首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop water parameters, including actual evapotranspiration, transpiration, soil evaporation, crop coefficients, evaporative fractions, aerodynamic resistances, surface resistances and percolation fluxes were estimated in a commercial mango orchard during two growing seasons in Northeast Brazil. The actual evapotranspiration (Ea) was obtained by the eddy covariance (EC) technique, while for the reference evapotranspiration (E0); the FAO Penman–Monteith equation was applied. The energy balance closure showed a gap of 12%. For water productivity analysis the Ea was then computed with the Bowen ratio determined from the eddy covariance fluxes. The mean accumulated Ea for the two seasons was 1419 mm year−1, which corresponded to a daily average rate of 3.7 mm day−1. The mean values of the crop coefficients based on evapotranspiration (Kc) and based on transpiration (Kcb) were 0.91 and 0.73, respectively. The single layer Kc was fitted with a degree days function. Twenty percent of evapotranspiration originated from direct soil evaporation. The evaporative fraction was 0.83 on average. The average relative water supply was 1.1, revealing that, in general, irrigation water supply was in good harmony with the crop water requirements. The resulting evapotranspiration deficit was 73–95 mm per season only. The mean aerodynamic resistance (ra) was 37 s m−1 and the bulk surface resistance (rs) was 135 s m−1. The mean unit yield was 45 tonne ha−1 being equivalent to a crop water productivity of 3.2 kg m−3 when based on Ea with an economic counterpart of US$ 3.27 m−3. The drawback of this highly productive use of water resources is an unavoidable percolation flux of approximately 300 mm per growing season that is detrimental to the downstream environment and water users.  相似文献   

2.
Grazing of cover crops in grain cropping systems can increase economic return and diversify agricultural production systems, but the environmental consequences of this intensified management have not been well documented, especially under different tillage systems. We conducted a multiple-year investigation of how cover crop management (grazed and ungrazed) and tillage system [conventional (CT; initial moldboard plowing and thereafter disk tillage) and no tillage (NT)] affected soil physical properties (bulk density, aggregation, infiltration, and penetration resistance) on a Typic Kanhapludult in Georgia. Responses were determined in two cropping systems: summer grain/winter cover crop and winter grain/summer cover crop. Soil bulk density was reduced (P = 0.02) with CT compared with NT to a depth of 30 cm at the end of 0.5 year, but only to a depth of 12 cm at the end of 2, 2.5, and 4.5 years. Grazing of cover crops had little effect on soil bulk density, except eventually with 4.5 years of management. Water-stable macroaggregation was reduced (P ≤ 0.01) with CT compared with NT to a depth of 12 cm at all sampling times during the first 2.5 years of evaluation. Stability of macroaggregates in water was unaffected by grazing of cover crops in both tillage systems. Across 7 sampling events during the first 4 years, there was a tendency (P = 0.07) for water infiltration rate to be lower with grazing of cover crops (5.6 mm min−1) than when ungrazed (6.9 mm min−1), irrespective of tillage system. Across 10 sampling events, soil penetration resistance was greater under NT than under CT at a depth of 0–10 cm (P = 0.001) and the difference was greater in ungrazed than in grazed systems (P = 0.06). Biannual CT operations may have alleviated any surface degradation with animal traffic, but the initially high level of soil organic matter following long-term pasture and conversion to cropland with NT may have buffered the soil from any detrimental effects of animal traffic. Overall, the introduction of cattle to consume the high-quality cover crop forage did not cause substantial damage to the soil.  相似文献   

