首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate the effect of topical administration of 2% dorzolamide hydrochloride or 2% dorzolamide hydrochloride-0.5% timolol maleate on intraocular pressure (IOP) in clinically normal horses. ANIMALS: 18 healthy adult horses without ocular abnormalities. PROCEDURE: The IOP was measured at 5 time points (7 AM, 9 AM, 11 AM, 3 PM, 7 PM) over 11 days. On days 1 and 2, baseline values were established. On days 3 through 5, horses received 2% dorzolamide HCI (group D, n = 9) or 2% dorzolamide HCl-0.5% timolol maleate (group DT, 9) in 1 randomly assigned eye every 24 hours immediately following each daily 7 AM IOP measurement. On days 6 through 9, each drug was given every 12 hours (7 AM and 7 PM) in the treated eye. Measurements on days 10 and 11 assessed return to baseline. Mixed linear regression models compared mean IOP difference for each drug at each time period. RESULTS: Mean IOP decreased significantly in all eyes during the 2 dose/d period, compared with the baseline, 1 dose/d, and follow-up periods. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of either drug every 24 hours for short-term treatment does not reduce IOP significantly. Administering either drug every 12 hours induced a significant reduction of IOP; however, controlling for all variables, the reduction was less than 2 mm Hg.  相似文献   

2.
OBJECTIVE: To determine the effect of 0.005% latanoprost solution on intraocular pressure (IOP) of eyes of clinically normal horses and establish the frequency of adverse effects of drug administration. ANIMALS: 20 adult clinically normal horses. PROCEDURE: IOP was recorded (7, 9, and 11 AM; 3, 5, and 7 PM) on days 1 and 2 (baseline), days 3 to 7 (treatment), and days 8 to 9 (follow-up). Latanoprost was administered to 1 randomly assigned eye of each horse every 24 hours during the treatment period, following the 7 AM IOP recording. Pupil size and the presence or absence of conjunctival hyperemia, epiphora, blepharospasm, blepharedema, and aqueous flare were recorded prior to IOP measurement. RESULTS: IOP was reduced from baseline by a mean value of 1.03 mm Hg (5%) in males and 3.01 mm Hg (17%) in females during the treatment period. Miosis developed in all treated eyes and was moderate to marked in 77% of horses, with the peak effect observed 4 to 8 hours after drug administration. Conjunctival hyperemia, epiphora, blepharospasm, and blepharedema were present in 100, 57, 42, and 12% of treated eyes, respectively, 2 to 24 hours following drug administration. Aqueous flare was not observed at any time point. CONCLUSIONS AND CLINICAL RELEVANCE: Although IOP was reduced with every 24-hour dosing of latanoprost, the frequency of prostaglandin-induced adverse events was high. Because recurrent uveitis appears to be a risk factor for glaucoma in horses, topical administration of latanoprost may potentiate prostaglandin-mediated inflammatory disease in affected horses.  相似文献   

3.
Reasons for performing study: Only few drugs with limited efficacy are available for topical treatment of equine glaucoma. Objective: To evaluate the effect of topical administration of 1% brinzolamide on intraocular pressure (IOP) in clinically normal horses. Methods: Healthy mature horses (n = 20) with normal ocular findings, were studied. The IOP was measured 5 times daily (07.00, 11.00, 15.00, 19.00 and 23.00 h) over 10 days. On Days 1 and 2, baseline values were established. On Days 3–5 one eye of each horse was treated with one drop of 1% brinzolamide every 24 h immediately following the 07.00 h measurement. On Days 6–8 the same eye was treated with 1% brinzolamide every 12 h (07.00 and 19.00 h). Measurements on Days 9 and 10 documented the return of IOP to baseline values. Statistical analysis of the data was performed. Results: In the treated eye a significant decrease in IOP compared to baseline values was noted during both the 24 and 12 h dosing periods (P<0.001). During the once‐daily treatment protocol an IOP reduction of 3.1 ±1.3 mmHg (14%) from baseline was recorded. During the twice‐daily protocol a total IOP reduction of 5.0 ± 1.5 mmHg (21%) was achieved. Conclusion: Intraocular pressure was significantly decreased by 1% brinzolamide in a once‐daily and a twice‐daily treatment protocol in normotensive eyes. These findings suggest that brinzolamide might also be effective in horses with an elevated IOP. Potential relevance: This drug may be useful for treatment of equine glaucoma.  相似文献   

