首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study characterized the [(18)F]2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) findings of encephalitis in dogs and assessed the role of FDG-PET in the diagnosis of meningoencephalitis. The medical records, magnetic resonance (MR), and FDG-PET images of 3 dogs with necrotizing meningoencephalitis (NME), 1 dog with granulomatous meningoencephalitis (GME), and 1 dog with meningoencephalitis of unknown etiology (MUE) were reviewed. On the FDG-PET, glucose hypometabolism was identified in the dog with NME, whereas hypermetabolism was noted in the dog with GME. The T2-weighted images (WI) and fluid attenuated inversion recovery (FLAIR) images were characterized by hyperintensity, whereas the signal intensity of the lesions on the T1-WI images was variable. The metabolic changes on the brain FDG-PET corresponded well to the hyper- and hypointense lesions seen on the MR imaging. This type of tomography (FDG-PET) aided in the differentiation of different types of inflammatory meningoencephalitis when the metabolic data was combined with clinical and MR findings.  相似文献   

2.
The purpose of the study was to describe magnetic resonance (MR) imaging features of histologically confirmed necrotizing encephalitis in four Pugs and to compare those findings with MR imaging characteristics of necrotizing encephalitis in other breeds. All dogs had the following common findings: lesions restricted to the forebrain, both cerebral hemispheres diffusely but asymmetrically affected, lesions affected gray and white matter resulting in loss of distinction between both, most severe lesions in occipital and parietal lobes, lesions were irregularly T2-hyperintense and T1-isointense to slightly T1-hypointense, and no cavitation. There were various degrees of contrast enhancement of brain and leptomeninges. Asymmetry of lateral ventricles and midline shift was seen in one dog each. Two dogs had brain herniation, which may have contributed to the progression of neurologic signs. Hyperintensity on T2-weighted and fluid attenuated inversion recovery images in the hippocampus and piriform lobe was consistent with excitotoxic edema, whereas similar imaging features in other forebrain areas corresponded to areas of inflammation or liquefaction on histopathology. In comparison with necrotizing encephalitis in other canine breeds, Pug dog encephalitis has some unique MR imaging features. Therefore, these characteristics cannot be applied to other breeds, nor should imaging features of necrotizing encephalitis of other canine breeds be used for interpretation of MR images in Pug dogs.  相似文献   

3.
Ante mortem diagnosis of canine meningoencephalitis is usually based on the results of neurologic examination, cerebrospinal fluid analysis and magnetic resonance (MR) imaging. It has been hypothesized that subtraction MR imaging may increase the sensitivity of MR for intracranial inflammatory lesions compared to conventional post‐gadolinium T1‐weighted imaging. Sensitivity of pre‐ and post‐gadolinium (C‐/C+) image pairs and dynamic subtraction (DS) images was compared in a retrospective diagnostic accuracy study of 52 dogs with inflammatory cerebrospinal fluid and 67 dogs with idiopathic epilepsy. Series of transverse C‐/C+ and DS images were reviewed independently for signs of abnormal enhancement affecting the pachymeninges, leptomeninges or intra‐axial structures. Sensitivity of C‐/C+ image pairs and DS images was 48% (95% CI: 35–61%) and 65% (95% CI: 52–77%), respectively (P = 0.01). Intra‐axial lesions were observed more frequently than meningeal lesions in both C‐/C+ (43% vs. 31%) and DS images (61% vs. 22%). The difference in sensitivities of C‐/C+ and DS series was entirely due to increased sensitivity of DS images for intra‐axial lesions. Eight (12%) dogs with epilepsy had evidence of intra‐axial gadolinium accumulation affecting the cerebral cortex in DS images. This finding may represent a false‐positive result or a true sign of pathology, possibly associated with a leaky blood–brain barrier in areas of the brain affected by neovascularization secondary to repeated seizures. Results suggest that DS imaging has higher sensitivity than comparison of pre‐ and post‐gadolinium image pairs for inflammatory intra‐axial lesions.  相似文献   

