首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以乙基纤维素(EC)、甲基丙烯酸四氢糠基酯(THFMA)和甲基丙烯酸月桂酯(LMA)为原料,通过"从主链接枝"的原子转移自由基聚合(ATRP)法制备了基于纤维素-糠醛-油脂的全生物质基热塑性弹性体材料EC-g-P(LNA-co-THFMA),采用FT-IR、~1H NMR、GPC、DSC和应力-应变测试对制备的接枝共聚物进行结构表征和性能分析,并初步探讨了THFMA/LMA投料比对接枝共聚物性能的影响。DSC测试表明:当n(THFMA)∶n(LMA)为200∶100~400∶100时,乙基纤维素接枝共聚物的玻璃化转变温度(Tg)在13~27℃;机械性能研究发现,随着投料中THFMA比例的增加,拉伸强度由5.1 MPa逐渐增加到13.7 MPa;通过与具有相同THFMA/LMA组成的线性共聚物P(LMA-co-THFMA)相比,EC的引入使得拉伸强度提高了3.7倍;在制备的EC基接枝共聚物投料中EC质量分数为0.91%~1.42%,这表明少量EC的引入便可极大地改善接枝共聚物的机械性能。  相似文献   

2.
介绍了以纳米纤维素(NCC)为骨架材料、聚乙二醇(PEG)为相变储能功能基,采用化学接枝的方法制备一种NCC/PEG固-固相变材料.并分别用IR、DSC以及TGA等技术手段对其储能性能进行表征.结果表明,以纳米纤维素为骨架材料制备的固-固相变材料具有更高的相变焓,所得的相变材料具有更好的储能效率,其相变焓最大可达 103.8 J/g.  相似文献   

3.
层层自组装技术,具有原理简单、易于操作、可调控纳米尺度上组装物质的形貌等优点,在多种制备纳米纤维素基复合功能材料的方法中脱颖而出。基于此原理,以纳米纤维素作为研究对象,按其在复合功能材料中承担的不同角色,详细阐述纳米纤维素基功能复合材料的制备过程、结构特征和功能特性,并提出了层层自组装技术在纳米纤维素基功能复合材料制备中进一步的研究方向。  相似文献   

4.
通过"从主链接枝"原子转移自由基聚合(ATRP)法,采用分步聚合策略,成功制备了一种乙基纤维素接枝嵌段共聚物乙基纤维素-g-甲基丙烯酸月桂酯-b-甲基丙烯酸四氢糠基酯(EC-g-P(LMA-b-THFMA))。对聚合物的热力学性能研究发现:共聚物中存在两个热转变,分别发生在-35℃和49~56℃时,表明该共聚物存在微相分离;机械性能分析表明该共聚物具有优异的热塑性弹性体行为,伸长率为89%~147%,拉伸强度为1.7~9.5 MPa。循环拉伸机械性能研究表明EC-g-P(LMA-b-THFMA200)的弹性恢复系数高达92%以上。乙基纤维素接枝共聚物的机械性能具有明显的增强作用,较线性聚合物P(LMA-b-THFMA)的机械强度提高了1.36倍。  相似文献   

5.
生物质材料具有原料分布广泛、种类繁多、储量丰富、可生物降解、绿色再生以及可功能化改性强等优点。然而当生物质材料作为功能材料使用时,又存在结构和成分复杂性、功能性弱、固有亲水性等缺点,严重制约了其高效和高附加值利用。为了满足生物质材料的功能化应用要求,针对生物质材料的局限性或利用生物质材料本身的优势,工业界和学术界对生物质材料进行了一系列的功能化改性。在众多改性方法中,原子转移自由基聚合(ATRP)以其活性强、反应可控以及能精确制备特定功能和拓扑结构的聚合物等优势备受关注,已成为生物质材料高值化利用的一种常用改性技术。文中归纳总结近年来利用ATRP方法接枝改性生物质材料的研究进展,介绍常见的生物质材料的ATRP反应机理,重点综述了ATRP功能化改性生物质材料在疏水、机械、生物、热学以及光学性能方面的发展应用,以期为生物质材料的功能化设计、制备和高值化利用提供指导与参考。  相似文献   