4.
OBJECTIVE: To identify any systemic effects of topical and subconjunctival administration of atropine sulfate in the horse. Animals studied Six mature grade horses were treated hourly in one eye with topical ophthalmic atropine drops for 24 h. Five horses were treated subconjunctivally in one eye with 3 mg of atropine sulfate. Procedures Pupillary light reflexes, pupil size, electrocardiographic parameters, girth measurements, intestinal motility, and clinical signs of abdominal pain were monitored. RESULTS: Alteration in auscultated gut motility and clinical signs of abdominal pain were the most sensitive indicators of the systemic manifestations of the topically applied atropine. Gut motility was absent in all horses for periods of 2-18 h in all four abdominal quadrants in horses given topically administered atropine. Signs of abdominal pain were observed in four of six horses that received topical atropine. In the subconjunctival test study, gut motility was absent in three horses for periods of 3-7 h. Uniocular subconjunctival injection of 3 mg atropine sulfate produced signs of abdominal pain in one of six horses. Conclusion The ophthalmic administration of atropine can affect gut motility and induce signs of colic in selected horses.  相似文献   

5.
OBJECTIVE: To determine the effect of single and multiple-dose 0.5% timolol maleate on intraocular pressure (IOP) and pupil size between 8 AM and 8 PM. Animals Nine female horses with normotensive eyes. Procedure IOP, horizontal and vertical pupil size were measured on a single day, between 8 AM and 8 PM at hours 0, 0.5, 1, 2, 4, 6, 8, 10, and 12. A single dose of 0.5% timolol maleate was applied to both eyes immediately after the first measurement at 8 AM. IOP and pupil size were measured at 8 AM and 4 PM in a 5-day experiment of twice-daily application of 0.5% timolol maleate. RESULTS: A significant decrease in IOP from 24.9 +/- 4.2 mmHg prior to application of timolol maleate to 20.7 +/- 3.1 mmHg (4.2 mmHg = 17%) was observed 8 h after single-dose application. A significant decrease in horizontal pupil size (2.0 mm = 11%) was present 6 h after single-dose application. In the multiple-dose experiment, a significant decrease in IOP was present on days 4 and 5 as compared to IOP measured prior to application of timolol maleate. A significant decrease in horizontal and vertical pupil size was present throughout the 5-day study as compared to the values obtained prior to treatment. CONCLUSIONS: 0.5% timolol maleate significantly decreased IOP and pupil size in normo-tensive eyes of this group of female horses in both single and multiple twice daily applications.  相似文献   

6.
The objective of the study was to determine the effect of topical 0.5% tropicamide on intraocular pressure (IOP) in normotensive feline eyes. IOP was measured bilaterally in 70 clinically healthy cats and gonioscopy (and goniophotography) was performed. Thereafter, 50 cats were treated unilaterally with one drop of 0.5% tropicamide. The contralateral, left eye served as a control. In the placebo group consisting of 20 cats, one drop of physiologic saline solution was administered to the right eye. In all cats, IOP of both eyes was measured 30, 60 and 90 min after topical administration. After unilateral tropicamide application, IOP increased significantly both in the right and in the left eye. Maximum average IOP increase was observed at the control measurement performed 90 min after treatment, with an elevation of 3.8 +/- 4.2 mmHg in the right eye and 3.5 +/- 3.6 mmHg in the left eye. Maximum IOP increase after treatment was 18.0 mmHg in the treated eye and 17.0 mmHg in the left eye. Measurements made at 60 min after treatment revealed a significantly higher increase in IOP in the right eye as compared to the left eye (P60 < 0.05), whereas the differences between right and left eye in IOP increase were not significant at 30 and 90 min after mydriatic application (P30 = 0.123; P90 = 0.305). Although tropicamide-induced mydriasis was observed in the treated eye, the contralateral eye did not show any changes in pupillary function at any time. With increasing age of the cats, IOP increase was found to be more moderate, whereas the gender of the cats did not have any significant influence on IOP changes. In the 20 cats in the placebo group, no significant changes in IOP were observed. We conclude that topical 0.5% tropicamide causes a significant elevation of IOP in the treated and untreated eye in normal cats.  相似文献   

