首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Green extraction was applied to Argentinean shortfin squid (Illex argentinus) viscera, consisting of a wet pressing method including a drying step, mechanic pressing, centrifugation of the resulting slurry, and oil collection. To maximise the oil yield and ω3 fatty acid content and to minimise the oil damage degree, a response surface methodology (RSM) design was developed focused on the drying temperature (45–85 °C) and time (30–90 min). In general, an increase of the drying time and temperature provided an increase in the lipid yield recovery from the viscera. The strongest drying conditions showed a higher recovery than 50% when compared with the traditional chemical method. The docosahexaenoic and eicosapentaenoic acid contents in the extracted oil revealed scarce dependence on drying conditions, showing valuable ranges (149.2–166.5 and 88.7–102.4 g·kg−1 oil, respectively). Furthermore, the values of free fatty acids, peroxides, conjugated dienes, and ω3/ω6 ratio did not show extensive differences by comparing oils obtained from the different drying conditions. Contrary, a polyene index (PI) decrease was detected with increasing drying time and temperature. The RSM analysis indicated that optimised drying time (41.3 min) and temperature (85 °C) conditions would lead to 74.73 g·kg−1 (oil yield), 1.87 (PI), and 6.72 (peroxide value) scores, with a 0.67 desirability value.  相似文献   

2.
The effects of temperature on growth and production of Lipophilic Toxins (LT) by a monoclonal culture of Dinophysis caudata was studied. The cell density of D. caudata increased significantly with increasing temperature, and was the highest under 27, 30, and 32.5 °C. Temperature affected the average specific growth rate (µ) during the exponential growth phase (EG), which increased from 15 °C to 30 °C, and then decreased at 32.5 °C. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that this strain of D. caudata produced only pectenotoxin-2 (PTX-2) whose concentration increased significantly with incubation period, except at 32.5 °C. It was significantly different between temperatures ≤18 °C, ≥21 °C, and 32.5 °C. The cellular toxin production (CTP, pg·cell−1·day−1) showed variation with growth phase and temperature, except at 32.5 °C. The average net toxin production (Rtox) was not affected by temperature. During EG, the average specific toxin production rate (µtox) increased significantly with increase in temperature, reaching a peak of 0.66 ± 0.01 day−1 at 30 °C, and then decreased. Over the entire growth span, µtox was significantly correlated to µ, and this correlation was most significant at 27 and 30 °C. During EG, µtox was affected by both temperature and growth. This study shows that temperature affects growth and toxin production of this strain of D. caudata during EG. In addition, a positive correlation was found between toxin production and growth.  相似文献   

3.
Hydrolysates were prepared from rice bran protein concentrate (RBPc) in paste form (P-RBPc), or as spray-dried (S-RBPc) or freeze-dried (F-RBPc) powder by acid hydrolysis with aqueous 0.5N HCl at 95 °C for 12 or 36 h. The forms of the protein raw material had only a slight influence over the sensory aroma characteristics of the liquid hydrolysates. The liquid hydrolysate (S-H-RBPc-12) prepared from S-RBPc with hydrolysis time of only 12 h could produce the desirable aromas as to a similar extent as that of 36 h. In order to demonstrate the effect of drying method on the composition and aroma characteristics, a representative S-H-RBPc-12 was converted into a powder by freeze- and spray-drying techniques. Sensory analysis indicated that the spray-dried powder had higher cracker-like and salty aroma intensities and received a higher overall liking score compared to the freeze-dried hydrolysate powder.  相似文献   

4.
Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA) and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from Gloeothece sp.–using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate. The bioactive potential of extracts was assessed in terms of antioxidant (ABTS•+, DPPH, NO and O2assays), anti-inflammatory (HRBC membrane stabilization and Cox-2 screening assay), and antitumor capacity (death by TUNEL, and anti-proliferative by BrdU incorporation assay in AGS cancer cells); while its composition was characterized in terms of carotenoids and fatty acids, by HPLC-DAD and GC-FID methods, respectively. Results revealed a chemopreventive potential of the HI extract owing to its ability to: (I) scavenge -NO radical (IC50, 1258 ± 0.353 µg·mL−1); (II) inhibit 50% of COX-2 expression at 130.2 ± 7.4 µg·mL−1; (III) protect 61.6 ± 9.2% of lysosomes from heat damage, and (IV) induce AGS cell death by 4.2-fold and avoid its proliferation up to 40% in a concentration of 23.2 ± 1.9 µg·mL−1. Hence, Gloeothece sp. extracts, namely HI, were revealed to have the potential to be used for nutraceutical purposes.  相似文献   