3.
To assess the scope for enhancing productivity of soybean (Glycine max L. Merr.), the CROPGRO-Soybean model was calibrated and validated for the diverse soybean-growing environments of central and peninsular India. The validated model was used to estimate potential yields (water non-limiting and water limiting) and yield gaps of soybean for 21 locations representing major soybean regions of India. The average water non-limiting potential yield of soybean for the locations was 3020 kg ha−1, while the water limiting potential was 2170 kg ha−1 indicating a 28% reduction in yield due to adverse soil moisture conditions. As against this, the actual yields of locations averaged 1000 kg ha−1, which was 2020 and 1170 kg ha−1 less than the water non-limiting potential and water limiting potential yields, respectively. Across locations the water non-limiting potential yields were less variable than water limited potential and actual yields, and strongly correlated with solar radiation during the season (R2 = 0.83, p ≤ 0.01). Both simulated water limiting potential yield (R2 = 0.59, p ≤ 0.01) and actual yield (R2 = 0.33, p ≤ 0.05) had significant but positive and curvilinear relationships with crop season rainfall across locations. The gap between water non-limiting and water limiting potential yields was very large at locations with low crop season rainfall and narrowed down at locations with increasing quantity of crop season rainfall. On the other hand, the gap between water limiting potential yield and actual farmers yield was narrow at locations with low crop season rainfall and increased considerably at locations with increasing amounts of rainfall. This yield gap, which reflects the actual yield gap in rainfed environment, is essentially due to non-adoption of improved crop management practices and could be reduced if proper interventions are made. The simulation study suggested that conservation of rainfall and drought resistant varieties in low rainfall regimes; and alleviation of water-logging and use of water-logging tolerant varieties in high rainfall regimes will be the essential components of improved technologies aimed at reducing the yield gaps of soybean. Harvesting of excess rainfall during the season and its subsequent use as supplemental irrigation would further help in increasing crop yields at most locations.  相似文献   

4.
In recent years, the availability of near real-time and forecast standardized reference evapotranspiration (E0) has increased dramatically. Use of the E0 information in conjunction with calibration coefficients that adjust for differences between the vegetation and the reference surface provides a method to greatly improve the estimates of actual evapotranspiration (Ea) from landscapes (or ecosystems). Difficulties in estimating evapotranspiration (ET) of well-watered vegetation in an ecosystem depend on local advection and edge effects, wide variations in radiation resulting from undulating terrain, wind blockage or funnelling, and differences in temperature due to spatial variation in radiation, wind, etc. Estimating the ET of an ecosystem that is water stressed is even further complicated because of stomatal closure and reduced transpiration. The Ecosystem Water Program (ECOWAT) was developed to help improve estimates of Ea of ecosystems by accounting for microclimate, vegetation type, plant density, and water stress. The first step in estimating Ea is to calculate E0 using monthly climate data from one representative weather station in the study area. Then, local microclimate data are used to determine a standardized reference evapotranspiration for the local microclimate (Em). The ratio Km = Em/E0 is calculated and applied as a microclimate correction factor to estimate Em. The product of Em and a vegetation coefficient (Kv = Ev/Em) is used to estimate the evapotranspiration of the ecosystem vegetation (Ev) under well-watered conditions with a full-canopy cover within the same microclimate. Next, a coefficient for plant density (Kd), which is based on the percentage ground cover, is used to adjust the full-canopy Ev to the evapotranspiration of a sparse canopy from a well-watered ecosystem (Ew). A stress (Ks) coefficient, which varies between 1.0 with no stress to 0.0 with full stress, is determined as a function of available water in the root zone. The predicted actual ecosystem evapotranspiration (Ep) is estimated as Ep = Ew × Ks. In this paper, we present how the ECOWAT model works and how it performs when the predicted actual evapotranspiration (Ep) is compared with measured actual evapotranspiration (Ea) collected in several Mediterranean ecosystems (three in Italy and two in California) over a number of years. The potential use of ECOWAT in integrated fire danger systems is discussed.  相似文献   