7.
The ocular effects of latanoprost ophthalmic solution were evaluated in two studies, with eight horses in each study. One eye of each horse was treated with latanoprost ophthalmic solution once daily for 5 days, and the opposite eye received a control solution of sterile eyewash. Intraocular pressure and pupillary diameter were measured daily for 5 days after treatment. Latanoprost had no significant effect on intraocular pressure or pupillary diameter in normal horse eyes compared with control eyes in these studies. Placement of an eyelid nerve block resulted in significantly lower intraocular pressure.  相似文献   

8.
Objectives The purpose of this study was to determine the influence of age, breed and gender on vertical pupil diameter (VPD) following a single dose of 1% atropine sulfate ophthalmic solution in the normal equine eye. Animals studied Thirty‐two horses of various ages, breeds and genders were included. The horses had no history or clinical signs of ophthalmic disease. All horses studied had darkly pigmented irides. Procedures Two milligrams of 1% atropine sulfate ophthalmic solution was topically administered as a single dose in the right eye of each horse on Day 0. The VPD (mm) was measured in both eyes using digital calipers prior to treatment and every 24 h after administration for 2 weeks (Days 1–14). Duration of effect on VPD was then calculated for treated and untreated eyes. Data were also analyzed for effect of age, breed and gender on mean VPD, maximum VPD and time to maximum VPD. Results The VPD in the treated eye was significantly elevated compared to baseline measurements and compared to the untreated eye at all time points. Arabians had a greater mean VPD at Day 0 and on several days following treatment. Females had greater mean VPD compared to males on 5 out of 15 days. Conclusions Duration of mydriasis after administration of 1% atropine sulfate ophthalmic solution in the normal equine eye is greater than 14 days. Horses of the Arabian breed and female horses may be more sensitive to effects of cholinergic blockade in the eye.  相似文献   

9.
Effects of topical administration of a single dose of timolol maleate on intraocular pressure (IOP) and pupil diameter were evaluated in normotensive eyes of 11 clinically normal dogs over 12 hours (7:00 AM to 7:00 PM). Mean (+/- SEM) normal IOP was 15.5 (+/- 1.1) mm of Hg and diurnal fluctuation was observed, with the highest IOP seen in the morning. Mean normal pupil diameter was 8.5 (+/- 0.3) mm. Topical treatment with 0.5% timolol resulted in reduction of IOP in the treated and nontreated eyes. Mean reduction of IOP in the treated eye was 2.5 mm of Hg, a reduction of 16.1%, with maximal reduction of 3.7 mm of Hg. Mean reduction of IOP in the nontreated eye was 1.4 mm of Hg, a reduction of 9.0%. The treated eye had reduced pupil diameter at 30 minutes after treatment, which persisted throughout the 12 hours of the study. Mean reduction of pupil diameter in the treated eye was 2.9 mm, a reduction of 34.1%. In addition, a contralateral effect on pupil diameter was seen in the nontreated eye, with mean reduction of 1.2 mm, a reduction of 14.1%. Topical administration of timolol maleate resulted in reduction of IOP and pupil diameter in treated and contralateral eyes, thus supporting the use of timolol for treatment of glaucoma in dogs. Miosis indicates possible beta-adrenergic inhibition or alpha-adrenergic activation of the sphincter muscle. beta-Adrenergic blockade would then result in miosis.  相似文献   