5.
Domoic acid (DA), the toxin causing amnesic shellfish poisoning (ASP), is produced globally by some diatoms in the genus Pseudo-nitzschia. DA has been detected in several marine mammal species in the Alaskan Arctic, raising health concerns for marine mammals and subsistence communities dependent upon them. Gastrointestinal matrices are routinely used to detect Harmful Algal Bloom (HAB) toxin presence in marine mammals, yet DA stability has only been studied extensively in shellfish-related matrices. To address this knowledge gap, we quantified DA in bowhead whale fecal samples at multiple time points for two groups: (1) 50% methanol extracts from feces, and (2) raw feces stored in several conditions. DA concentrations decreased to 70 ± 7.1% of time zero (T0) in the 50% methanol extracts after 2 weeks, but remained steady until the final time point at 5 weeks (66 ± 5.7% T0). In contrast, DA concentrations were stable or increased in raw fecal material after 8 weeks of freezer storage (−20 °C), at room temperature (RT) in the dark, or refrigerated at 1 °C. DA concentrations in raw feces stored in an incubator (37 °C) or at RT in the light decreased to 77 ± 2.8% and 90 ± 15.0% T0 at 8 weeks, respectively. Evaporation during storage of raw fecal material is a likely cause of the increased DA concentrations observed over time with the highest increase to 126 ± 7.6% T0 after 3.2 years of frozen storage. These results provide valuable information for developing appropriate sample storage procedures for marine mammal fecal samples.  相似文献   

6.
The neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium Shewanella sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity under the optimal pH and temperature of 7.0 and 35 °C, respectively. rAgaW1540 retained 85.4% of its maximum activity at 0 °C and retained more than 92% of its maximum activity at the temperature range of 20–40 °C and the pH range of 4.0–9.0, respectively, indicating its extensive working temperature and pH values. The activity of rAgaW1540 was dramatically suppressed by Cu2+ and Zn2+, whereas Fe2+ displayed an intensification of enzymatic activity. The Km and Vmax of rAgaW1540 for agarose degradation were 15.7 mg/mL and 23.4 U/mg, respectively. rAgaW1540 retained 94.7%, 97.9%, and 42.4% of its maximum activity after incubation at 20 °C, 25 °C, and 30 °C for 60 min, respectively. Thin-layer chromatography and ion chromatography analyses verified that rAgaW1540 is an endo-acting β-agarase that degrades agarose into neoagarotetraose and neoagarohexaose as the main products. The wide variety of working conditions and stable activity at room temperatures make rAgaW1540an appropriate bio-tool for further industrial production of neoagaro-oligosaccharides.  相似文献   

7.
Genome sequencing of Catenovulum agarivorans YM01T reveals 15 open-reading frames (ORFs) encoding various agarases. In this study, extracellular proteins of YM01T were precipitated by ammonium sulfate and separated by one-dimensional gel electrophoresis. The results of in-gel agarase activity assay and mass spectrometry analysis revealed that the protein, YM01-3, was an agarase with the most evident agarolytic activity. Agarase YM01-3, encoded by the YM01-3 gene, consisted of 420 amino acids with a calculated molecular mass of 46.9 kDa and contained a glycoside hydrolase family 16 β-agarase module followed by a RICIN superfamily in the C-terminal region. The YM01-3 gene was cloned and expressed in Escherichia coli. The recombinant agarase, YM01-3, showed optimum activity at pH 6.0 and 60 °C and had a Km of 3.78 mg mL−1 for agarose and a Vmax of 1.14 × 104 U mg−1. YM01-3 hydrolyzed the β-1,4-glycosidic linkages of agarose, yielding neoagarotetraose and neoagarohexaose as the main products. Notably, YM01-3 was stable below 50 °C and retained 13% activity after incubation at 80 °C for 1 h, characteristics much different from other agarases. The present study highlights a thermostable agarase with great potential application value in industrial production.  相似文献   

8.
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.  相似文献   

9.
Laboratory experiments were designed to study the toxin content and profile of the Alexandrium catenella strain ACT03 (isolated from Thau Lagoon, French Mediterranean) in response to abiotic environmental factors under nutrient-replete conditions. This dinoflagellate can produce various paralytic shellfish toxins with concentrations ranging from 2.9 to 50.3 fmol/cell. The toxin profile was characterized by carbamate toxins (GTX3, GTX4 and GTX5) and N-sulfocarbamoyl toxins (C1, C2, C3 and C4). C2 dominated at 12–18 °C, but only for salinities ranging from 10 to 25 psu, whereas GTX5 became dominant at temperatures ranging from 21 to 30 °C at almost all salinities. There was no significant variation in the cellular toxin amount from 18 °C to 27 °C for salinities ranging between 30 and 40 psu. At salinities of 10 to 25 psu, the toxin concentrations always remained below 20 fmol/cell. Toxin content was stable for irradiance ranging from 10 to 70 μmol photons/m2/s then slightly increased. Overall, the toxin profile was more stable than the toxin content (fmol/cell), except for temperature and/or salinity values different from those recorded during Alexandrium blooms in Thau Lagoon.  相似文献   

