首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
This paper is aiming to develop high shrinkable differential shrinkage and mixed fibre nylon composite yarns by applying the high shrinkable polyester manufacturing technology. The wet and dry thermal shrinkages and mechanical properties of developed nylon composite yarns are measured and discussed with processing factors in the spinning and texturing processes. And the effects of the processing factors on the physical properties of high shrinkable nylon composite yarns are investigated. For this purpose, twenty seven nylon 30d/12f SDY were prepared with variation of spinning temperature, 2nd godet roller temperature and draw ratio on the spinning machine. The optimum spinning condition which showed maximum wet thermal shrinkage and stress was determined and high shrinkable nylon 30d/12f SDY spun under this optimum condition used as a core and three kinds of regular nylon filaments used as sheath were processed on the texturing machine with variation of 1st and 2nd heater temperatures. The optimum texturing process condition was decided through analysis of dry thermal shrinkage of these core and sheath nylon filaments. Finally, high shrinkable differential shrinkage and mixed fibre nylon composite yarns were made under the optimum texturing condition on the texturing machine, its wet thermal shrinkage was 13.8 %, which was much more higher than that of regular nylon composite yarns. The differential shrinkage effect of the developed nylon composite yarns was found in the yarn surface and cross section profiles by microscope and SEM.  相似文献   

2.
The interaction of microwave radiation with Partially Oriented Polyester yarn (PET-POY) was studied with a view to improve its structure and textile related properties. The PET-POY filaments were exposed to Microwave (MW) radiations of frequency 2450 MHz for different durations of time from 15 to 105 sec. The changes in structure and morphology were investigated by using the techniques of X-ray diffraction, birefringence and DSC. The changes in the textile related properties like tensile strength, shrinkage and dye uptake were evaluated. The microwave treatment enhanced the structural properties of PET-POY samples. Significant increase in crystallinity, crystal size and crystalline orientation were noted. In addition a great improvement in total orientation, as measured by birefringence, was found for the treated samples. DSC results showed that crystal distribution became narrower and crystallization rate increased for microwave treated samples as compared to control sample. The tensile strength, shrinkage and dye uptake also showed significant increase, which is very helpful for the textile processes.  相似文献   

3.
In the present study, effect of OPP (oxidized PP) fraction on the mechanical and structural properties of produced fibers is investigated. Polypropylene powder without antioxidant materials was oxidized at the suitable thermal condition. The various fractions of OPP were blended with PP in the chips shape, and employed as starting material in a melt spinning machine for production of filament yarn. Then as-spun filaments were drawn and finally textured. Structural properties including density, birefringence and FTIR and physical properties consisting of shrinkage, tensile properties and crimp properties were measured. Results show that blending of OPP with virgin PP reduces tacticity and crystallinity, but it hasn’t any effect on orientation. Physical properties of drawn yarns and textured yarns were reduced with increasing of OPP fraction. Moreover, increasing of OPP fraction in blend, reduce crimp properties of textured yarn.  相似文献   

4.
In present work, PET FDY has been used to blend with diacetate filaments by air texturing process and core-and-effect air-textured yarns have been produced. The influences of both over-feeds of core and effect components on properties of textured yarns were mainly examined. It was observed that a spun-like effect of diacetate filaments occurred during air texturing and there were a little amount of free fiber ends besides loops on blended air textured yarns, while the number of free fiber ends changed little with variation in over-feeds. The tenacity of textured yarns decreased with increase in over-feeds of effect or core component. The breaking elongation increased with increase in over-feed of effect component, but decreased with increase in over-feed of core component. The yarn stability improves when both over-feeds are increased. The effect of over-feeds on boiling water shrinkage shows no clear trend. The core and average diameters are higher at high over-feed of effect component, but the over-feed of core component exhibits little effect on yarn diameters. The number and size of loops are increase with increased over-feed of effect component.  相似文献   