6.
纤维素是一种可再生的生物材料,具有良好的力学性能、柔韧性和透气性。通过对纤维素表面进行物理和化学改性,可实现纤维素表面超疏水化,从而扩大纤维素的应用范围。本文概述了纤维素基超疏水材料的研究成果和现状,重点介绍了浸渍法、喷涂法、接枝聚合法、气相沉积法、水热法等方法在滤纸、棉纤维、微球等纤维素基材上构建纤维素基超疏水材料。  相似文献   

7.
为提高木质素的功能性,利用2-溴代异丁酰溴改性木质素制备木质素基引发剂,然后采用原子转移自由基聚合(ATRP)法将亲水单体甲基丙烯酸羟乙酯(HEMA)、乙酸乙烯酯(VAC)和丙烯酸(AA)分别接枝到木质素上,合成亲水性木质素基接枝共聚物。对接枝聚合物进行接触角测试和红外光谱分析,结果表明:接枝单体甲基丙烯酸羟乙酯时,木质素接枝聚合物亲水效果最佳;木质素接枝前后接触角分别为45°、21.6°,接枝后木质素亲水性能提高。红外光谱分析显示,木质素接枝甲基丙烯酸羟乙酯(Lignin-g-PHEMA)共聚物中具有HEMA的特征峰,表明单体甲基丙烯酸羟乙酯成功接枝到木质素分子上。  相似文献   

8.
木质纤维素作为世界上最丰富的天然有机物,是应用较广的天然高分子材料。本文利用接枝共聚合成技术制备了木质纤维素接枝L-聚乳酸(MC-g-PLLA)。通过X-衍射结果和生物降解实验(PBS和酶液),研究了晶体结构对降解性的影响,结果表明:接枝共聚合成技术使木质纤维素的结晶度明显降低,材料具有较高的降解性能,并且降解性随丙交酯投料量的升高而降低可作为药物缓释载体材料。  相似文献   

9.
介绍了纳米纤维素的分类及性质,纳米纤维素分为纳米纤维素晶体(NCC)、微纤化纤维素(MFC)和细菌纳米纤维素(BNC)。NCC呈棒状晶须结构,结晶度高且具有高的力学性能;MFC呈纤丝状,具有宽的尺寸范围和更大的长径比,比表面积大,成氢键能力强;BNC呈超细网络状纤维结构,化学纯度和聚合度高,保水能力强。综述了纳米纤维素在纸基增强材料、纸基抗菌材料、纸基过滤材料、纸基导电材料、纸基发光材料、纸基绝缘材料、纸基疏水材料和纸基传感器材料领域的应用现状,并对其在纸基功能材料未来发展方向进行了展望。  相似文献   

10.
纳米纤维素作为纤维素基纳米材料的代表,不但保留了天然纤维素的性质,同时赋予纳米粒子以高强度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医药载体、药物缓释等领域具有广阔的应用前景。进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。概括了目前纳米纤维素的主要制备方法:机械法、化学法和生物法,并对各种制备方法的优缺点进行了讨论,同时综述了纳米纤维素的应用状况,指出了纳米纤维素的制备及应用方面需要解决的主要问题及今后的发展方向。  相似文献   

11.
作为一种新型轻质多孔的功能性气凝胶,生物质纤维素基碳气凝胶具有独特的各向同性三维网络层级结构,该结构使生物质纤维素基碳气凝胶兼具气凝胶的高比表面积、高孔隙率、低密度以及碳材料的耐热性、导电性和生物质材料的可降解性、生物相容性,是近年来纳米功能性材料领域的研究热点之一。生物质纤维素基碳气凝胶原材料来源广泛,包括木材、竹材、果蔬等植物及其加工物、海洋生物和细菌等。基于原料形态不同,本研究将生物质纤维素基碳气凝胶的制备方法归结为凝胶炭化法和生物质直接炭化法,并详细介绍2种方法的制备工艺。基于生物质纤维素基碳气凝胶独特的层级孔状结构,本研究概述碳气凝胶的轻质多孔、疏水性、稳定性和导电性以及生物质纤维素基碳气凝的金属掺杂和杂原子掺杂改性,这些优异的材料特性使其在隔热、电化学、吸附等领域有着广泛应用,并有望渗透到药物缓释、抗菌材料、组织工程和电磁屏蔽等更多的前瞻性新兴材料领域。围绕生物质纤维素基碳气凝胶的功能化制备、性能表征和应用,创新性的研究理论和研究方法正在不断涌现,本研究在深入分析研究现状的基础上,展望生物质纤维素基碳气凝胶未来的研究方向和发展前景。生物质纤维素基碳气凝胶作为一种新型绿色材料,以其独特的热学、电学、光学及力学性能,可为生物质的高值化、功能化应用提供更多的研究思路,具有更加广泛的应用前景。  相似文献   