10.
OBJECTIVE: To assess the effectiveness of topical mitomycin C application as an alternative adjunctive therapy to CO2 laser ablation in the treatment of equine ocular squamous cell carcinoma. DESIGN: A retrospective clinical study of eight client owned horses in which 10 affected eyes were treated for ocular squamous cell carcinoma over a 17 month period. (March 2003 to August 2004). PROCEDURE: Each horse was given a general anaesthetic to allow CO2 laser ablation of the lesion(s). Mitomycin C at a concentration of 0.4 mg/mL was then applied intraoperatively to the affected areas for 1 or 5 minutes. Postoperatively a triple antibiotic eye ointment was applied to the eye twice daily and each horse was treated with systemic non-steroidal anti-inflammatory drugs for 7 days. RESULTS: Recurrence following treatment was noted in three eyes. Two of these were retreated and no further signs developed. The remaining eye was enucleated at the request of the owner. Overall 90% of treated eyes appeared free of tumour a minimum of 11 months post treatment. CONCLUSION: In this case series mitomycin C appeared to offer a valid alternative to other adjunctive therapies currently employed in the treatment of equine ocular squamous cell carcinoma.  相似文献   

11.
OBJECTIVE: To determine the effect of oral hydrocortisone on intraocular pressure (IOP) in ocular normotensive dogs. ANIMALS STUDIED: Seventeen ocular normotensive dogs. Procedures Dogs were randomly assigned to treatment (n = 9) and control (n = 8) groups. Dogs in the treatment group received hydrocortisone, 3.3 mg/kg PO every 8 h, and dogs in the control group received gelatin capsule placebo PO every 8 h for 5 weeks. Applanation tonometry was performed on both eyes of all dogs prior to treatment and then once weekly for 5 weeks during hydrocortisone treatment. RESULTS: No significant effect of treatment was noted for right (P = 0.1013) or left (P = 0.1157) eyes during the treatment period, nor was there significant interaction of treatment by week for the right (P = 0.9456) or left (P = 0.3577) eyes. A significant rise in IOP over the treatment period was noted in both right (P < 0.0001) and left (P = 0.0006) eyes of both groups, but was unrelated to treatment. CONCLUSION: Orally administered hydrocortisone does not significantly increase IOP in nonglaucomatous dogs when administered over a 5-week period.  相似文献   

12.
OBJECTIVE: The current study was undertaken to evaluate the effects of topically applied bimatoprost, an ocular hypotensive lipid, on intraocular pressure (IOP) and pupil size (PS) in healthy cats. ANIMAL STUDIED: Nine European Shorthair cats free from clinically relevant ocular abnormalities were used in the study. PROCEDURES: Pretreatment baseline measurements of IOP and PS were obtained bilaterally at 8 am, 2 pm, and 8 pm for five consecutive days (days 1 to 5). Then the cats received one drop twice daily (10 am and 6 pm) of bimatoprost ophthalmic solution 0.03% (Lumigantrade mark, Allergan Inc., Irvine, CA USA), in one randomly selected eye and one drop of artificial tears in the fellow eye (control eye) for 5 days (days 6 to 10). Values for IOP and PS were obtained under the same conditions as in the pretreatment phase. The potential for ocular irritation following bimatoprost application was also evaluated. RESULTS: During the pretreatment period, the mean IOP and mean PS were not significantly different between the eyes subsequently treated with bimatoprost and those subsequently determined as controls. During the treatment period, the mean IOP in bimatoprost-treated eyes was not significantly lower than in control eyes (14.2+/-2.3 vs. 14.5+/-2.8 mmHg). Mean IOP in control eyes was not significantly changed at any time during the study period. A marked reduction of PS was seen in all bimatoprost-treated eyes, but no other clinically relevant side effects were observed. CONCLUSION: Twice daily topical applications of bimatoprost produced miosis but had no significant effect on IOP in healthy cats.  相似文献   