5.
A simplified evaporative fraction (Λ) based single-source energy balance scheme was tested with moderate resolution (1 km) noontime satellite observations to evaluate clear sky latent heat flux (λE) estimates over diverse agricultural landscapes. This approach uses two-dimensional (2D) scatter between land surface temperature (LST) and albedo to determine Λ. The operational utility of this scheme was demonstrated for estimating regional evapotranspiration and consumptive water use during rabi (November to April) crop growing season to predict pre-harvest wheat yield (error within 15.9% of reported mean) using time series data. The existence of triangular relations between Λ and LAI (leaf area index) or NDVI (normalized difference vegetation index) was found with basal line (hypotenuse) linearly coupled with LAI or NDVI at low level of surface soil wetness. The analysis of diurnal course of in situ Λ proved the validity of constant-Λ hypothesis over pure, uniform, homogeneous crop canopies but showed irregular and wave-like patterns over heterogeneous, mixed crop canopies. The root mean square error (RMSE) of noontime and daytime average λE estimates with respect to in situ λE measurements were also smaller over homogeneous agricultural canopies (41 and 23 W m−2) with correlation coefficients (r) 0.94 and 0.96, respectively, from 135 clear sky datasets as compared to RMSE over heterogeneous ones (59 and 28 W m−2 with r = 0.66 and 0.82, respectively from 22 datasets). The intercomparison with another Λ based approach (LST–NDVI 2D scatter) showed the supremacy of Λ determined from LST–albedo 2D scatter. The efficiency of LST–NDVI scatter was better during the dry down or water limited phases of crop growth only. The uncertainties of λE estimates were attributed to errors in core radiation budget inputs, relative loss of conservativeness of Λ due to canopy heterogeneity, and the inherent limitations of the single-source approach. There is further scope to reduce present λE uncertainties by combining the new findings on Λ (LST–albedo scatter)–NDVI triangular relations, diurnal Λ and two-source radiation budget.  相似文献   

6.
A field experiment with separately tile-drained plots was used to study the ability of oilseed radish (Rhaphanus sativus L.), as a cover crop sown after harvest of a main crop of cereals or peas, to reduce nitrogen (N) and phosphorus (P) leaching losses from a clay loam in southern Sweden over 6 years. In addition to oilseed radish in pure stand, two cover crop mixtures (hairy vetch (Vicia villosa) and rye (Secale cereale) for 3 years and oilseed radish in mixture with buckwheat (Fagopyrum esculentum) for 2 years) were tested. The cover crop plots (three replicates per treatment) were compared with unplanted plots as a control. Plots cropped with oilseed radish during autumn (August–November) had significantly smaller yearly mean N concentration in drainage water over 5 of 6 years compared with unplanted controls. Mineral N content in the soil profile in autumn was significantly less in oilseed radish plots than for control plots in all years. The cover crop mixtures of hairy vetch and rye or buckwheat and oilseed radish also showed the potential to reduce soil mineral N in autumn and N concentration in drainage water, compared with unplanted controls. The cover crops had no impact on P leaching. In conclusion, oilseed radish has the ability to reduce leaching losses of N, without increasing the risk of P leaching.  相似文献   

7.
Given that the optimal sowing rate and inter-row spacing of Italian ryegrass raised for seed have not been determined, the objective of this research was to assess the effect of crop density on biomass and seed yields under different climate conditions, applying the AquaCrop model. The data came from experiments conducted under moderate continental climate conditions at Stitar (Serbia) and Mediterranean climate conditions at Cukurova (Turkey). At Stitar, there were three different inter-row spacings (high (Sd), medium (Sm) and low (Sw) crop densities), while at Cukurova there was only high crop density (Sn). In the calibration process, the initial canopy cover, canopy expansion and maximal canopy cover were adapted to each crop density, while the other conservative parameters were adjusted to correspond to all climate conditions. Calibration results showed a very good match between measured and simulated seed yields; the values of the coefficient of determination (0.922). The biomass simulation was very good for Cukurova (R2 = 0.97), but somewhat poorer for Stitar (R2 = 0.72). Other statistical indicators were high such as Willmott index of agreement of both the calibrated and validated data sets, for both study areas >0.916 and normalized root mean square error in the range from 9–18%. The AquaCrop model was found to be more reliable for Italian ryegrass biomass and seed yield predictions under mild winter climate conditions, with adequate water supply, compared with moderate climate and water shortage conditions.  相似文献   

