首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

2.
3.
Arbuscular mycorrhizal (AM) colonized plants often have greater tolerance to drought than nonmycorrhizal (nonAM) plants. Wheat (Triticum durum Desf.), whose roots were colonized with Glomus mosseae (Gms) and G. monosporum (Gmn), were grown in a greenhouse to determine effects of water stress (WS) on shoot and root dry matter (DM), root length (RL), and shoot phosphorus (P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) concentrations and contents. Mycorrhizal colonization was higher in well‐watered (nonWS) plants colonized with both AM isolates than WS plants, and Gms had greater colonization than Gmn under both soil moisture conditions. Shoot and root DM were higher in AM than in nonAM plants irrespective of soil moisture, and Gms plants had higher shoot but not root DM than Gmn plants grown under either soil moisture condition. Total RL of AM plants was greater than nonAM plants, but was consistently lower for plants grown with WS than with nonWS. The AM plants had similar shoot P and Mn concentrations as nonAM plants, but contents were higher in AM than in nonAM plants. The AM plants had higher shoot Zn, Cu, and Fe concentrations and contents than nonAM plants. The Gms plants grown under nonWS generally had higher nutrient contents than Gmn plants, but nutrient contents were similar for both Gms and Gmn plants grown under WS. The results demonstrated a positive relationship between enhanced growth and AM root colonization for plants grown under nonWS and WS.  相似文献   

4.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

5.
酸雨对土壤呼吸的影响机制研究进展与展望   总被引:2,自引:0,他引:2  
刘自强  危晖  章家恩  郭靖  李登峰 《土壤》2019,51(5):843-853
土壤呼吸是陆地生态系统与大气之间进行碳交换的主要途径,其动态变化直接影响着全球碳平衡。由于人类活动的影响,酸雨成为人类当前面临的最严重的生态环境问题之一,但其对土壤呼吸的影响及其机理尚无定论。本文综述了不同生态系统土壤呼吸对酸雨的响应特征,多数文献表明,高强度的酸雨抑制土壤呼吸,而在低强度的酸雨作用下土壤呼吸的响应存在差异。从影响土壤呼吸的4个关键生物因子,即光合作用、微生物、凋落物和根系生物量,重点讨论了酸雨对土壤呼吸的影响机制。在此基础上,提出了以下研究展望:①开展土壤呼吸对不同组成类型酸雨的响应研究;②开展与土壤碳排放相关的功能微生物对酸雨的响应研究;③开展不同物候期土壤呼吸对酸雨的响应研究;④开展土壤呼吸各过程对酸雨的响应研究;⑤建立全球酸雨地区土壤碳排放监测研究网络。  相似文献   

6.
《Applied soil ecology》1999,11(2-3):135-146
Most studies of nutrient cycling in arctic ecosystems have either addressed questions of plant nutrient acquisition or of decomposition and mineralization processes, while few studies have integrated processes in both the soil and plant compartments. Here, we synthesize information on nutrient cycling within, and between, the soil/microbial and the plant compartments of the ecosystems and integrate the cycling of nutrients with the turnover of organic matter and the carbon balance in tundra ecosystems. Based on this compilation and integration, we discuss implications for ecosystem function in response to predicted climatic changes.Many arctic ecosystems have high amounts of nutrients in the microbial biomass compared to the pools in the plant biomass both due to large nutrient-containing organic deposits in the soil and low plant biomass. The microbial pools of N and P, which are the most commonly limiting nutrients for plant production, may approach (N) or even exceed (P) the plant pools. Net nutrient mineralization is low, the residence time of nutrients in the soil is long and the nutrients are strongly immobilized in the soil microorganisms. This contributes to pronounced nutrient limitation for plant productivity, implies that the microbial sink strength for nutrients is strong and that the microbes may compete with plants for nutrients, but also that they are a potential source of plant nutrients during periods of declining microbial populations. The extent of this competition is poorly explored and it is uncertain whether plants mainly take up nutrients continuously during the summer when the microbial activity and, presumably, also the microbial sink strength is high, or whether the main nutrient uptake occurs during pulses of nutrient release when the microbial sink strength declines.Improved knowledge of mechanisms for plant-microbial interactions in these nutrient-limited systems is important, because it will form a basis also for our understanding of the C exchange between the ecosystems and the atmosphere under the predicted, future climatic change. High microbial nutrient immobilization, i.e. low release of plant-available nutrients, paired with high microbial decomposition of soil organic matter will lead to a loss of C from the soil to the atmosphere, which may not be compensated fully by increased plant C fixation. Hence, the system will be a net source of atmospheric C. Conversely, if plants are able to sequester extra nutrients efficiently, their productivity will increase and the systems may accumulate more C and turn into a C sink, particularly if nutrients are allocated to woody tissues of low nutrient concentrations.  相似文献   