13.
OBJECTIVE: To evaluate effects of daily topical ocular administration of latanoprost solution on intraocular pressure (IOP) in healthy cats and dogs. ANIMALS: 9 domestic shorthair cats and 14 dogs. PROCEDURE: Latanoprost solution (0.005%) was administered topically to 1 eye (treated) and vehicle to the other eye (control) of all animals once daily in the morning for 8 days. Intraocular pressure was measured twice daily for the 5 days preceding treatment, and IOP, pupillary diameter, conjunctival hyperemia, and blepharospasm were measured 0, 1, 6, and 12 hours after the first 4 treatments and 0 and 12 hours after the final 4 treatments. Measurements continued twice a day for 5 days after treatment was discontinued. Aqueous flare was measured once daily during and for 5 days after the treatment period. RESULTS: Intraocular pressure and pupillary diameter were significantly decreased in the treated eye of dogs, compared with the control eye. Mild conjunctival hyperemia was also detected, but severity did not differ significantly between eyes. Blepharospasm and aqueous flare were not detected in either eye. Intraocular pressure in cats was not significantly affected by treatment with latanoprost. However, pupillary diameter was significantly decreased in the treated eye, compared with the control eye. Conjunctival hyperemia, aqueous flare, and blepharospasm were not detected in either eye. CONCLUSIONS AND CLINICAL RELEVANCE: Once-daily topical ocular administration of latanoprost solution (0.005%) reduced IOP in healthy dogs without inducing adverse effects but did not affect IOP in healthy cats. Latanoprost may be useful for treating glaucoma in dogs.  相似文献   

14.
The aim of this study was to evaluate the effect of topical 1% tetracaine hydrochloride on the intraocular pressure (IOP) in ophthalmologically normal horses. Thirty eyes of 15 clinically normal horses were used for this study. The animals were randomly assigned to two groups (treatment and control). Prior to the instillation of 1% tetracaine or placebo, the baseline IOPs (T0) of each animal were recorded in both groups. Then one drop of tetracaine was instilled randomly into one eye of each horse in the treatment group (8 horses). In the control group (7 horses), one drop of artificial tear was instilled in one randomly selected eye. The measurements were repeated at 2 minutes (T2), 5 minutes (T5), 15 minutes (T15), and 30 minutes (T30) post instillation via a rebound tonometer. There was no significant difference in the treatment group (P = .3). The peak IOP measured at T2 returned to the baseline value at T30. No significant difference was found in the mean IOP values between the treatment and the control groups, or between the males and females on any of the occasions (P > .05). The Results of this study revealed a nonsignificant increase of the IOP 2 minutes post instillation of 1% tetracaine in horses.  相似文献   

15.
OBJECTIVE: To evaluate the effects on intraocular pressure (IOP), pupillary diameter (PD), blepharospasm score, conjunctival injection score, and aqueous humor flare score when either 0.03% bimatoprost solution is applied once daily or 0.15% unoprostone isopropyl solution is applied twice daily topically to the eyes of normal cats. MATERIALS AND METHODS: The aforementioned parameters were evaluated daily in each of 12 cats throughout the entirety of the study. During an initial 10-day treatment phase a single eye of six of the cats was treated with 0.03% bimatoprost solution while a single eye of the remaining six cats was treated with buffered saline solution (BSS) once daily. During a second 10-day treatment phase a single eye of six of the cats was treated with 0.15% unoprostone isopropyl solution while a single eye of the remaining six cats was treated with BSS twice daily. Contralateral eyes of all cats remained untreated at all time points. RESULTS: Blepharospasm score, conjunctival injection score, and aqueous humor flare score never rose from a value of 0, for any eye of any cat during the study. The mean +/- SD of IOP for eyes treated with 0.03% bimatoprost solution and BSS were 16.55 +/- 3.06 mmHg and 18.02 +/- 3.52 mmHg, respectively. The mean +/- of PD for eyes treated with 0.03% bimatoprost solution and BSS were 5.7 +/- 1.57 mm and 6.39 +/- 1.78 mm, respectively. The mean +/- SD of IOP for eyes treated with 0.15% unoprostone isopropyl solution and BSS were 15.7 +/- 2.91 mmHg and 17.2 +/- 2.9 mmHg, respectively. The mean +/- SD of PD for eyes treated with 0.15% unoprostone isopropyl solution and BSS were 5.8 +/- 1.43 mm and 6.9 +/- 1.37 mm, respectively. There was no significant difference (P > or = 0.05) in IOP or PD between eyes treated with 0.03% bimatoprost solution vs. eyes treated with BSS. Similarly, there was no significant difference (P > or = 0.05) in IOP or PD between eyes treated with 0.15% unoprostone isopropyl solution vs. eyes treated with BSS. CONCLUSION: Neither once daily topical administration of 0.03% bimatoprost solution nor twice daily topical administration of 0.15% unoprostone isopropyl solution significantly affect the IOP of normal cats. Both 0.03% bimatoprost solution and 0.15% unoprostone isopropyl solution induced no significant ocular side effects in normal cats when dosed over a 10-day treatment period.  相似文献   