4.
5.
In order to compare the accuracy of MR sequences for diagnosis of meningeal disease, MR images of the brain, and histopathologic specimens including the meninges of 60 dogs were reviewed retrospectively by independent observers in a cross‐sectional study. MR images included T1‐weighted pre‐ and postgadolinium images, subtraction images, T2‐weighted images, and T2‐weighted fluid‐attenuated inversion‐recovery (FLAIR) images. Pathologic changes affected the pachymeninges in 16 dogs, leptomeninges in 35 dogs, and brain in 38 dogs. The meninges were normal in 12 dogs. Meninges were classified histopathologically as normal (grade 0), slightly or inconsistently affected (grade 1), or markedly affected (grade 2). When applying relaxed pathologic criteria (grades 0 and 1 considered normal), the results of ROC analysis (area under curve, AUC) were: T1‐weighted postcontrast images 0.74; subtraction images 0.7; T2‐weighted images 0.68; FLAIR images 0.56. The difference in AUC between T1‐weighted postgadolinium images and FLAIR images was significant (P = 0.04). AUC for FLAIR images was not significantly different from 0.5. When applying strict pathologic criteria (only grade 0 considered normal), none of the MR sequences had AUC significantly different from 0.5. On the basis of T1‐weighted postgadolinium images and subtraction images, correct anatomic classification of lesions occurred more often for pachymeningeal than leptomeningeal lesions (P < 0.001). Overall, MR imaging had low sensitivity for diagnosis of meningeal pathology in dogs, particularly for changes affecting the leptomeninges. Subtraction images had similar accuracy to T1‐weighted postgadolinium images for meningeal lesions in dogs. T2‐weighted FLAIR images appear to have limited diagnostic utility for meningeal lesions.  相似文献   

6.
Regional cerebral metabolism and blood flow can be measured noninvasively with positron emission tomography (PET). 2‐[18F]fluoro‐2‐deoxy‐D‐glucose (FDG) widely serves as a PET tracer in human patients with epilepsy to identify the seizure focus. The goal of this prospective study was to determine whether juvenile or adult dogs with focal‐onset epilepsy exhibit abnormal cerebral glucose uptake interictally and whether glucose uptake changes with age. We used FDG‐PET to examine six Lagotto Romagnolo dogs with juvenile epilepsy, two dogs with adult‐onset epilepsy, and five control dogs of the same breed at different ages. Three researchers unaware of dog clinical status visually analyzed co‐registered PET and magnetic resonance imaging (MRI) images. Results of the visual PET analyses were compared with electroencephalography (EEG) results. In semiquantitative analysis, relative standard uptake values (SUV) of regions of interest (ROI) drawn to different brain regions were compared between epileptic and control dogs. Visual analysis revealed areas of hypometabolism interictally in five out of six dogs with juvenile epilepsy in the occipital, temporal, and parietal cortex. Changes in EEG occurred in three of these dogs in the same areas where PET showed cortical hypometabolism. Visual analysis showed no abnormalities in cerebral glucose uptake in dogs with adult‐onset epilepsy. Semiquantitative analysis detected no differences between epileptic and control dogs. This result emphasizes the importance of visual analysis in FDG‐PET studies of epileptic dogs. A change in glucose uptake was also detected with age. Glucose uptake values increased between dog ages of 8 and 28 weeks and then remained constant.  相似文献   

7.
Greyhound nonsuppurative meningoencephalitis is an idiopathic breed‐associated fatal meningoencephalitis with lesions usually occurring within the rostral cerebrum. This disorder can only be confirmed by postmortem examination, with a diagnosis based upon the unique topography of inflammatory lesions. Our purpose was to describe the magnetic resonance (MR) imaging features of this disease. Four Greyhounds with confirmed Greyhound nonsuppurative meningoencephalitis were evaluated by MR imaging. Lesions predominantly affected the olfactory lobes and bulbs, frontal, and frontotemporal cortical gray matter, and caudate nuclei bilaterally. Fluid attenuation inversion recovery (FLAIR) and T2 weighted spin‐echo (T2W) sequences were most useful to assess the nature, severity, extension, and topographic pattern of lesions. Lesions were predominantly T2‐hyperintense and T1‐isointense with minimal or absent contrast enhancement.  相似文献   

8.
9.
The cervical spine of 21 dogs with clinical signs of cervical stenotic myelopathy was evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2 and gradient echo T2 weighted images were obtained with a 1.5 Tesla magnet in 12 dogs and a 1.0 Tesla magnet in 9 dogs. Sagittal or parasagittal T1W and T2W images were helpful in determining the presence of spinal cord compression or degenerative disease of the articular processes. Transverse T1W and T2W images were the most useful for the identification of dorsolateral spinal cord compression secondary to soft tissue and ligament hypertrophy, as well as synovial cysts, associated with the articular processes. The MR imaging findings were consistent with the surgical findings in all 14 dogs that underwent surgery. Magnetic resonance imaging provided a safe, non-invasive method of evaluating the cervical spine in dogs suspected of having cervical stenotic myelopathy. Veterinary  相似文献   