7.
This study examines the influence of different amounts of potassium chloride (KCl) fertilization on plant growth, nutrient accumulation and content, nutrient ratios, and root colonization by indigenous arbuscular mycorrhizal (AM) fungi in maize (Zea mays L.). KCl was applied at the rate of 0, 0.25, 0.50, 1.00, 1.50, and 1.75 mg/kg of soil. Effect of KCl on indigenous AM formation and function was evaluated in terms of the extent of root length colonization, plant growth, and nutrient uptake. Increasing concentration of KCl fertilization proportionately limited the total root length colonized by AM fungi as well as the root length with different AM fungal structures. Maize plants raised on soils amended with different concentrations of KCl were significantly taller than those raised on unamended soils. KCl application also significantly increased the total root length and root dry weight. Nevertheless, KCl fertilization did not significantly alter the root/shoot ratios. Higher concentrations of nitrogen (N), phosphorus (P), and potassium (K) were evident in shoot and root tissues of maize (except shoot N) raised on KCl-amended soils. Phosphorus concentrations in shoots and roots significantly influenced mycorrhization and root length colonized by different AM fungal structures, and such an effect was evident for root N. KCl fertilization increased the efficiency of N and P accumulation. No significant change was evident in the K:N ratios of shoots or roots, whereas the K:P ratios were significantly altered in shoots or roots in response to KCl application.  相似文献   

8.
Soil fungi are highly diverse and act as the primary agents of nutrient cycling in forests. These fungal communities are often dominated by mycorrhizal fungi that form mutually beneficial relationships with plant roots and some mycorrhizal fungi produce extracellular and cell-bound enzymes that catalyze the hydrolysis of nitrogen (N)- and phosphorus (P)- containing compounds in soil organic matter. Here we investigated whether the community structure of different types of mycorrhizal fungi (arbuscular and ectomycorrhizal fungi) is correlated with soil chemistry and enzyme activity in a northern hardwood forest and whether these correlations change over the growing season. We quantified these relationships in an experimental paired plot study where white-tailed deer (access or excluded 4.5 yrs) treatment was crossed with garlic mustard (presence or removal 1 yr). We collected soil samples early and late in the growing season and analyzed them for soil chemistry, extracellular enzyme activity and molecular analysis of both arbuscular mycorrhizal (AM) and ectomycorrhizal/saprotrophic fungal communities using terminal restriction fragment length polymorphism (TRFLP). AM fungal communities did not change seasonally but were positively correlated with the activities of urease and leucine aminopeptidase (LAP), enzymes involved in N cycling. The density of garlic mustard was correlated with the presence of specific AM fungal species, while deer exclusion or access had no effect on either fungal community after 4.5 yrs. Ectomycorrhizal/saprotrophic fungal communities changed seasonally and were positively correlated with most soil enzymes, including enzymes involved in carbon (C), N and P cycling, but only during late summer sampling. Our results suggest that fine scale temporal and spatial changes in soil fungal communities may affect soil nutrient and carbon cycling. Although AM fungi are not generally considered capable of producing extracellular enzymes, the correlation between some AM taxa and the activity of N acquisition enzymes suggests that these fungi may play a role in forest understory N cycling.  相似文献   

9.
In this study, soil and plant samples were collected from a strip of soil comprising four successional stages from the eastern desert plateau to the Nile Valley, Egypt. On one hand, some essential elements [i.e., potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S)] and water contents decreased on transition from the desert soil to the Nile Valley. Soil nitrite content was the highest in Nile Valley soil and decreased toward desert soil. pH values of the soils did not strongly differ and were moderately alkaline. Root colonization with arbuscular‐mycorrhizae (AM) fungi of 33 plant species (11 cultivated and 22 wild) collected from the study area was highest in eastern desert plateau and decreased toward the Nile Valley. Mycorrhizai spore counts reflected the root colonization data. The decrease in mycorrhizai colonization was explained on the basis of difference in soil porosity, soil water contents, and toxicity of nitrite. Contents of K, Ca or Mg in some species were increased by increasing the colonization percentage of roots by AM fungi. Increasing the infection percentage of roots decreased or maintained the ratio of Na K+Ca+Mg (in meq) in the shoots of investigated plants. The contents of chlorophyll, soluble sugars, and protein significantly increased as a result of increasing colonization value. Also, mycorrhizal root colonization improved the water status of most plant species. These results suggest that increasing infection by AM fungi in the newly reclaimed soil may enable the plants to maintains its internal water status and mineral balance through decreasing the ratio of distressing ions to the nutrient ones.  相似文献   