16.
Effects of topical administration of 1% brinzolamide on normal cat eyes   总被引:1,自引:0,他引:1  
Objective To evaluate the effect of short‐term daily topical administration of 1% brinzolamide on the intraocular pressure (IOP) of healthy domestic cats with normotensive eyes and to assess the potential for negative side effects of drug administration. Animals Twelve privately owned adult domestic cats without physical or ocular abnormalities. Procedure Normal variation in IOP was determined on day 1. Cats were then treated on days 2–8 with a topical placebo (artificial tear solution) OU q 12 h. On days 9–15 the cats were treated q 12 h with 1% brinzolamide in one randomly selected eye and the placebo in the contralateral eye. All medications (drug and placebo) were administered twice daily at 7 a.m. and 7 p.m. On days 16–22 the cats received no topical medications. IOP, horizontal pupil size in mm and assessment of conjunctival hyperemia were noted OU on days 1, 8, 15 and 22 at 5 time points (9 a.m., 11 a.m., 1 p.m., 3 p.m. and 5 p.m.). Mixed linear regression models were used to compare the IOP of each eye at all time periods for each cat, controlling for age and weight. Results Mean IOP was not significantly altered in any eye at any time point during the treatment period compared with pretreatment, baseline, or follow‐up evaluations. Conjunctival hyperemia and miosis were not detected in either eye at any time point. Conclusions and clinical relevance Short‐term q 12 h administration of 1% brinzolamide did not significantly reduce IOP in this small sample population of normotensive cats under these study conditions. No clinically relevant side effects were noted with brinzolamide administration.  相似文献   

17.
The objectives of this study were to determine the concentration of itraconazole achieved in corneal tissue and aqueous humour after topical application of a 1% itraconazole ointment; to determine the effect of including dimethyl sulphoxide (DMSO) in the ointment on achievable ocular tissue itraconazole concentrations; and to assess if any gross or histopathologic ocular toxicity results from the topical application of 1% itraconazole with or without the addition of DMSO.
The experimental trial consisted of 6 horses considered to have normal eyes. Each horse had one eye treated with 0.3 mL of 1% ultra-micronized itraconazole ointment and the fellow eye with 0.3 mL of 1% itraconazole/30% DMSO ointment. The ointment was applied every 6 h for a total of 28 treatments. Both ointments were well tolerated and no gross or histopathologic abnormalities developed during the trial.
Corneal tissue and aqueous humour concentrations of itraconazole were determined using high performance liquid chromatography. Corneal tissue concentration averaged 1.1 (± 0.4) μg/g in horses treated with the 1% ultra-micronized itraconazole ointment and 7.9 (± 3.3) μg/g for those treated with the 1% itraconazole/30% DMSO ointment; there was a statistically significant difference between ointments ( P = 0.005) No itraconazole could be detected in the aqueous humour in either treatment group.  相似文献   