8.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

9.
An evapotranspiration (ET) model for sparsely vegetated canopies under partial root-zone irrigation (PRI) was developed and tested using measurements from a vineyard in the arid region of northwest China. This model (PRI-ET) was mainly based on the Shuttleworth–Wallace (S-W) model and took into consideration the differences in soil water content between furrow-irrigation ditch and ridge under the PRI scheme and variable canopy shading over the surface. Estimates of ET and its components (plant transpiration and soil evaporation) by the PRI-ET and S-W models were compared to ET, plant transpiration and soil evaporation measured by Bowen ratio–energy balance, heat-pulse sap flow sensor and micro-lysimeter, respectively. The PRI-ET model can estimate the vineyard ET and its components more accurately than the S-W model, indicating that the PRI-ET model is suitable for estimating vineyard ET under PRI.  相似文献   

10.
《Soil Use and Management》2018,34(2):236-248
Efficient monitoring of soil moisture is becoming increasingly important. To understand soil–plant–water dynamics, we evaluate the potential of using a multiple‐coil‐array electromagnetic induction instrument and inversion software to map soil moisture beneath an olive tree. On twelve different days, we collected apparent electrical conductivity (EC a) data using a DUALEM ‐21S and the volumetric soil moisture (θ ) using a bank of soil moisture sensors on opposite sides of the tree. Using EM 4Soil, we inverted the EC a data on five of the days and established a site‐specific calibration between estimates of true electrical conductivity (σ ) and θ . The strongest calibration relationship between σ and θ (R 2 = 0.65) was obtained for a full‐solution, S2 algorithm and damping factor of 1.2. A leave one out cross‐validation (LOOCV ) showed the calibration was robust, with a root mean square error (RMSE ) of 0.046 m3/m3, a mean error (ME ) of 0.001 m3/m3 and a Lin's concordance of 0.72. We subsequently evaluated the calibration relationship on the seven remaining days and over a drying period of 120 days. This approach provides information about the temporal evolution of θ by a LOOCV of validation with a RMSE of 0.037, ME of −0.003 and a Lin's concordance of 0.54. Improvement could be achieved by aligning the DUALEM ‐21S in the same orientation as the sensors, with time‐lapse inversion also being advantageous.  相似文献   

11.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   

12.
To combat soil erosion in the northern part of Taraba State, Nigeria, farmers are of major importance. Their perceptions vitally influence the levels of support and investment associated with solving problems of soil erosion through adoption of practices that are alternative to those in current use, including approaches focused on soil conservation. The objective of this study was to evaluate how farmer perceptions of soil erosion influence their investments in soil conservation, particularly soil or stone bunds, their applications of organic amendments and inorganic fertilizers and other soil conservation practices. In the study area, we undertook a field plot experiment and carried out a survey, using open‐ and closed‐ended questions. Water erosion and depletion of fertility were taken as the main indicators of soil erosion. The results of the experiment showed that farmers were aware of and perceived both indicators as having increased over the past decade. Farmer investments in water erosion control (3.7 US$/ha) and the prevention of soil fertility depletion (37.8 US$/ha) in the study area were found to be limited. The results also showed that awareness of water erosion was only marginally correlated with investment in water erosion control (χ2 = 4.906, P = 0.09) and not associated with investments in soil fertility control measures (χ2 = 0.175, P = 0.92). Those farmers who identified depletion of soil fertility as a problem, based on erosion, were not significantly more likely to make greater investments in soil conservation (χ2 = 0.947, P = 0.62) but did invest more in fertility measures (χ2 = 3.199, P = 0.20). Hence, further research is needed to determine other factors that may influence farmer investment in soil conservation, especially factors related to socio‐economic characteristics of farm households, institutional and technological innovations and field characteristics that were not addressed in this study.  相似文献   

