首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
马成 《农村电工》2012,20(1):43
1 智能电能表的作用在类似于互联网架构的"智能电网"中,智能电能1表可以依托"智能电网"所构建的强大的数字化信息网络和数据分析处理系统,通过电能信息显示屏、互联网以及各种通信网络,向用户实时提供内容丰富的用电信息,如:用电能量、电费金额、电能质量、表计健康状况、停(复)电信息通知、催费信息通知、用电情况分析、超负荷报警等信息.  相似文献   

2.
邹莉 《农村电工》2014,(7):34-35
<正>电力用户用电信息采集系统(以下简称采集系统)是国家电网公司电网智能化用电环节的重要应用,是实现电能信息全采集、全覆盖、全预付费的基础,是建设智能电网的重要组成部分。通过采集系统建设,可有效促进智能电网用电环节的业务发展,实现用电管理可观测、可控制和自动化,通过数字化通信技术、IT技  相似文献   

3.
乔立春 《农村电工》2023,(10):50-51
新一代物联网电能表不仅是实现用户状态智能感知的计量终端,同时也是电网公司实现与用户增强互动友好的桥梁,可通过用户手机、智能家居等物联网设备互联通信,为新兴业务发展提供庞大的用户基础。通过应用嵌入式操作系统实现智能电能表功能,相比现有智能电能表,有很多方面的优势,在乡村新能源智能化建设中应用成效显著,现总结如下。  相似文献   

4.
正近期,由广西电网公司牵头开展的国家863项目成果——"灵活互动的智能用电关键技术与成套装置及应用"荣获南方电网公司科技进步奖一等奖。该项目研究攻克了智能用电双向互动的核心技术,构建了友好互动的信息与电能交换平台,打通了供用电双方的沟通互动渠道,运用大数据手段精益求精地分析,如同"精算师"和"操盘手"一样,为用户定制最优的用电方案。  相似文献   

5.
##正##2009年国家电网公司确定了建设坚强智能电网的发展战略目标,智能变电站是坚强智能电网建设中实现能源转换和控制的核心平台之一,是智能电网不可缺少的重要组成部分,也是实现风能、太阳能等新能源接入电网的重要支撑。智能变电站是衔接智能电网发电、输电、变电、配电、用电和调度六大环节的关键,在技术和功能上能更好地满足智能电网信息化、自动化、互动化的要求。智能变电站工程建设技术复杂、工程实施难  相似文献   

6.
通过智能表用电信息采集系统,有效利用现有的计量采集装置,研究中、低压用户供电可靠性统计和管理的可行性,对采集终端以及智能电能表的停上电事件"全采集"方式进行研究探索。  相似文献   

7.
坚强智能电网是以特高压电网网架为基础,以通信信息平台为支撑,使整个系统具有信息化、自动化、互动化特征。包含电力系统的发电、输电、变电、配电、用电等各个环节,实现"电力流、信息流、业务流"的高度一体化融合现代电网。坚强智能电网的基本特征是技术上体现信息化、自动化、互动化。信息化是实施基础;自动化是实现手段;互动化是系统要求。坚强、智能化电网离不开先进的通信技术,稳定、可靠、安全的通信网络是智能电  相似文献   

8.
“农网智能化”栏目征集以下内容稿件:各地在农网智能化建设中的主要做法和典型经验;在智能化生产管理系统、先进通信信息技术、电网控制技术、配电网自动化、智能用电及互动技术、智能配电台区建设等方面的探索和实际应用;通过智能化建设提升电网信息采集、实时控制、负荷管理能力与水平,提高故障处理能力与速度,提高供电可靠性。  相似文献   

9.
<正>1用电信息采集系统建设现状电力用户用电信息采集系统建设,是建设智能电网的重要组成部分,符合社会经济发展的要求,是进一步加快农村电网改造建设新农村的重要措施。从1990年电力企业逐步开展了负荷管理、集中抄表等用电信息采集系统的试点建设与应用,在负荷预测分析、电费结算、需求侧管理、线损统计分析、反窃电分析及供电质量管理等业务中取得了一定的效果。从统计数据看,经过20多年的发展,各类用电信息采集系统在地市以上城市及东部区县应用较为普遍,但  相似文献   