10.
Our objective was to evaluate how increasing levels of N in the medium (0, 4, 8 and 16 mmol N added kg-1 soil) affect the interaction between Sinorhizobium and arbuscular mycorrhiza (AM) fungi in the tripartite symbiosis with Medicago sativa. Growth response, nutrient acquisition, protein content, and nitrate reductase (NR) activity were measured both in plant shoots and roots. Results showed that N levels in soil did not affect mycorrhizal colonization but they strongly influenced nodulation, particularly of mycorrhizal plants. Mycorrhizal colonization was required for a proper nodulation when no N was applied to soil. In contrast, the addition of 4 mmol N kg-1 soil reduced nodulation only in mycorrhizal plants and 8 mmol N added kg-1 soil allowed nodule formation only in non-mycorrhizal plants. Nodulation was totally inhibited in all treatments with the addition of 16 mmol N added kg-1 soil. N addition enhanced NR activity in all the treatments, while AM colonization increased the proportion of NR allocated to roots. This effect was more pronounced under the lowest N levels in the medium. The two AM fungal species showed different distribution pattern of enzymatic activities in plant tissues indicating specific physiological traits. Protein content as well as the relative proportion of protein in roots were greatly increased after mycorrhizal colonization. Glomus intraradices-colonized plants had the highest protein content in shoot and root. Mycorrhizal effects on growth, N acquisition and biochemical variables cannot be interpreted as an indirect P-mediated effect since P content was lower in mycorrhizal plants than in those which were P fertilized. Mycorrhizal colonization increased the N content in plants irrespective of the N level, but the effectiveness of AM fungi on plant N acquisition depended on the AM fungus involved, G. intraradices being the most effective, particularly at the highest N rate. N2 fixation, enhanced by AM colonization, contributed to N acquisition when a moderate N quantity was available in the soil. Nevertheless, under a high N amount the nodulating process and/or fixing capacity by Sinorhizobium was reduced in AM plants. In contrast, the AM fungal mycelium from a particular mycorrhizal fungus may continue to contribute efficiently to the N uptake from the soil even at high N levels. These results demonstrate the particular sensitivity of AM fungal species in terms of their growth and/or function to increasing N amounts in the medium. A selection of AM fungi used to address specific environmental conditions, such as N fertilization regimes comparable to those used in agronomic practices, is required for a better use of N applied to soil.  相似文献   

11.
Phosphorus (P) is an essential element for plant growth but is often limiting in ecosystems; therefore, improving the P fertilizer use efficiency is important. Biochar and arbuscular mycorrhizal fungi (AMF) may enhance P cycling in paddy soils that contain high content of total P but low content of available P (AP). In this study, the effects of biochar addition and Rhizophagus irregularis inoculation on the organic and inorganic P contents and phosphatase activities in paddy soils, rice seedling growth, and AMF colonization were investigated. Compared with no biochar addition, biochar addition enhanced the percentage of spore germination at day 7, hyphal length, most probable number, and mycorrhizal colonization rate of R.irregularis by 32%, 662%, 70%, and 28% on average, respectively. Biochar and R. irregularis altered soil P cycling and availability. Biochar and R. irregularis, either individually or in combination, increased soil AP content by 2%-48%. Rice seedlings treated with biochar and R. irregularis produced greater biomass, improved root morphology, and increased nutrient uptake compared with those of the control without biochar and R. irregularis. The results suggest that combined application of biochar and R. irregularis is beneficial to rice cultivation in paddy soils with high content of total P but low content of AP.  相似文献   