12.
纳米纤维素是一种高透明度、高机械强度的材料,使用不同的方法如真空过滤法、溶液浇铸法等可将其制备成膜材料。通过对纳米纤维素进行改性或添加紫外屏蔽剂可以提高膜材料的紫外屏蔽性能,实现其在光敏材料覆膜、食品包装、紫外防护等领域的应用价值。首先介绍了紫外屏蔽剂作用机制,重点综述了改性纳米纤维素、纳米纤维素/无机氧化物、纳米纤维素/木质素及其他复合紫外屏蔽膜材料的研究进展,最后总结并展望了纳米纤维素基紫外屏蔽膜材料制备及应用所面临的机遇和挑战。  相似文献   

13.
利用木材等生物质资源制备的纳米纤维素,因其独特的纳米结构和性能优势在诸多领域广泛应用。纳米纤维素具有精细的尺寸,且表面含有大量的羟基,其组装制备的材料可以拦截微纳尺寸的颗粒,纳米纤维素间的孔隙有利于水分和其他类型的亲水性液体的快速流动通过。开发纳米纤维素基微纳颗粒过滤材料,不仅有利于环境净化、回收昂贵的微纳颗粒,而且为纳米纤维素基材料的提质增效提供新的研究思路。本文综述纳米纤维素基微纳颗粒过滤材料的开发与应用研究进展。介绍纳米纤维素的类型、制备方法以及结构特征,总结利用纳米纤维素为基本单元来构筑纳米纤维素/电纺纤维复合材料、纤维素纳米纸和纳米纤维素凝胶薄膜的方法,阐述利用不同类型的纳米纤维素基过滤材料分离不同类型微纳颗粒的过滤效果,并对此领域研究面临的问题以及未来重点研究方向进行展望分析。  相似文献   

14.
在氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)体系中,利用2-溴代异丁酰溴与纤维素的直接酯化反应首先合成了具有不同引发点数量的ATRP大分子引发剂(cell-Br);然后以CuBr/PMDETA为催化体系,cell-Br为引发剂,将2-甲基丙烯酸羟乙酯通过原子转移自由基聚合ATRP法接枝到纤维素的大分子骨架上合成纤维素-甲基丙烯酸羟乙酯接枝共聚物(cellulose-g-PHEMA)。通过FT-IR,1H NMR,GPC和TGA对cell-Br和cellulose-g-PHEMA的结构和性能进行分析,并利用动态光散射(DLS),原子力显微镜(AFM),透射电镜(TEM)观察了cellulose-g-PHEMA的微观形貌,结果表明cellulose-g-PHEMA易于组装成直径约180 nm的球形胶束。  相似文献   

15.
以纤维素为基体制备的功能复合材料,可赋予纤维素光、电、磁以及催化等性能,在制浆造纸、精细化工、组织工程、生物医药等领域具有广阔的应用前景。纤维素基生物医用复合材料是纤维素功能复合材料的典型代表,它结合了生物质材料和生物材料的优点,在骨修复替代、组织工程、药物缓释、基因载体以及蛋白质吸附等领域具有潜在的应用价值,是当前生物质领域的研究热点。综述了目前制备复合材料常用的3种方法,即水热(溶剂热)法、微波辅助法和超声波法,并对这几种方法的特点进行了分析;同时对纤维素功能复合材料发展现状进行了概述,系统介绍了纤维素/羟基磷灰石、纤维素/碳酸钙以及纤维素/银等生物医用复合材料的研究进展。最后,结合笔者自身的研究经历,探讨了纤维素基生物医用复合材料开发过程中存在的问题以及今后的发展方向。  相似文献   