10.
作为智能电网的重要组成部分,智能电能表主要用于用户与供电企业间进行双向互动的"末端神经"。比之于国外的产品,我国的智能电能表标准相对统一,功能更为适用完备,其实时检测、预缴费以及阶梯电价等功能处于国际领先水平。因此大规模的使用智能电表于用户、企业均益处甚多,同时这也是现代生活所特有的革新技术。文章主要研究智能电能表的应用。  相似文献   

11.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

12.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

13.
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use.  相似文献   

14.
This study examined hydrological characteristics of low-grade weirs, an alternative controlled drainage strategy in surface drainage ditches. Chemographs of vegetated and clear scraped (control) replicates of weir vs. non-weir treatments were compared to determine differences in time to peak (Tp) and time to base (Tb). Drainage ditches Tp and Tb were affected by both vegetation and weir presence. The order of treatment efficiency for Tp was observed to be: non-vegetated non-weir < vegetated non-weir < non-vegetated weir < vegetated weir. Furthermore, Tb for each ditch was the reverse relationship from Tp where vegetated weir > non-vegetated weir > vegetated non-weir > non-vegetated non-weir. Low-grade weirs increase chemical retention time (vegetated and clear scraped), the average time a molecule of contaminant remains in the system. Future research in water quality improvement and weir management will yield useful information for non-point source pollutant reduction.  相似文献   

15.
Summary One means of using infrared measurements of foliage temperature (T f ) for scheduling irrigations requires the use of meteorological data to predict the foliage-air temperature difference for a comparable well-watered crop (T f *T a ). To determine the best method for making this prediction, parameters for models of increasing complexity for predicting (T f *T a ) were derived for wheat using two sets of field data collected in 1982 and 1983.The simplest model with vapor pressure deficit (VPD) as the sole predictor accounted for 64% of observed variance in (T f *T a ). The next model with both VPD and net radiation (R n ) as predictors accounted for 74%. The most complex model predicted (T f *T a ) from the crop energy balance. In addition to VPD and R n it included parameters for the effects of air temperature (T a ), aerodynamic resistance (r a ) and the canopy resistance of a well-watered crop (r cp ) and accounted for 70% of the variance.Accuracy of these alternative models was tested against an independent set of field data collected in 1984. The single variable model with VPD as sole predictor accounted for 17% of the variance in observed values of (T f *T a ). This increased to 47% when the effect of R n was included by using the two variable model and was increased further to 65% when the additional variables of T a , r a and r cp were included by use of the energy balance model. When the complexity of the model was measured by its number of variables there was a close relationship between complexity and the accuracy of the predictions. Reasons for the residual variability are discussed. The need for improved instrumentation for meteorological measurements was indicated.  相似文献   

16.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

17.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

18.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

19.
Physically, evaporative demand is driven by net radiation (Rn), vapour pressure (ea), wind speed (u2), and air temperature (Ta), each of which changes over time. By analyzing temporal variations in reference evapotranspiration (ET0), improved understanding of the impacts of climate change on hydrological processes can be obtained. In this study, variations in ET0 over 58 years (1950-2007) at 34 stations in the Haihe river basin of China were analyzed. ET0 was calculated by the FAO Penman-Monteith formula. Calculation of Kendall rank coefficient was done by analyzing the annual and seasonal trends in ET0 derived from its dependent climate variables. Inverse distance weighting (IDW) was used to analyze the spatial variation in annual and seasonal ET0, and in each climate variable. An attribution analysis was performed to quantify the contribution of each input variable to ET0 variation. The results showed that ET0 gradually decreased in the whole basin over the 58 years at a rate of −1.0 mm yr−2, at the same time, Rn, u2 and precipitation also decreased. Changes in ET0 were attributed to the variations in net radiation (−0.9 mm yr−2), vapour pressure (−0.5 mm yr−2), wind speed (−1.3 mm yr−2) and air temperature (1.7 mm yr−2). Looking at all data on a month by month basis, we found that Ta had a positive effect on dET0/dt (the derivative of reference evapotranspiration to time) and Rn and u2 had negative effects on dET0/dt. While changes in air temperature were found to produce a large increase in dET0/dt, changes in other key variables each reduced rates, resulting in an overall negative trend in dET0/dt.  相似文献   