12.
Yield decline in yam may not only be due to soil nutrient depletion but also to the activity of soil microflora. Arbuscular mycorrhizal (AM) symbiosis helps in plant nutrition but may be affected by the application of fertilizer. The effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates on the AM colonization, leaf nutrient concentrations, and tuber yields of eleven genotypes of Dioscorea rotundata were investigated at Ibadan, Nigeria. The soil was ferric luvisol. Eleven genotypes were selected from the previously conducted screening of 75 genotypes of D. rotundata for fertilizer response. Four application rates: 0, 200, 400, and 600 kg ha?1 of NPK 15-15-15 were applied in a split plot design with four replications. Fertilizer rate was the main plot and variety was the sub plot. Percentage AM colonization was significantly reduced at 600 kg ha?1 but not at lower rates when compared to zero rate and it was negatively correlated with leaf N, P, and zinc (Zn) concentrations. Leaf N concentrations were significantly increased at 200 kg ha?1 in five genotypes and at 600 kg ha?1 in two genotypes compared to zero application. Leaf P and K concentrations were decreased with the application of fertilizer in most of the genotypes. The NPK fertilizer of 15-15-15 at the rate of 200–400 kg ha?1 gave yield response in eight genotypes of D. rotundata, with minimal or no effect on their AM colonization when compared to zero application. Long term study on the effect of fertilizer application on AM symbiosis in yam is recommended.  相似文献   

13.
Processed organic agricultural byproducts such as liquid organic fertilizer (LOF) are promising alternatives that can improve crop productivity while reducing mineral fertilizer use and improving sustainability. The effects on beneficial soil organisms, such as arbuscular mycorrhizal (AM) fungi and phosphate solubilizing microorganisms (PSM), caused by LOF spraying on shoots is poorly understood. Therefore, we evaluated how AM colonization and soil PSM are affected by LOF spraying on common beans (Phaseolus vulgaris L.) grown in a greenhouse. The LOF was obtained by anaerobically fermenting a mixture of fresh water, cattle manure, bovine milk, sugarcane molasses and mineral salts. LOF was applied twice on the plant shoots. Fresh and dry mass of root and shoot, P content, P accumulation in the shoots and AMF spore counts in the soil were not LOF dose dependent. However, we found that a 5% LOF application stimulated AM colonization and led to dose-dependence for calcium and aluminium phosphate solubilizing bacteria and fungi. These results show that LOF sprayed on shoots causes responses on soil communities. We therefore endorse the use of LOF in low input agriculture.  相似文献   

14.
A greenhouse experiment was carried out during the spring–summer 2009 to test the hypotheses that: (1) arbuscular‐mycorrhizal (AM) inoculation with a biofertilizer containing Glomus intraradices gives an advantage to overcome alkalinity problems, (2) mineral fertilization is more detrimental to AM development than organic fertilization on an equivalent nutrient basis. Arbuscular mycorrhizal (AM) and non‐AM of zucchini (Cucurbita pepo L.) plants were grown in sand culture with two pH levels in the nutrient solution (6.0 or 8.1) and two fertilization regimes (organic or mineral). The high‐pH nutrient solution had the same basic composition as the low‐pH solution, plus an additional 10 mM NaHCO3 and 0.5 g L–1 CaCO3. Increasing the concentration of NaHCO3 from 0 to 10 mM in the nutrient solution significantly decreased yield, plant growth, SPAD index, net assimilation of CO2 (ACO2), N, P, Ca, Mg, Fe, Mn, and Zn concentration in leaf tissue. The +AM plants under alkaline conditions had higher total, marketable yield and total biomass compared to –AM plants. The higher yield and biomass production in +AM plants seems to be related to the capacity of maintaining higher SPAD index, net ACO2, and to a better nutritional status (high P, K, Fe, Mn, and Zn and low Na accumulation) in response to bicarbonate stress with respect to –AM plants. The percentage root colonization was significantly higher in organic‐fertilized (35.7%) than in mineral‐fertilized plants (11.7%). Even though the AM root colonization was higher in organic‐fertilized plants, the highest yield and biomass production were observed in mineral‐fertilized plants due to the better nutritional status (higher N, P, Ca, and Mg), higher leaf area, SPAD index, and ACO2.  相似文献   