10.
Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production.  相似文献   

11.
Toxic dinoflagellate Alexandrium spp. produce saxitoxins (STXs), whose biosynthesis pathway is affected by temperature. However, the link between the regulation of the relevant genes and STXs’ accumulation and temperature is insufficiently understood. In the present study, we evaluated the effects of temperature on cellular STXs and the expression of two core STX biosynthesis genes (sxtA4 and sxtG) in the toxic dinoflagellate Alexandrium catenella Alex03 isolated from Korean waters. We analyzed the growth rate, toxin profiles, and gene responses in cells exposed to different temperatures, including long-term adaptation (12, 16, and 20 °C) and cold and heat stresses. Temperature significantly affected the growth of A. catenella, with optimal growth (0.49 division/day) at 16 °C and the largest cell size (30.5 µm) at 12 °C. High concentration of STXs eq were detected in cells cultured at 16 °C (86.3 fmol/cell) and exposed to cold stress at 20→12 °C (96.6 fmol/cell) compared to those at 20 °C and exposed to heat stress. Quantitative real-time PCR (qRT-PCR) revealed significant gene expression changes of sxtA4 in cells cultured at 16 °C (1.8-fold) and cold shock at 20→16 °C (9.9-fold). In addition, sxtG was significantly induced in cells exposed to cold shocks (20→16 °C; 19.5-fold) and heat stress (12→20 °C; 25.6-fold). Principal component analysis (PCA) revealed that low temperature (12 and 16 °C) and cold stress were positively related with STXs’ production and gene expression levels. These results suggest that temperature may affect the toxicity and regulation of STX biosynthesis genes in dinoflagellates.  相似文献   

12.
Caulerpa racemosa (sea grapes) and Ulva lactuca (sea lettuces) are edible green seaweeds and good sources of bioactive compounds for future foods, nutraceuticals and cosmeceutical industries. In the present study, we determined nutritional values and investigated the recovery of bioactive compounds from C. racemosa and U. lactuca using hot water extraction (HWE) and subcritical water extraction (SWE) at different extraction temperatures (110 to 230 °C). Besides significantly higher extraction yield, SWE processes also give higher protein, sugar, total phenolic (TPC), saponin (TSC), flavonoid contents (TFC) and antioxidant activities as compared to the conventional HWE process. When SWE process was applied, the highest TPC, TSC and TFC values were obtained from U. lactuca hydrolyzed at reaction temperature 230 °C with the value of 39.82 ± 0.32 GAE mg/g, 13.22 ± 0.33 DE mg/g and 6.5 ± 0.47 QE mg/g, respectively. In addition, it also showed the highest antioxidant activity with values of 5.45 ± 0.11 ascorbic acid equivalents (AAE) mg/g and 8.03 ± 0.06 trolox equivalents (TE) mg/g for ABTS and total antioxidant, respectively. The highest phenolic acids in U. lactuca were gallic acid and vanillic acid. Cytotoxic assays demonstrated that C. racemosa and U. lactuca hydrolysates obtained by HWE and SWE did not show any toxic effect on RAW 264.7 cells at tested concentrations after 24 h and 48 h of treatment (p < 0.05), suggesting that both hydrolysates were safe and non-toxic for application in foods, cosmeceuticals and nutraceuticals products. In addition, the results of this study demonstrated the potential of SWE for the production of high-quality seaweed hydrolysates. Collectively, this study shows the potential of under-exploited tropical green seaweed resources as potential antioxidants in nutraceutical and cosmeceutical products.  相似文献   

13.
Microwave-assisted extraction (MAE) was carried out to maximize the extraction of phlorotannins from Fucus vesiculosus using a hydroethanolic mixture as a solvent, as an alternative to the conventional method with a hydroacetonic mixture. Optimal MAE conditions were set as ethanol concentration of 57% (v/v), temperature of 75 °C, and time of 5 min, which allowed a similar recovery of phlorotannins from the macroalgae compared to the conventional extraction. While the phlorotannins richness of the conventional extract was slightly superior to that of MAE (11.1 ± 1.3 vs. 9.8 ± 1.8 mg PGE/g DWextract), both extracts presented identical phlorotannins constituents, which included, among others, tetrafucol, pentafucol, hexafucol, and heptafucol structures. In addition, MAE showed a moderate capacity to scavenge ABTS•+ (IC50 of 96.0 ± 3.4 µg/mL) and to inhibit the activity of xanthine oxidase (IC50 of 23.1 ± 3.4 µg/mL) and a superior ability to control the activity of the key metabolic enzyme α-glucosidase compared to the pharmaceutical drug acarbose.  相似文献   

