首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
随着众多智能变电站工程的投产运行,智能变电站的软肋也逐渐显露,主要体现在继电保护二次部分,集中表现为电子式互感器设备异常、GOOSE回路异常、智能终端设备异常、控制回路异常和继电保护设备异常。对近年来智能变电站发生的事故进行分类剖析并给出解决措施,针对智能变电站事故特性提出智能站运行维护发展构想,并提出未来不再采用电子式互感器,及对智能终端和合并单元、虚端子回路、二次安措设置等改进措施。  相似文献   

2.
<正>1投资变化情况根据目前已建成的35 k V常规变电站、35 k V智能变电站2座变电站工程数据统计对比,智能变电站投资增加约35%,其中:建筑工程费较常规变电站无太大差异,安装工程费较常规变电站有所增加,设备、材料购置费较常规变电站增加约52%,其他费用与常规变电站基本持平。2主要技术方案变化情况(1)一次设备。智能变电站基本采用常规一次设备附加二次设备厂家的智能终端的模式,较常规变电站增加了智能终端装置。开关柜由常规式开关柜变更  相似文献   

3.
孙波 《农村电气化》2016,(10):45-46
为改善智能变电站二次设备研究和运行、维护中出现二次功能异常,时常难以及时判定并分析故障原因的情况,以智能变电站二次设备为依据,提出智能变电站动态重构技术,实现动态控制软件和起动设备,进而恢复系统的完整性。  相似文献   

4.
依据Q/GDW430—2010《智能变电站智能控制柜技术规范》,设计了一套变电站箱柜内部环境在线智能监控系统,可在线监控室内外箱柜内部的温度、湿度、设备高温或燃烧时产生的气体、火灾等。该系统具有在线故障报警、调控柜内工作环境、就地液晶界面功能调整、GOOSE信息查询、后台监测、数据交换存储等功能,解除了智能化变电站部分功能前移的后顾之忧,可为智能终端营造良好的工作环境。  相似文献   

5.
智能变电站自动化系统须对站内一二次设备实现通信、遥测、遥信、遥控、遥调等功能,在现场实际运行中出现很多常见异常现象:开关量信号采集异常、脉冲量信号采集异常、模拟量采集异常、遥控命令异常、网络通信异常、SCD文件配置异常、GPS对时异常等,对目前常见异常现象原因进行分析探讨,提出了解决方法和建议,对今后智能变电站自动化系统调试与检修工作具有一定的借鉴意义。  相似文献   

6.
巡视智能变电站设备是智能变电站日常运维工作中的一项重要内容,其巡视的全面到位与否将直接影响到智能变电站设备的安全、稳定运行。对此,为提高智能变电站设备日常巡视质量,本文在介绍了变电站设备巡视主要分类的基础上,分析了目前智能变电站设备巡视中存在的主要问题,并提出了一系列提高智能变电站设备巡视质量的对策,以期有助于提高智能变电站日常设备巡视质量,更好的保障智能变电站的安全、高效运行。  相似文献   

7.
以宿迁首座110 k V智能变电站钱塘变电站为例,通过智能变电站与传统变电站的比较,阐述智能变电站的技术、一次设备的功能、智能设备与顺序控制及继电保护特点,重点分析了智能站对应的高级应用功能。  相似文献   

8.
泛在电力物联网是以电力系统为核心,同时结合大量智能终端、传感设备、通信网、云平台等连接构成的复杂多网络系统。随着泛在电力物联网建设的推进,网络边缘设备数量爆炸式增长,导致以云计算模型为核心的集中式大数据关键技术无法高效处理边缘设备产生海量数据,因此边缘计算模型应运而生。文章叙述了边缘计算的背景及概念,并简要概述了边缘计算在输电线路监控、智能变电站、智能家居等电力物联网中的应用,通过实际应用体现万物互联时代边缘计算的实时性、高效率性和低能耗性,为泛在电力物联网的进一步发展,提供思考路径。  相似文献   

9.
分析智能变电站后台监控画面GOOSE断链分图有利于运行检修人员对变电站内二次设备运行状态进行准确的判断,在设备异常的运行状态下也有利于缺陷原因的确定以及事故隐患的排查。  相似文献   