15.
The impacts of increased nitrogen (N) inputs into temperate ecosystems via atmospheric nitrogen deposition on nitrogen cycling and nitrogen retention have been described in a variety of ecosystem types. The role of secondary nutrients such as phosphorus (P) in ecosystem responses to increased N inputs is less well-understood. N and P availability are likely to interact to influence ecosystem productivity and N cycling rates, and this interaction would be expected to vary as N inputs increase. Furthermore, N and P inputs may affect plant-mycorrhizal associations and the ability of arbuscular mycorrhizae (AM) to colonize roots. We added nitrogen (97 kg ha-1 yr-1) and phosphorus (30 kg ha-1 yr-1) to an oak-maple forest in southwestern Virginia (U.S.A.) from 1994 through 1996. Inorganic nitrogen concentrations, net nitrogen mineralization, net nitrification rates and arbuscular mycorrhizal inoculum potential (MIP) were assessed during the growing season in 1996. Responses of the understory vegetation and soil N cycling to N addition suggested that the ecosystem was strongly N-limited. Nitrogen cycling rates were not affected by P inputs, though P addition increased P availability and decreased MIP. It was hypothesized that P availability may have more significant influences on N cycling and the plant-mycorrhizal association in ecosystems showing stronger symptoms of nitrogen saturation. Results suggest that the use of P fertilization would be effective in alleviating P-deficiency in vegetation receiving elevated atmospheric N deposition, but perhaps at the cost of benefits that associations with arbuscular mycorrhizae provide.  相似文献   

16.
生物炭和AM真菌提高矿区土壤养分有效性的机理   总被引:1,自引:0,他引:1  
【目的】矿区土壤贫瘠、有效养分含量低,而生物炭和丛枝菌根(arbuscular mycorrhizal, AM)真菌能够改善土壤养分,提高植物对环境胁迫的抗性和养分的利用。因此探究生物炭和AM真菌对矿区土壤的改良效果,可为矿区污染土壤生态恢复和新型肥料的开发提供参考。【方法】温室盆栽试验的土壤采自河南省洛阳市新安县江春矿区,以玉米"弘单897"为试验材料。试验设计4个处理,分别为原状土壤对照(CK)、添加生物炭(B)、接种AM真菌(M)、添加生物炭和接种AM真菌(BM),每处理重复8次,完全随机区组设计,玉米于矿区土壤中培育2个月后收获,测定根系生长、生理特性和土壤养分含量。【结果】施用生物炭和接种AM真菌均能够促进玉米生长,提高玉米叶片的净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s)、叶色值(SPAD值)和抗氧化酶活性,提高土壤养分含量。接种AM真菌对促进玉米生长、改善生理特性和磷吸收的效果优于生物炭,而生物炭提高土壤pH值和玉米对钾吸收的效果较好。生物炭和AM真菌联合处理玉米的总根长、根部和地上部干重分别较CK增加了84.22%、176.67%和45.84%,玉米叶片的净光合速率、蒸腾速率、气孔导度分别较对照提高35.42%、56.44%和88.31%,叶色值比CK提高了22.77%,菌根侵染率较CK提高234.20%,菌丝密度可达到4.37 m/g,总球囊霉素和易提取球囊霉素分别达到4.32 g/kg和1.60 g/kg,有机质、碱解氮、有效磷、速效钾含量分别较对照提高24.23%、43.26%、98.63%和33.93%。【结论】生物炭和AM真菌单独或复合处理均能够促进玉米生长和提高土壤养分有效性,生物炭和AM真菌联合处理可促进玉米生长、改善生理特性、促进养分吸收、提高土壤养分效果,可作为退化土壤生态修复和农业生产安全的一项有效措施。  相似文献   

17.
丛枝菌根(AM)真菌与共生植物物质交换研究进展   总被引:6,自引:1,他引:5  
丛枝菌根(Arbuscular Mycorrhizal,AM)真菌能与约 80% 的陆生植物形成共生关系,植、 菌间矿质养分、 碳水化合物的物质交换是自然界物质循环的重要内容。目前,AM 真菌促进共生植物矿质养分吸收的研究相对较多。研究表明, AM 真菌可通过根外菌丝更小的吸收直径,加强矿质养分的空间有效性; 通过释放有机酸、 土壤酶,活化土壤中被固定的矿质养分; 通过根外菌丝上较低 Km 值的矿质养分转运蛋白,保证养分从土壤至根外菌丝的转运效率; 通过矿质养分在菌丝内运输形式的改变,增强养分的运输速率; 通过诱导共生植物矿质养分转运蛋白表达,提高植、 菌间养分的转运效率。相较于 AM 真菌促进共生植物养分吸收,植物反馈真菌碳水化合物的研究相对较少。鉴于 AM 真菌与植物共生关系在生态系统中的重要作用,明晰植、 菌间矿质养分和碳水化合物交换的具体场所(丛枝、 根内菌丝、 根外菌丝)、 具体形式(离子、 聚合物、 氨基酸、 蔗糖、 单糖)、 具体过程(主动运输)具有重要科学意义。本文对 AM 真菌与共生植物物质交换的丛枝、 菌丝双膜结构,氮(N)、 磷(P)、 糖等物质交换的具体形式以及跨双膜、 耗能量、 互耦连的物质交换过程进行综述,并从物质交换的场所、 形式、 过程三个方面提出了植、 菌物质交换的研究方向。  相似文献   