14.
Five new nucleoside antibiotics, named streptcytosines A–E (1–5), and six known compounds, de-amosaminyl-cytosamine (6), plicacetin (7), bamicetin (8), amicetin (9), collismycin B (10), and SF2738 C (11), were isolated from a culture broth of Streptomyces sp. TPU1236A collected in Okinawa, Japan. The structures of new compounds were elucidated on the basis of their spectroscopic data (HRFABMS, IR, UV, and 2D NMR experiments including 1H-1H COSY, HMQC, HMBC, and NOESY spectra). Streptcytosine A (1) belonged to the amicetin group antibiotics, and streptcytosines B–E (2–5) were derivatives of de-amosaminyl-cytosamine (6), 2,3,6-trideoxyglucopyranosyl cytosine. Compound 1 inhibited the growth of Mycobacterium smegmatis (MIC = 32 µg/mL), while compounds 2–5 were not active at 50 µg/disc. Bamicetin (8) and amicetin (9) showed the MICs of 16 and 8 µg/mL, respectively.  相似文献   

15.
α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s−1 mM−1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.  相似文献   

16.
The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315–400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes.  相似文献   

17.
The aim of this study was to determine the favorable constant temperature range for Mahanarva spectabilis (Distant) (Hemiptera: Cercopidae) development as well as to generate geographic distribution maps of this insect pest for future climate scenarios. M. spectabilis eggs were reared on two host plants (Brachiaria ruziziensis (Germain and Edvard) and Pennisetum purpureum (Schumach)), with individual plants kept at temperatures of 16, 20, 24, 28, and 32°C. Nymphal stage duration, nymphal survival, adult longevity, and egg production were recorded for each temperature*host plant combination. Using the favorable temperature ranges for M. spectabilis development, it was possible to generate geographic distribution. Nymphal survival was highest at 24.4°C, with estimates of 44 and 8% on Pennisetum and Brachiaria, respectively. Nymphal stage duration was greater on Brachiaria than on Pennisetum at 20 and 24°C but equal at 28°C. Egg production was higher on Pennisetum at 24 and 28°C than at 20°C, and adult longevity on Pennisetum was higher at 28°C than at 20°C, whereas adult longevity at 24°C did not differ from that at 20 and 28°C. With these results, it was possible to predict a reduction in M. spectabilis densities in most regions of Brazil in future climate scenarios.  相似文献   

18.
(1) Background: Chitooligosaccharides (COS) have numerous applications due to their excellent properties. Chitosan hydrolysis using chitosanases has been proposed as an advisable method for COS preparation. Although many chitosanases from various sources have been identified, the cold-adapted ones with high stability are still rather rare but required. (2) Methods: A novel chitosanase named CsnY from marine bacterium Renibacterium sp. Y82 was expressed in Escherichia coli, following sequence analysis. Then, the characterizations of recombinant CsnY purified through Ni–NTA affinity chromatography were conducted, including effects of pH and temperature, effects of metal ions and chemicals, and final product analysis. (3) Results: The GH46 family chitosanase CsnY possessed promising thermostability at broad temperature range (0–50 °C), and with optimal activity at 40 °C and pH 6.0, especially showing relatively high activity (over 80% of its maximum activity) at low temperatures (20–30 °C), which demonstrated the cold-adapted property. Common metal ions or chemicals had no obvious effect on CsnY except Mn2+ and Co2+. Finally, CsnY was determined to be an endo-type chitosanase generating chitodisaccharides and -trisaccharides as main products, whose total concentration reached 56.74 mM within 2 h against 2% (w/v) initial chitosan substrate. (4) Conclusions: The results suggest the cold-adapted CsnY with favorable stability has desirable potential for the industrial production of COS.  相似文献   

19.
The recovery of amino acids and other important bioactive compounds from the comb penshell (Atrina pectinata) using subcritical water hydrolysis was performed. A wide range of extraction temperatures from 140 to 290 °C was used to evaluate the release of proteins and amino acids. The amount of crude protein was the highest (36.14 ± 1.39 mg bovine serum albumin/g) at 200 °C, whereas a further increase in temperature showed the degradation of the crude protein content. The highest amount of amino acids (74.80 mg/g) was at 230 °C, indicating that the temperature range of 170–230 °C is suitable for the extraction of protein-rich compounds using subcritical water hydrolysis. Molecular weights of the peptides obtained from comb penshell viscera decreased with the increasing temperature. SDS-PAGE revealed that the molecular weight of peptides present in the hydrolysates above the 200 °C extraction temperature was ≤ 1000 Da. Radical scavenging activities were analyzed to evaluate the antioxidant activities of the hydrolysates. A. pectinata hydrolysates also showed a particularly good antihypertensive activity, proving that this raw material can be an effective source of amino acids and marine bioactive peptides.  相似文献   

20.
Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37–40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号