10.
The sensitivity of low‐field magnetic resonance (MR) T2* images for predicting the presence of meniscal lesions was determined in 12 dogs with naturally‐occurring cranial cruciate ligament rupture and three control dogs, using histopathology as the reference standard. Previously published grading systems were used to grade the severity of meniscal lesions on MR images, gross inspection and histopathology. Focal areas of increased signal intensity were detected in 11/12 symptomatic dogs and 3/3 control dogs. Lesions mimicking meniscal tears (pseudotears) were identified at junctions between meniscal margins and adjacent connective tissue in control dogs and dogs with naturally occurring disease. Histopathologic lesions were present in all menisci of both symptomatic and control dogs, including the menisci from two affected dogs that appeared grossly normal but were removed and submitted based on MR imaging findings. Histopathologic lesions identified included hyaline cartilage metaplasia and changes in the amount of ground substance and cellularity. The sensitivity of MR imaging for detecting the presence of meniscal histopathologic lesions was 90% in symptomatic dogs and 91% in control dogs. However, agreement between severity scores for the different tests was poor. Low‐field MR imaging is a sensitive test for predicting the presence but not severity of meniscal histopathologic lesions in dogs with naturally‐occurring cranial cruciate ligament rupture. Findings also supported previous studies indicating that histopathologic lesions can be present in dogs with grossly normal menisci. An improved grading system for comparing MR images and histopathologic severity of meniscal lesions in dogs is needed.  相似文献   

11.
12.
Three dogs with multilobular osteochondrosarcoma of the skull were evaluated using magnetic resonance (MR) imaging. Spin echo T1, T2, proton weighted and post contrast T1W images were obtained with a 1.5 Tesla magnet. The MR imaging findings were similar in all three dogs with mixed signal intensities in the T1W, T2W and proton weighted images and fairly large areas of contrast enhancement in the post contrast T1W images. The extent of brain and soft tissue involvement were well delineated and provided useful information concerning surgical planning. MR imaging provided a useful method of evaluating dogs with skull tumors.  相似文献   

13.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

14.
Clinical and imaging diagnosis of canine insulinomas has proven difficult due to nonspecific clinical signs and the small size of these tumors. The aim of this retrospective case series study was to describe MRI findings in a group of dogs with pancreatic insulinomas. Included dogs were presented for suspected pancreatic insulinoma, MRI was used to assist with localization of the primary lesion, and the diagnosis was confirmed with surgical exploratory laparotomy and histopathology. The MRI studies for each dog were retrieved and the following data were recorded: T1‐weighted and T2‐weighted signal intensities, type of contrast enhancement, size and location of the primary lesion, and characteristics of metastatic lesions (if present). A total of four dogs were sampled. In all patients, the insulinoma displayed high‐intensity signal on T2‐weighted fat saturation images, similar to human studies. On postcontrast T1‐weighted fat saturation images, the tumors were primarily isointense to normal pancreatic tissue, in contrast to human studies where a low‐intensity signal is typically identified. Abnormal islet tissue was detected with MRI in all four dogs and metastases were identified in three dogs. Variations in the MRI appearance of primary and metastatic lesions were identified and could have been related to the variation of tissue composition, including the presence of neoplastic cells, hemorrhage, and fibrovascular stroma, and to the transformation of this tissue throughout the disease process.  相似文献   

15.
T2*‐weighted magnetic resonance imaging (MRI) has been reported to help improve detection of intracranial hemorrhage and is widely used in human neuroimaging. To assess the utility of this technique in small animals, interpretations based on this sequence were compared with those based on paired T2‐weighted and fluid‐attenuated inversion recovery (FLAIR) sequences in 200 dogs and cats that underwent brain MRI for suspected intracranial disease. Two sets of images (T2 + FLAIR and T2*) were reviewed separately in random order unaccompanied by patient information and were interpreted as normal or abnormal based on whether intracranial abnormalities were seen. The number and location of intracranial lesions were recorded. Eighty‐five studies were considered normal and 88 were considered abnormal based on both sets of images, with good agreement (κ = 0.731) between the two. Susceptibility artifact was present in 33 cases (16.5%) on T2*‐weighted images. In 12 cases (6%) a total of 69 lesions were seen on T2*‐weighted images that were not seen on T2/FLAIR, all of which were associated with susceptibility artifact caused by presumed intracranial hemorrhage. Pseudolesions were seen on T2*‐weighted images in five cases, none of which were associated with susceptibility artifact. Abnormalities were seen on T2/FLAIR images that were not seen on T2*‐weighted images in 35 cases, confirming that T2* does not replace standard spin echo sequences. These results support inclusion of T2*‐weighted sequences in small animal brain MRI studies and indicate that that a large number of abnormalities (especially hemorrhagic lesions) can go undetected if it is not performed.  相似文献   

16.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

17.
A 12‐year‐old mixed breed dog was presented for evaluation of progressive paraparesis and ataxia. Magnetic resonance (MR) imaging was performed and identified multifocal intradural spinal cord mass lesions. The lesions were hyperintense in T2‐weighted sequences, isointense to mildly hyperintense in T1‐weighted sequences with strong contrast enhancement of the intradural lesions and spinal cord meninges. Spinal cord neoplasia was suspected. A diagnosis of intramedullary spinal cord histiocytic sarcoma, confined to the central nervous system, was confirmed histopathologically. Spinal cord histiocytic sarcoma is a rare neoplasm, but should be included in the differential diagnosis for dogs with clinical signs of myelopathy.  相似文献   