5.
A comparison of poly(trimethylene terephthalate)(PTT) and poly(ethlene terephthalate)(PET) fibers spun at various take-up speeds was presented. Fiber characterization included tensile and thermal properties, optical birefringence, density, sonic modulus, boil-off shrinkage, and wide-angle X-ray diffraction. The phenomenon of stress-induced crystallization was inferred from the X-ray diffraction diagrams for fibers spun with take-up speeds over 4000 m/min. The tenacity and elongation of PTT and PET fiber showed typical results, but the initial modulus of PTT fiber was nearly unchanged over the entire take-up speed range (2000–7000 m/min), whereas that of PET, as expected, increased monotonically with increasing take-up speed. This divergent behavior could be explained by the different molecular deformations in the c-axis as determined from X-ray diffraction patterns. The fiber crystallinity, density, and heat of fusion of both polymers increased with take-up speed. The boil-off shrinkage decreased with increasing take-up speed. The optical birefringence of the two fiber types showed a maximum level at a take-up speed of ca. 5000 m/min. The melting temperature behavior of PTT fiber was different from that of PET fibers. It was found that PTT is less sensitive to stress induced changes at high spinning speeds than is PET.  相似文献   

6.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

7.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

8.
Compressive shrinkage or compressive shrinkage finishing is one of the most important finishing procedures in the textile industry to improve the dimensional stability of cotton fabrics. Study of the physical and mechanical properties of compressive shrinkage finished fabrics could be useful for optimizing the treatment conditions. This research was carried out in a production line of a recognized garment company on cotton woven fabrics with two different woven patterns (twill and plain). The samples were first dyed with reactive and sulfur dyes in a jigger dyeing machine and finished with a silicone softener. The dried fabrics were then processed in a compressive shrinkage machine. Several physical and mechanical properties of the samples were evaluated including area shrinkage, crimp percentage, thickness, abrasion resistance, drapeability, mechanical and colorimetric properties. The results showed that the thickness of all treated samples increased due to compressive shrinkage. The fabrics were analyzed with a Martindale Abrasion Tester to determine the abrasion resistance. Interestingly, we noted an increase in the abrasion resistance. After the compressive shrinkage process, the strength of the plain woven fabrics decreased in the warp direction, but increased for twill woven cotton fabrics. On the contrary, the strength of all samples increased in the weft direction. Colorimetric evaluation of the samples showed that the effect of compressive shrinkage on the color of all samples was negligible.  相似文献   

9.
In order to improve cake quality, soft wheat was treated with superheated steam (SS) and used to make Madeira cakes, after which the cake batter properties and cake quality were analyzed. Both the cake batter properties and cake quality were significantly affected by SS treatment and cake quality was improved at some specific conditions. Batter viscosity was higher than the control at most conditions of SS treatment and it increased when treatment time was increased from 1 min to 7 min at 140 °C, 165 °C, 190 oC and 215 °C. Batter density decreased at some specific conditions. Except the treatment of wheat at 115 °C for 1 min and at 140 °C for 5 min and 7 min, other conditions all led to the decrease of baking loss of cakes. Specific volume of cakes increased at the conditions of 165 °C for 3 min, 190 °C for 1min and 215 °C for 1min. Texture properties and sensory qualities were improved at relatively high temperature for a short time of SS treatment. In conclusion, SS treatment of wheat at the conditions of relatively high temperature for a short time could improve cake quality significantly and SS treatment at 190 °C for 1 min was the best condition.  相似文献   

10.
This study aimed to determine the appropriate steam treatment conditions, using a steam nursery cabinet, to break the dormancy of Japanese rice cultivar seeds exhibiting various dormancy levels. The influence of the temperature and duration of the steam treatments on the germination percentage and germination rate was investigated. In highly dormant ‘Takanari’ seeds, the steam treatment at 40 °C for 7 d increased the germination percentage and decreased the 50% germination time (T50S; based on seed number); this treatment was as effective as the dry heat treatment at 50 °C for 7 d. For the medium dormant ‘Moeminori’ and ‘Hitomebore’ seeds, the steam treatment at 40 °C for 5 d decreased T50S sufficiently and more effectively than did the dry heat treatment at 50 °C for 7 d. For the slightly dormant ‘Moeminori’ seeds, the steam treatment at temperatures ranging from 24 °C to 40 °C for 7 d decreased T50S without a corresponding decrease in germination percentage to <90%. For the non-dormant ‘Moeminori’ and ‘Takanari’ seeds, the same steam treatments had no, or a little if any, useful effect on the germination percentage and T50S. Therefore, we concluded that, for the highly dormant seeds, steam treatment at 40 °C for 7 d was appropriate. Moreover, for less dormant seeds, steam treatment at 40 °C for 5 d was appropriate, and the steam treatment was not necessary for the non-dormant seeds.  相似文献   