20.
Summary A coupled soil-vegetation energy balance model which treats the canopy foliage as one layer and the soil surface as another layer was validated againt a set of field data and compared with a single-layer model of a vegetation canopy. The two-layer model was used to predict the effect of increases in soil surface temperature (T s ) due to the drying of the soil surface, on the vegetation temperature (T v ). In the absence of any change in stomatal resistance the impact of soil surface drying on the Crop Water Stress Index (CSWI) calculated from T v was predicted. Field data came from a wheat crop growing on a frequently irrigated plot (W) and a plot left un watered (D) until the soil water depletion reached 100 mm. Vegetation and soil surface temperatures were measured by infrared thermometers from tillering to physiological maturity, with meteorological variables recorded simultaneously. Stomatal resistances were measured with a diffusion porometer intensively over five days when the leaf area index was between 5 and 8. The T v predicted by the single-layer and the two-layer models accounted for 87% and 88% of the variance of measured values respectively, and both regression lines were close to the 11 relationship. Study of the effect of T s on the CWSI with the two-layer model indicated that the CWSI was sensitive to changes in T s . The overestimation of crop water stress calculated from the CWSI was predicted to be greater at low leaf area indices and high levels of stomatal resistance. The implications for this bias when using the CWSI for irrigation scheduling are discussed.List of Symbols C Sensible heat flux from the soil-vegetation system (W m–2) - c l shade Mean stomatal conductance of the shaded leaf area (m s–1) - c l sun Mean stomatal conductance of the sunlit leaf area (m s–1) - c max Maximum stomatal conductance (m s–1) - c 0 Minimum stomatal conductance (m s–1) - C p Specific heat at constant pressure (J kg–1 °C–1) - C s Sensible heat flux from the soil (W m–2) - C v Sensible heat flux from the vegetation (W m–2) - c v Bulk stomatal conductance of the vegetation (m s–1) - CWSI Crop Water Stress Index (dimensionless) - e a Vapor pressure at the reference height (kPa) - e b Vapor pressure at the virtual source/sink height of heat exchange (kPa) - e 0 * Saturated vapor pressure at T 0 (kPa) - e s Vapor pressure at the soil surface (kPa) - e v * Saturated vapor pressure at T v (kPa) - G Soil heat flux (Wm–2) - GLAI Green leaf area index (dimensionless) - GLAIshade Green shaded leaf area index (dimensionless) - GLAIsun Green sunlit leaf area index (dimensionless) - k Extinction coefficient for photosynthetically active radiation (dimensionless) - k 1 Damping exponent for Eq. A 5 (m2 W–1) - LAI Leaf area index (dimensionless) - LE Latent heat flux from the soil-vegetation system (W m–2) - LE s Latent heat flux from the soil (W m–2) - LE v Latent heat flux from the vegetation (W m–2) - p a Density of air (kg m–3) - PARa Photosynthetically active radiation above the canopy (W m–2) - PARu Photosynthetically active radiation under the canopy (W m–2) - r a Aerodynamic resistance (s m–1) - r b Heat exchange resistance between the vegetation and the adjacent air boundary layer (s m–1) - r c Bulk stomatal resistance of the vegetation (s m–1) - R n Net radiation above the canopy (W m–2) - R s Net radiation flux at the soil surface (W m–2) - r st Mean stomatal resistance of leaves in the canopy (s m–1) - R v Net radiation absorbed by the vegetation (W m–2) - r w Heat exchange resistance between the soil surface and the boundary layer (s m–1) - S Photosynthetically active radiation on the shaded leaves (W m–2) - S d Diffuse photosynthetically active radiation (W m –2) - S 0 Photosynthetically active radiation on a surface perpendicular to the beams (W m–2) - T a Air temperature at the reference height (°C) - T b Temperature at the virtual source/sink height of heat exchange (°C) - T 0 Aerodynamic temperature (°C) - T s Soil surface temperature (°C) - T v Vegetation temperature (°C) - w 0 Single scattering albedo (dimensionless) - Psychrometric constant (kPa °C) - 0 Cosine of solar zenith angle (dimensionless)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号