18.
The litter decomposition, nutrient patterns, as well as nutrient release and soil nutrient contents were determined in response to nitrogen (N) and phosphorus (P) addition and drought treatments following long-term vegetation recovery. The litter decomposition rate decreased with vegetation recovery, due to changes in litter quality, soil nutrient availability, and soil enzyme activity. Nitrogen addition promoted litter decomposition in the early recovery stages but inhibited decomposition in the later stages, indicating a shift in the nutrient limitations to litter decomposition with succession. Neither N nor P addition had any effect on the release of litter carbon (C), whereas N addition inhibited litter N release. In addition, drought decreased litter decomposition and nutrient release during the vegetation recovery process. Our findings suggest that litter quality, soil nutrient availability, and moisture at different vegetation recovery stages should be considered when modeling the C cycle and nutrient dynamics in these ecosystems.  相似文献   

19.
The effects of the preceding crops, sunflower (mycorrhizal host) and mustard (nonhost), on arbuscular mycorrhizal (AM) colonization and growth of succeeding maize were examined in 17 soils in an attempt to clarify the influence of soil characteristics on the effects of preceding crops. Shoot weight and P uptake of maize planted after sunflower were much higher than those after mustard in 14 soils, although the preceding crop had little effect on soil-P availability. AM colonization of maize after sunflower was much higher than that after mustard. The effect of the preceding crop was eliminated by soil sterilization. These results suggested that the differences in maize growth were caused by differences in the AM colonization. Correlation analysis of the effect of the preceding crop and soil properties showed that the difference in the effects on maize growth could not be explained by soil chemical properties, but only by the AM colonization of the preceding sunflower crop. In one of the 17 soils, however, the effect was not evident despite the higher AM colonization of sunflower. This soil was sterilized, and the effect of inoculation by AM fungi (AMF) on maize was examined. However, it was found that the inoculation increased AM colonization but did not improve maize growth at any P level, suggesting that the effect of AMF was unusually inhibited in this soil by unknown soil physicochemical properties. In most soils, however, the preceding mycorrhizal host crop, sunflower, improved the growth and AM colonization of maize depending on the AM colonization of sunflower.  相似文献   

20.
《Applied soil ecology》2000,14(2):147-155
Reducing the tillage of agricultural soils can increase early-season crop-P uptake. Consistent increases in plant-P have been found in both field- and laboratory-systems with undisturbed (U) compared to disturbed (D) soil. A concomitant stimulatory effect on colonization of roots in U soil by arbuscular mycorrhizal (AM) fungi has been found in some cases, but in others the colonization has been similar in U and D treatments. Disruption of the extraradical mycelium that remains from the previous crop is the mechanism by which soil disturbance restricts mycorrhizally mediated P uptake for the subsequent crop, with a tandem change in colonization not necessary, but sometimes seen. Nonetheless, a complete account of these processes will need an understanding of the conditions under which the extent of colonization is affected. Soil-P does not explain when a difference in colonization will appear. Among ecosystems in Western Australia, high inoculum density in a pasture was reported previously to preclude the appearance of a difference in colonization in response to soil disturbance, whereas for other ecosystems with lower inoculum densities a difference in colonization was seen. Here, we determined if a similar mechanism operates for an agricultural soil collected mid-season during the growth of a maize (Zea mays L.) crop in Ontario, Canada. Blending various proportions of pasteurized and non-pasteurized soil gave a range of inoculum densities. Maize was taken through two 3-week growth cycles in pots, and for the D treatment the soil was passed through a 5 mm sieve between cycles. All plants became colonized with AM fungi. Reducing the inoculum density served to limit colonization to similar low levels in both U and D soils. Stimulation of colonization and of shoot-P uptake in the U-compared with the D-treatment was greater for plants under the higher inoculum conditions tested. We conclude that the inoculum density during crop growth of the soil studied here is moderate, and that this density makes it possible, if other conditions are met, for a reduction of colonization of roots in response to soil disturbance. Whether or not a difference in colonization will appear following disturbance of a soil such as the one studied here probably depends on the interaction between the environment and the plant. Possible interactions are discussed. The high inoculum density of ecosystems such as the pasture studied in Australia likely overrides any effect of soil disturbance and ensures roots of all plants become well-colonized by AM fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号