11.
Wool fabrics, without any surface treatment, can undergo undesirable and irreversible structural changes of wool fiber during washing under heat and mechanical agitation, leading to high shrinkage of wool garments. The traditional method based on polyamide resin can prevent felting and/or shrinkage of wool textiles, but adversely affect the surface hydrophobicity. In the present study, a treatment solution was developed based on TriSilanolIsooctyl POSS® and 3- mercaptopropyl trimethoxysilane, which created wool surface with increased hydrophobicity and highly resistant to shrinkage or felting, as measured after 3×5A wash cycles (equivalent to 24 domestic washes). After the treatment, the wool fabric appeared to be superhydrophobic with a water contact angle of above 150°, compared to the untreated fabric. The treatment has marginal effect on mechanical performance as observed in tensile properties. Scanning electron microscopic images revealed a coating of POSS® on the wool surface. The dyeing of untreated and treated fabrics appeared to be uniform to the naked eye, though spectrophotometric analysis indicated a difference in the extent of dyeing performance. This research showed that POSS®-based treatment is a potentially effective approach for developing shrink-resistant wool textiles with enhanced surface hydrophobicity, in contrast to traditional chlorine/polyamide resin treatment.  相似文献   

12.
This article reports the outcome of a study conducted for examining the effect of heat setting parameters on some properties of PLA knitted fabric. Three heat setting parameters, namely, treatment time, treatment temperature, and tension, were considered for optimizing the heat setting process with fabric shrinkage after dyeing and color yield as the evaluation factors. Experimental results revealed that lower shrinkage and higher color yield can be achieved when: (i) heat setting time = 60 s; heat setting temperature=130 oC; and tension=0%. After that, the PLA knitted fabric was treated under the optimum heat setting condition and was dyed with 1% depth disperse dye, which produced a better dyeing result. However, the handle of the heat set PLA knitted fabric, as measured by Kawabata Evaluation System for Fabric (KES-F), became stiffer and more resistant to shearing movement and had worse drape and bending recovery ability, while the appearance became fluffier and rougher.  相似文献   

13.
High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight polymers, HMs-PS and LMs-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2–3 km/min. The crystal modification wasα-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (DSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LMs-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HMs-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-ductile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a universal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached — 0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.  相似文献   

14.
Poly(p-phenylene terephthalamide) fibers prepared by dry-jet wet spinning processes have a notable response to very brief heat treatment (seconds) under tension. The modulus of the as-spun fiber can be greatly affected by the heat treatment conditions (temperature, tension and duration). The crystallite orientation and the fiber modulus will increase by this short-term heating under tension. The present research reports the heat treatment techniques, devices and its process conditions. It reports in details the structural relationships between the fiber properties which are influenced by the heat treatment process. In particular, focuses deeply on the effect of the crystal orientation changes of the fibers, on the mechanical properties and, also, investigates the thermal degradation steps & behaviours of the heat treated fibers. The heat treated PPTA fibers have a molecular orientation higher than that for the as-spun one.  相似文献   

15.
Delamination is the most common failure mode in laminated composites due to the reduced strength in the through-the-thickness direction. Air-jet texturing was used to provide more surface contact between the fibres and the resin by producing bulk and loops in the yarn. The development and characterization of core-and-effect textured glass yarns and the effect of texturing on the mechanical properties of laminated composites were presented in the previous papers. This paper describes the effect of texturing on the inter-laminar fracture toughness (Mode I) of glass laminated composites. The composites of twill weave fabrics were developed from both the textured and non-textured yarn and fracture toughness is tested in warp and weft directions. Significant improvement was observed in the Mode I fracture toughness of the composites after texturing. The bulkier, loopy structure of the textured yarn provided more surface contact between the fibre and the resin and significantly improved the bonding strength.  相似文献   