18.
In human epileptic patients, changes in cerebral glucose utilization can be detected 2‐deoxy‐2‐[18F] fluoro‐d ‐glucose positron emission tomography (FDG‐PET). The purpose of this prospective study was to determine whether epileptic dogs might show similar findings. Eleven Finnish Spitz dogs with focal idiopathic epilepsy and six healthy dogs were included. Dogs were examined using electroencephalography (EEG) and FDG‐PET, with epileptic dogs being evaluated during the interictal period. Visual and semi‐quantitative assessment methods of FDG‐PET were compared and contrasted with EEG findings. Three independent observers, unaware of dog clinical status, detected FDG‐PET uptake abnormalities in 9/11 epileptic (82%), and 4/8 healthy dogs (50%). Occipital cortex findings were significantly associated with epileptic status (P = 0.013). Epileptic dogs had significantly lower standardized uptake values (SUVs) in numerous cortical regions, the cerebellum, and the hippocampus compared to the control dogs. The lowest SUVs were found in the occipital lobe. White matter normalized and left‐right asymmetry index values for all pairs of homologous regions did not differ between groups. Visual evaluation of the EEGs was less sensitive (36%) than FDG‐PET. Both diagnostic tests were consensual and specific (100%) for occipital findings, but EEG had a lower sensitivity for detecting lateralized foci than FDG‐PET. Findings supported the use of FDG‐PET as a diagnostic test for dogs with suspected idiopathic epilepsy. Visual and semiquantitative analyses of FDG‐PET scans provided complementary information. Findings also supported the theory that epileptogenesis may occur in multiple brain regions in Finnish Spitz dogs with idiopathic epilepsy.  相似文献   

19.
To compare fluid-attenuated inversion recovery (FLAIR) and T2-weighted magnetic resonance (MR) imaging in small animal patients with suspected brain disease, paired sets of FLAIR and T2-weighted MR images of 116 dogs and cats were reviewed separately without any patient information. Images were rated as normal or abnormal using a five-point scale, and the distribution, signal intensity, and anatomic location of abnormalities were recorded. In 60 animals, both FLAIR and T2-weighted images were normal. In 50 animals, the same abnormalities were identified in both FLAIR and T2-weighted images. Overall, very good agreement was found between FLAIR and T2-weighted MR images (kappa = 0.88). FLAIR images had abnormalities that were not recognized in the corresponding T2-weighted images in six of 116 examinations (5%). In four of these, the abnormalities in FLAIR images were thought to represent pathology, including granulomatous meningoencephalitis in one dog, postictal edema in one dog, and undiagnosed lesions in two dogs. In the remaining two examinations, the abnormalities in FLAIR images were probably artifacts. No examples were found of intracranial abnormalities in T2-weighted images that were not visible in FLAIR images. In this study, acquiring FLAIR images in addition to T2-weighted images resulted in detection of otherwise occult abnormalities in relatively few patients.  相似文献   

20.
OBJECTIVE: To determine results of magnetic resonance (MR) imaging in dogs with vestibular disorders (VD) and correlate results of MR imaging with clinical findings. DESIGN: Retrospective study. ANIMALS: 85 dogs. PROCEDURE: Information on signalment, clinical signs, and presumptive lesion location was obtained from the medical records, and MR images were reviewed. RESULTS: 27 dogs had peripheral VD, 37 had central VD, and 21 had paradoxical VD. Of the 27 dogs with peripheral VD, 11 (41%) had MR imaging abnormalities involving the ipsilateral tympanic bulla compatible with otitis media (6 also had abnormalities involving the petrous portion of the ipsilateral temporal bone compatible with otitis interna), 7 (26%) had MR imaging abnormalities compatible with middle ear neoplasia, 2(7%) had an ipsilateral cerebellopontine angle lesion, and 7 (26%) did not have MR imaging abnormalities. All dogs with central and paradoxical VD had abnormalities evident on MR images. Of the 37 dogs with central VD, 13 (35%) had an extra-axial lesion, 6 (16%) had an intra-axial lesion, and 18 (49%) had multiple intra-axial lesions. In 23 (62%) dogs with central VD, lesions on MR images corresponded with location suspected on the basis of clinical signs. Of the 21 dogs with paradoxical VD, 12 (57%) had an extra-axial lesion, 5 (24%) had an intra-axial lesion, and 4 (19%) had multiple intra-axial lesions. Location of lesions on MR images agreed with location suspected on the basis of clinical signs in 19 (90%) dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that MR imaging may be helpful in the diagnosis and treatment of VD in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号