10.
文章提出了一种基于决策树算法的智能变电站虚回路故障诊断方法,通过对智能变电站虚回路各IED设备之间的信息流建模,得到IED设备关系表,利用决策树算法对智能变电站虚回路信息流进行实例分析,并对其故障诊断的正确率进行验证,仿真实验结果证明:该方法有利于诊断智能变电站各IED设备之间的信息流是否正确,模型具有可读性,分类速度快的优点,方便检修人员进行调试。  相似文献   

11.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

12.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

13.
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use.  相似文献   

14.
This study examined hydrological characteristics of low-grade weirs, an alternative controlled drainage strategy in surface drainage ditches. Chemographs of vegetated and clear scraped (control) replicates of weir vs. non-weir treatments were compared to determine differences in time to peak (Tp) and time to base (Tb). Drainage ditches Tp and Tb were affected by both vegetation and weir presence. The order of treatment efficiency for Tp was observed to be: non-vegetated non-weir < vegetated non-weir < non-vegetated weir < vegetated weir. Furthermore, Tb for each ditch was the reverse relationship from Tp where vegetated weir > non-vegetated weir > vegetated non-weir > non-vegetated non-weir. Low-grade weirs increase chemical retention time (vegetated and clear scraped), the average time a molecule of contaminant remains in the system. Future research in water quality improvement and weir management will yield useful information for non-point source pollutant reduction.  相似文献   

15.
Summary One means of using infrared measurements of foliage temperature (T f ) for scheduling irrigations requires the use of meteorological data to predict the foliage-air temperature difference for a comparable well-watered crop (T f *T a ). To determine the best method for making this prediction, parameters for models of increasing complexity for predicting (T f *T a ) were derived for wheat using two sets of field data collected in 1982 and 1983.The simplest model with vapor pressure deficit (VPD) as the sole predictor accounted for 64% of observed variance in (T f *T a ). The next model with both VPD and net radiation (R n ) as predictors accounted for 74%. The most complex model predicted (T f *T a ) from the crop energy balance. In addition to VPD and R n it included parameters for the effects of air temperature (T a ), aerodynamic resistance (r a ) and the canopy resistance of a well-watered crop (r cp ) and accounted for 70% of the variance.Accuracy of these alternative models was tested against an independent set of field data collected in 1984. The single variable model with VPD as sole predictor accounted for 17% of the variance in observed values of (T f *T a ). This increased to 47% when the effect of R n was included by using the two variable model and was increased further to 65% when the additional variables of T a , r a and r cp were included by use of the energy balance model. When the complexity of the model was measured by its number of variables there was a close relationship between complexity and the accuracy of the predictions. Reasons for the residual variability are discussed. The need for improved instrumentation for meteorological measurements was indicated.  相似文献   

16.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

17.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

18.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

19.
Physically, evaporative demand is driven by net radiation (Rn), vapour pressure (ea), wind speed (u2), and air temperature (Ta), each of which changes over time. By analyzing temporal variations in reference evapotranspiration (ET0), improved understanding of the impacts of climate change on hydrological processes can be obtained. In this study, variations in ET0 over 58 years (1950-2007) at 34 stations in the Haihe river basin of China were analyzed. ET0 was calculated by the FAO Penman-Monteith formula. Calculation of Kendall rank coefficient was done by analyzing the annual and seasonal trends in ET0 derived from its dependent climate variables. Inverse distance weighting (IDW) was used to analyze the spatial variation in annual and seasonal ET0, and in each climate variable. An attribution analysis was performed to quantify the contribution of each input variable to ET0 variation. The results showed that ET0 gradually decreased in the whole basin over the 58 years at a rate of −1.0 mm yr−2, at the same time, Rn, u2 and precipitation also decreased. Changes in ET0 were attributed to the variations in net radiation (−0.9 mm yr−2), vapour pressure (−0.5 mm yr−2), wind speed (−1.3 mm yr−2) and air temperature (1.7 mm yr−2). Looking at all data on a month by month basis, we found that Ta had a positive effect on dET0/dt (the derivative of reference evapotranspiration to time) and Rn and u2 had negative effects on dET0/dt. While changes in air temperature were found to produce a large increase in dET0/dt, changes in other key variables each reduced rates, resulting in an overall negative trend in dET0/dt.  相似文献   