16.
Double-arm of multiple- beam Fizeau system in transmission, attached with a modified creep device was used to investigate the opto-viscoelastic properties of isotactic polypropylene (iPP) fibres under different annealing conditions. The mean refractive index, birefringence, orientation, density and crystallinity were calculated for the annealed iPP fibres during creep deformation. Crystallinity behaviour was investigated during creep experiments at different annealing conditions which indicated a remarkable improvement in the properties of the investigated samples. The creep compliance curves were obtained at three different values of stresses for different annealing temperatures and different times of annealing. An empirical formula was suggested to describe the creep compliance curve of annealed iPP fibre and the constants of this formula were determined from the fitting parameters of the obtained creep curves. Kelvin chain was used to model the mechanical behaviour of iPP fibre under creep process. Illustrations using graphs and microinterferogrames are shown.  相似文献   

17.
Composite materials have a wide range of applications in structural components because of their high strength-to-weight and stiffness-to-weight ratios. However, the most crucial and common life-restricting crack growth mode in laminated composites i.e. delamination is of great concern. Air jet texturing was selected to provide a small amount of bulk to the glass yarn. The purpose was to provide more surface contact between the fibres and resin and also to increase the adhesion between the neighbouring layers. These were expected to enhance the resistance to delamination in the woven glass composites. The development and characterisation of core-and-effect textured glass yarns was presented in the previous paper. This paper describes the comparison of the mechanical properties of composites produced from air-textured glass yarns and the composites made from locally manufactured carbon fabrics. The tensile, flexure and inter-laminar shear strength (ILSS) were compared and it was observed that although glass fibres are inferior to carbon fibres in terms of mechanical properties however, the flexure strength and ILSS of glass based composites increases after texturing and were found closer to the properties of carbon based composites.  相似文献   

18.
Power net fabric is one of the highly extensible two-way fabrics. Power net structure shows special characteristics in the wearing of final functional clothes. This research evaluated effects of treatment temperature on proportional extensibility and shrinkage ratio of spandex at a given wale length. As treatment temperature increased, extensibility increased proportionally to the standard length of the sample and the shrinkage ratio in the direction of course and wale increased. The pulling-out length increased proportionally to the standard length of the sample. However it was affected by the effect of treatment time and temperature due to the thermal properties of spandex filament yarn.  相似文献   

19.
We purified as-received CNT fibers (CNTFs) with four different methods and systematically examined effects of various purifications on the morphology, structure, and electrical conductivity of the resultant CNTFs, respectively. The purified CNTFs were characterized by an optical microscope, transmission electron microscope (TEM) coupled with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and multiple source meters. Optical images showed that morphology of CNTFs did not largely change after purification. TEM images and EDS results showed that the Fe impurities, 21.9 wt%, in CNTFs were decreased to 0.17-1.20 wt% and were nearly eliminated by acid and alkali purifications, respectively. Raman results identified the ID/IG ratio of CNTFs was 0.71, while those of HCl treatment after steam with heat (HSCNTFs-HCl), NaOCl treatment after steam with heat (HSCNTFs-NaOCl), and NaOH treatment with heat without steam (NaOH-HCNTFs) were 0.45, 0.49, and 0.57, respectively, which means that purification methods of CNTFs performed in this study are thought to be satisfactory for manufacturing high-purity CNTFs. Electrical conductivity (1.4×104 S/m) of NaOH-HCNTFs (one-step procedure) was twice as high as that (7.3×103 S/m) of CNTFs, but lower than those (2.1-2.3×104 S/m) of HSCNTFs-HCl and HSCNTFs-NaOCl (two-step processes), which demonstrates that two-step processes rather than one-step procedure would have a positive effect on the electrical conductivity of the resultant CNTFs.  相似文献   

20.
Polyamide 66 multifilament yarns are textured in order to be endowed the properties of natural staple fibre yarns for textile applications. Texturing changes crystallinity, orientation and promotes the formation of stable secondary links between the macromolecular chains. Two polyamide yarns with the same linear density but composed of filaments of different fineness were textured by the air-jet and the false-twist procedures. The microstructural changes induced by texturing modify the relaxation behaviour of yarns. By the application of the Nutting’s power law which relates stress, strain and time, the influence of texturing and filament fineness on the relaxation behaviour of the yarns stretched form 15% to 25% was studied. Relationships between Nutting’s model parameters and crystallinity, orientation and stability of secondary crosslinks formed during texturing were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号