪技术模拟植株冠层光照分布;然后,分析了不同时刻模拟植株累计光强与真实植株实际光照强度之间的关系。实验结果表明:两种植株的模拟光强与真实光强的RMSE分别为0.187 2和0.118 5,因此该方法具有实时性和可行性,可以为植株提供较为科学合理的整形和修剪参考。  相似文献   

13.
基于三维点云的苹果树叶片三维重建研究   总被引:2,自引:0,他引:2  
叶片是果树冠层的重要组成部分,对其进行三维重建研究不仅可以对叶片形态特征进行分析,还能为冠层光照分布计算以及果树整形修剪提供理论基础。三维激光扫描仪以非接触、高效、快速获取数据的优势被大量应用于三维空间信息采集工作中。本文提出一种基于三维点云的苹果树叶片结构形态三维重建方法。首先针对叶片的形态特点选择合适的三维激光扫描仪获取苹果叶片三维点云;基于包围盒法搜索K邻域,计算点云中点与其邻域点的平均距离,并设定距离阈值作为判定中心点是否为离散点的依据,进而确定离散点并去除;利用最小二乘原理实现点云局部曲面拟合以及法向量、曲率的计算,提取叶片边界点;对于非边界点部分,根据中心点法向量与其邻域法向量的关系,对点进行不同程度的精简;最后对处理后的叶片点云完成三维重建。结果表明,构建的叶片模型能够较好的保留叶片的三维形态特征,可以为果树冠层重建和光照分布计算提供基础。  相似文献   

14.
针对行道树连续喷雾施药方式严重污染环境,果园对靶施药技术难以推广至复杂城区环境等问题,应用车载2D LiDAR获取街道三维点云数据,研究行道树靶标识别方法。构建变尺度格网点云索引结构,实现邻域快速搜索及点云在线处理;提取高程、深度、密度、协方差矩阵等11个点云球域特征,分析特征分布特性,采用基于径向基核函数的支持向量机算法融合特征,学习树冠点云分类器;采用FIFO缓冲区保存点云帧序列,实现行道树靶标在线识别。实验结果表明,该方法能够实现行道树靶标精确识别,在测试集上的分类错误率小于0.8%,检出率大于99.4%,虚警率小于0.9%,鉴别力最强的4个特征从高到低依次是高程均值、深度均值、高程范围和高程方差。  相似文献   

15.
为了解决联合收获机-运输车协同作业时,运输车粮箱装载不均匀,导致粮箱装载利用率低的问题,提出了一种基于三维点云的动态均匀装载方法。该方法利用相机获取运输车粮箱内装载物的三维点云作为状态反馈信息,建立装载均匀性评估方式,以最均匀装载状态为目标,通过实时调整卸料装载点位置,使粮箱保持在均匀的装载状态。针对装载物相互遮挡对相机形成视觉盲区的问题,通过建立装载物的堆体模型和相机的遮挡模型,以最小期望误差为目标对盲区内装载物高度进行估计,并据此进行点云填充,从而得到能完整反映粮箱装载状态的三维点云。在搭建平台进行的实验中,对粮箱装载过程中可能出现的轻载、中载和重载3种装载状态进行测量,并对盲区点云位置进行估计,其盲区估计的平均误差低于5 cm。仿真结果表明,动态均匀装载方法能在有限装载周期内,将粮箱从任意的初始装载状态装载为均匀状态。单次装载量的平均高度增量为2 cm、粮箱的初始装载状态为空载时,装载物的最大高度方差为1 cm2。单因素仿真结果表明,稳定状态下的装载物高度方差与单次装载量正相关。  相似文献   

16.
为了解决联合收获机运输车协同作业时,运输车粮箱装载不均匀,导致粮箱装载利用率低的问题,提出了一种基于三维点云的动态均匀装载方法。该方法利用相机获取运输车粮箱内装载物的三维点云作为状态反馈信息,建立装载均匀性评估方式,以最均匀装载状态为目标,通过实时调整卸料装载点位置,使粮箱保持在均匀的装载状态。针对装载物相互遮挡对相机形成视觉盲区的问题,通过建立装载物的堆体模型和相机的遮挡模型,以最小期望误差为目标对盲区内装载物高度进行估计,并据此进行点云填充,从而得到能完整反映粮箱装载状态的三维点云。在搭建平台进行的实验中,对粮箱装载过程中可能出现的轻载、中载和重载3种装载状态进行测量,并对盲区点云位置进行估计,其盲区估计的平均误差低于5cm。仿真结果表明,动态均匀装载方法能在有限装载周期内,将粮箱从任意的初始装载状态装载为均匀状态。单次装载量的平均高度增量为2cm、粮箱的初始装载状态为空载时,装载物的最大高度方差为1cm2。单因素仿真结果表明,稳定状态下的装载物高度方差与单次装载量正相关。  相似文献   