20.
Summary A coupled soil-vegetation energy balance model which treats the canopy foliage as one layer and the soil surface as another layer was validated againt a set of field data and compared with a single-layer model of a vegetation canopy. The two-layer model was used to predict the effect of increases in soil surface temperature (T s ) due to the drying of the soil surface, on the vegetation temperature (T v ). In the absence of any change in stomatal resistance the impact of soil surface drying on the Crop Water Stress Index (CSWI) calculated from T v was predicted. Field data came from a wheat crop growing on a frequently irrigated plot (W) and a plot left un watered (D) until the soil water depletion reached 100 mm. Vegetation and soil surface temperatures were measured by infrared thermometers from tillering to physiological maturity, with meteorological variables recorded simultaneously. Stomatal resistances were measured with a diffusion porometer intensively over five days when the leaf area index was between 5 and 8. The T v predicted by the single-layer and the two-layer models accounted for 87% and 88% of the variance of measured values respectively, and both regression lines were close to the 11 relationship. Study of the effect of T s on the CWSI with the two-layer model indicated that the CWSI was sensitive to changes in T s . The overestimation of crop water stress calculated from the CWSI was predicted to be greater at low leaf area indices and high levels of stomatal resistance. The implications for this bias when using the CWSI for irrigation scheduling are discussed.List of Symbols C Sensible heat flux from the soil-vegetation system (W m–2) - c l shade Mean stomatal conductance of the shaded leaf area (m s–1) - c l sun Mean stomatal conductance of the sunlit leaf area (m s–1) - c max Maximum stomatal conductance (m s–1) - c 0 Minimum stomatal conductance (m s–1) - C p Specific heat at constant pressure (J kg–1 °C–1) - C s Sensible heat flux from the soil (W m–2) - C v Sensible heat flux from the vegetation (W m–2) - c v Bulk stomatal conductance of the vegetation (m s–1) - CWSI Crop Water Stress Index (dimensionless) - e a Vapor pressure at the reference height (kPa) - e b Vapor pressure at the virtual source/sink height of heat exchange (kPa) - e 0 * Saturated vapor pressure at T 0 (kPa) - e s Vapor pressure at the soil surface (kPa) - e v * Saturated vapor pressure at T v (kPa) - G Soil heat flux (Wm–2) - GLAI Green leaf area index (dimensionless) - GLAIshade Green shaded leaf area index (dimensionless) - GLAIsun Green sunlit leaf area index (dimensionless) - k Extinction coefficient for photosynthetically active radiation (dimensionless) - k 1 Damping exponent for Eq. A 5 (m2 W–1) - LAI Leaf area index (dimensionless) - LE Latent heat flux from the soil-vegetation system (W m–2) - LE s Latent heat flux from the soil (W m–2) - LE v Latent heat flux from the vegetation (W m–2) - p a Density of air (kg m–3) - PARa Photosynthetically active radiation above the canopy (W m–2) - PARu Photosynthetically active radiation under the canopy (W m–2) - r a Aerodynamic resistance (s m–1) - r b Heat exchange resistance between the vegetation and the adjacent air boundary layer (s m–1) - r c Bulk stomatal resistance of the vegetation (s m–1) - R n Net radiation above the canopy (W m–2) - R s Net radiation flux at the soil surface (W m–2) - r st Mean stomatal resistance of leaves in the canopy (s m–1) - R v Net radiation absorbed by the vegetation (W m–2) - r w Heat exchange resistance between the soil surface and the boundary layer (s m–1) - S Photosynthetically active radiation on the shaded leaves (W m–2) - S d Diffuse photosynthetically active radiation (W m –2) - S 0 Photosynthetically active radiation on a surface perpendicular to the beams (W m–2) - T a Air temperature at the reference height (°C) - T b Temperature at the virtual source/sink height of heat exchange (°C) - T 0 Aerodynamic temperature (°C) - T s Soil surface temperature (°C) - T v Vegetation temperature (°C) - w 0 Single scattering albedo (dimensionless) - Psychrometric constant (kPa °C) - 0 Cosine of solar zenith angle (dimensionless)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号