18.
OBJECTIVE: To assess the effectiveness of free conjunctival grafts in the treatment of horses with a range of keratopathies. DESIGN: A retrospective clinical study of ten client-owned horses treated at Murdoch University Veterinary Hospital from May 1996 to September 2001. PROCEDURE: The suitability of patients for the surgical procedure was assessed using a slit lamp biomicroscope and by direct and indirect ophthalmoscopy. Surgery was performed with the aid of an operating microscope, under general anaesthesia. A subpalpebral ocular lavage catheter was used for administration of topical atropine and antibiotics postoperatively. RESULTS: In all ten horses the affected globe was saved. In nine of the horses vision in the eye was satisfactory 6 months after surgery, and in one horse the eye was blind. Complications included further corneal ulceration or eyelid abscessation and some loss of sutures, although these did not preclude a successful outcome. CONCLUSION: Free conjunctival grafts were successful in treating a range of keratopathies in the horse, and the technique offers a number of advantages over other forms of surgical intervention.  相似文献   

19.
Objective To evaluate effects of Coherin? on intraocular pressure (IOP), pupil size (PS), and heart rate (HR) in glaucomatous Beagles in single‐dose studies in a pilot study. Materials and methods Intraocular pressure, PS, and HR were measured in eight glaucomatous Beagles. One randomly chosen eye received single 50 μL doses of differing concentrations of Coherin? (treated eye) or vehicle (placebo‐treated eye), and the fellow eye served as the untreated control. After the first measurements, a single dose of either Coherin? or sterile water vehicle was instilled in the drug and placebo eyes, respectively. Results The mean ± SEM diurnal changes in IOP after 0.005%, 0.01%, 0.2%, 0.284%, 1%, 2%, and 4% topical Coherin? once daily were 7.6 ± 3.2 mmHg, 15.5 ± 5.3 mmHg, 11.2 ± 4.4 mmHg, 11.8 ± 4.4 mmHg, 19.1 ± 3.8 mmHg, 5.0 ± 1.8 mmHg, and 8.8 ± 2.8 mmHg, respectively. The declines in IOP were significantly different (P < 0.05) from the untreated control eyes with the 0.2% and 0.284% Coherin?‐treated eyes and suggestive for 1% Coherin? concentrations. No signs of irritation, significant PS, and HR changes were detected in the Coherin?‐treated eyes. Conclusion Of seven different concentrations, 2% and 0.248% Coherin? produced significant declines in IOP in the glaucomatous beagle in single‐dose studies when compared to both untreated control and placebo‐treated eyes. One percent Coherin? solution produced significant IOP decreases compared with the placebo‐treated eye but not the untreated control eyes. No local ocular irritation, PS and HR changes were observed in Coherin?‐treated eyes. This pilot study suggests that topical Coherin? has potential as an ocular hypotensive agent.  相似文献   

20.
Effects of topical administration of a single dose of 2% pilocarpine on intraocular pressure (IOP) and pupil diameter were evaluated in normotensive eyes of 10 clinically normal cats over 12 hours. Mean (+/- SEM) normal IOP was 17.1 (+/- 1.1) mm of Hg and, diurnal fluctuation was observed, with the highest IOP seen in the evening. Mean (+/- SEM) normal pupil diameter was found to be 10.1 (+/- 0.5) mm. Topical treatment with pilocarpine resulted in reduction of IOP in treated and nontreated eyes. This effect was time-dependent and was first observed at 4 hours after treatment. Mean reduction of IOP was 15.2% in the treated eye and 9.3% in the nontreated eye. The treated eye had reduced pupil diameter at 30 minutes after treatment, and miosis persisted throughout the 12 hours of the study. Mean reduction in pupil diameter was 28.5% in the treated eye and 14.2% in the nontreated eye. Topically administered pilocarpine results in reduction of IOP and pupil diameter in treated and contralateral eyes, which supports the use of pilocarpine for treatment of glaucoma in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号