16.
纤维素是自然界中一种轻质、生物相容性好以及柔韧性强的生物高分子材料,在柔性超级电容器、生物传感器以及电磁屏蔽等领域得到了广泛应用。在柔性超级电容器领域中,纤维素基材料的多羟基结构是电解质离子传导的良好介质,有助于提高电极材料的电容特性以及循环特性,并且易与导电活性材料(如:石墨烯、碳纳米管、导电高分子)通过涂布、共混、层层自组装以及原位聚合等方法构建导电框架以制备柔性电极材料。综述了基于纤维素材料的柔性超级电容器电极开发的相关研究,重点介绍了基于不同纤维素基原料(原生纤维素、纳米纤维素以及纤维素衍生物)制备柔性超级电容器电极的方法以及所得电极的电化学性质,分析归纳了纤维素基材料在柔性电极中的主要作用:作为骨架支撑柔性电极材料、充当柔性基底(可兼有隔膜作用)、形成多孔结构传输电解质离子。最后,对纤维素材料在柔性电极材料领域的发展趋势进行了展望。  相似文献   

17.
木材是一种可再生和机械坚固的天然生物基模板,半纤维素和木质素基质结合纤维素原纤维在木材中分层排列。因此在不改变纤维素原纤维分级排列的情况下去除木材细胞壁中的木质素,可为具有对齐纤维素结构的生物模板功能材料领域带来更多可能性。基于脱木素木材提供的生物模板,可开发出不同的功能材料,并广泛应用于不同领域。文中总结脱木素木材的主要制备方法和功能材料的开发策略,展望脱木素木材衍生功能材料的发展潜力和趋势,旨在为木材功能化研究提供新思路。  相似文献   

18.
随着全球经济的快速发展,大量油性废水从人们的日常生活和工业中被排放出来,泄油事件也频繁发生,已造成严重的环境问题,因此油水分离材料的研究受到越来越多的关注。纤维素具有很好的生物降解性、生物相容性和力学性能,将纤维素纳米纤维、纤维素纳米晶、微晶纤维素等不同形态的纤维素通过功能化修饰后可以制备出具有优异水油分离效果的纤维素气凝胶、水油分离膜或改性纤维素滤纸;而直接对木材或棉纤维进行脱木素处理也可以得到高吸油性的水油分离材料。纤维素基水油分离材料不仅疏水性好且吸油倍率高,还具有可循环使用以及无二次污染等诸多优点。笔者介绍了近年来以天然生物质中的纤维素为基材构建各类水油分离材料的研究现状,并对不同类型水油分离材料的吸油疏水特性进行阐述,还对制备工艺过程中存在的问题以及未来的研究发展方向进行了展望。以天然纤维素为基体材料制备绿色环保功能型水油分离材料对于可持续发展具有重要的意义,而探索出更加绿色环保、制备工艺简单、低成本,且加工剩余物对环境不会造成二次污染的制备方法,并提高纤维素基水油分离材料的机械性能和重复使用性等是今后研究的重点。  相似文献   

19.
采用Fe2+-H2O2二氧化硫脲(TD)氧化还原体系引发甲基丙烯酸缩水甘油酯(GMA)与桉树漂白木浆接枝共聚,并通过交联制得吸油功能材料——GMA接枝纤维.研究了各因素对接枝纤维接枝率及吸油率的影响红外图谱证明GMA已成功接枝到纤维素上.结果表明:当反应温度55℃,单体浓度0.14 mol/L,H2O2质量浓度0.20...  相似文献   

20.
纤维素是自然界丰富的天然有机高分子,具有价廉易得、环境友好、力学性能良好等优点,开发和利用空间非常广阔。传统水凝胶存在力学强度差、结构功能单一等问题,而引入纤维素及其衍生物是改善其性能的一种重要手段。因此通过物理或者化学方法对纤维素进行改性,制备具有自愈合性能的凝胶,受到科技工作者的广泛关注和研究。笔者以物理型和化学型自愈合凝胶为主线,综述了近年来采用纤维素制备自愈合材料的研究进展,为纤维素基自愈合凝胶的制备和应用提供参考。以纤维素基凝胶的自愈合机理进行分类,重点介绍了利用氢键、疏水相互作用、主-客体相互作用、金属配位作用和静电作用等物理作用,以及硼酸酯键、双硫键、酰腙键、烯胺键和Diels-Alder反应等化学作用构建的凝胶。分析了自愈合凝胶的设计思路,探讨了凝胶自愈合性能的影响因素,同时总结了基于纤维素制备的自愈合凝胶的结构特性及其在柔性电子、生物医疗、组织工程等方面的应用。最后,探讨了纤维素基自愈合凝胶所面临的问题,并展望了其研究前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号