17.
基于点云采集技术的非接触式测量能够缓解肉牛在采集体尺体重等参数时的应激问题,但采集肉牛的三维数据耗时长且易受环境干扰而产生大量无关噪点,难以适应实际养殖环境需求。为解决该问题,本研究开发了一种非接触式肉牛三维点云重建与目标提取系统与方法,采集的肉牛三维点云可为肉牛育种育肥提供大量标准化和三维量化表型数据。三维点云采集系统由Kinect DK深度相机、红外对射光栅触发器和射频识别(Radio Frequency Identification,RFID)触发器组成,可在肉牛自由通过步行道的瞬间实现肉牛点云的多角度瞬时采集。肉牛点云目标提取方法基于C++语言与点云处理库(Point Cloud Library,PCL)开发,通过空间直通滤波、统计学离群点滤波、随机抽样一致(Random Sample Consensus,RANSAC)形态拟合与点云抽稀、基于降维密度聚类的感知盒滤波等算法有效滤除与肉牛紧贴的栏杆等干扰,不破坏点云的完整性,实现肉牛点云的三维重建与分析。在养殖场中对20头肉牛进行了124次点云采集与目标提取试验。结果表明,重建的肉牛三维模型与肉牛真实形态1:1对应,系统的采集成功率为91.89%,采集的点云与真实值相比,体尺重建误差为0.6%。该系统与方法可以在无人干预的情况下,实现多角度肉牛点云数据的自动采集与三维重建,并从复杂环境中自动提取目标肉牛的点云,为非接触式肉牛体高、体宽、体斜长、胸围、腹围和体重等核心表型参数的测量提供重要的方法支撑,促进肉牛育种和育肥的标准化管理。  相似文献   

18.
羊胴体自动化分割对于提高羊屠宰加工企业生产效率有重要意义。为实现将羊胴体点云精准高效地分割为多分体,研究了一种基于表面凹凸性的羊胴体点云分割方法。以倒挂状态下的巴美肉羊胴体为研究对象,利用三维激光扫描仪获取羊胴体点云。首先,对羊胴体点云进行预处理,去除离群点噪声和采用体素滤波的方法进行下采样;并将羊胴体点云超体素化,以获取超体素邻接图;然后,对超体素邻接图中相邻点云的公共边进行凹凸性判断,将凹边凸边赋予不同权重;并由得分评估函数计算不同权重点云的得分,将结果与参数Smin作比较;最后,根据比较结果确定分割区域,完成对羊胴体点云的分割。试验结果表明:羊胴体点云分割的平均精确度、平均召回率、平均F1值和平均总体准确率分别为92.3%、91.3%、91.8%、92.1%。各分体的平均分割精确度分别为92.7%、90.7%、92.6%、93.2%、92.5%、92.2%,各分体的平均分割召回率分别为86.0%、93.2%、92.8%、91.6%、90.9%、93.4%,处理单只羊胴体点云的平均时长为18.82 s。通过处理多分体组合点云以及多体型羊胴体点云判断本文方法的适...  相似文献   

19.
提出一种基于散乱点云数据的五轴数控加工刀轨生成算法,该算法根据点云数据的型面特征规划驱动刀轨,基于点云数据的动态索引获取瞬时加工区域,计算瞬时加工区域中数据点对应刀位点集,选取刀轴正向最高点作为当前刀位驱动点对应的无干涉刀位点,检测相邻刀位点间的极限加工误差并采用二分插值法控制刀轨精度,最终生成满足精度要求的五轴数控加工刀轨,实例证明该算法刀具适用范围广,可对各种复杂型面的产品点云数据生成高质量的五轴数控加工刀轨。  相似文献   

20.
在测量数据点云重构车身曲面过程中,由于车身曲面复杂多变,难以直接拟合,需要对点云数据进行区域分割,分片处理。文中结合车身曲面造型特点,将一种点云分割的算法-基于平面度的直接分割方法应用于车身曲面重建中,可实现不同性质的曲面片分块。最后给出了不同的分割实例,证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号