13.
The long-term probability of soil moisture stress in rainfed crops was mapped at 0.5° resolution over the Krishna River basin in southern India (258,948 km2). Measurements of actual evapotranspiration (Ea) from 90 lysimeter experiments at four locations in the basin were used to calibrate a non-linear regression model that predicted the combined crop coefficient (KcKs) as a function of the ratio of seasonal precipitation (P) to potential evapotranspiration (Ep). Crops included sorghum, pulses (mung bean, chickpea, soybean, pigeonpea) and oilseeds (safflower and sunflower). Ep was calculated with the Penman–Monteith equation using net radiation derived from two methods: (1) a surface radiation budget calculated from satellite imagery (EpSRB) and (2) empirical equations that use data from meteorological stations (EpGBE). The model of Ks as a function P/Ep was combined with a gridded time series of precipitation (0.5° resolution, 1901–2000) and maps of EpSRB to define the probability distributions of P, P/Ep and Ks for sorghum at each 0.5° cell over the basin. Sorghum, a C4 crop, had higher Ea and Ks values than the C3 plants (oilseeds, pulses) when precipitation was low (P < 1 mm d−1) but lower maximum Ea rates (3.3–4.5 mm d−1) compared with C3 crops (oilseeds and pulses, 4.3–4.9 mm d−1). The crop coefficient under adequate soil moisture (Kc) was higher than the FAO-56 crop coefficients by up to 56% for oilseeds and pulses. The seasonal soil moisture coefficient (Ks) for sorghum ranged from 1.0 under high rainfall (July–October) to 0.45 in dry seasons (November–March), showing strong soil moisture controls on Ea. EpSRB calculated at the lysimeter stations was 4–20% lower than EpGBE, with the largest difference in the dry season. Kc derived from EpSRB was only slightly (2–4%) higher than Kc derived from EpSRB, because the maximum Ea occurred during the monsoon when the differences between EpSRB and EpGBE were small. Approximately 20% of the basin area was expected to experience mild or greater soil moisture stress (Ks < 0.80) during the monsoon cropping season 1 year in every 2 years, while 70% of the basin experienced mild or greater stress 1 year in 10. The maps of soil moisture stress provide the basis for estimating the probability of drought and the benefits of supplemental irrigation.  相似文献   

14.
 This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study, the cover crops were seeded each year in late September or early October after the corn harvest and incorporated into the soil in late April or early May. Corn was seeded 10 days to 2 weeks after the cover crop residues had been incorporated, and N fertilizer was applied as a side-dressing at rates of 0, 67, 134, or 201 kg N ha–1 each year. While the average annual total N input from the above-ground biomass of the cover crops was highest for hairy vetch (72.4 kg N ha–1), the average annual total C input was highest for cereal rye (1043 kg C ha–1) compared with the other cover crops. Hairy vetch was the only cover crop that significantly increased pre-side-dressed NO3 -N (Ni) corn biomass and N uptake at 0 N. At an N fertilizer rate of 134 kg N ha–1 or higher, the cover crops had a minimal effect on corn biomass. This indicated that even after 9 years of winter cover cropping, the effect of the cover crops on corn growth resulted primarily from their influence on soil N availability. The amount of available N estimated from the cover crops (Nac) was significantly correlated with relative corn biomass production (r 2=0.707, P<0.001). The total amount of available N, comprising Nac and N added from fertilizer (Nf), was strongly correlated (r 2=0.820, P<0.001)) with relative corn biomass production. The correlation was also high for the available N comprising Ni and Nf (r 2=0.775, P<0.001). Although cereal rye and annual ryegrass did not improve corn biomass production in the short term, they benefited soil organic N accumulation and gradually improved corn biomass production compared with the control over the long term. Received: 10 August 1999  相似文献   

15.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

16.
Abstract. Vineyards in Champagne, France are generally situated on slopes where the soils are subject to erosion. Therefore it is important to find a soil‐surface management practice that protects the soil against water erosion. We assessed the potential of mulches or grass covers to stabilize soil aggregates in a calcareous sandy loam from a vineyard in Champagne after 9 years under different management systems. Four different treatments were studied: (i) a bluegrass (Poa pratensis) surface cover between the vine rows (GC) with bare soil under the vines (R); two organic mulches of (ii) coniferous (CB) or (iii) poplar (PB) bark that covered the entire soil surface, and (iv) bare soil between the rows as a control. The bark amendments were applied every 3 years at rates of 61 and 67 t ha?1 for the PB and CB treatments, respectively. The kinetics of soil disaggregation in water fitted a power law (A=K t?D), in which K was the fraction of water‐stable >200 μm aggregates remaining after 1 hour of wet‐sieving. In the 0–5 cm layer, aggregate stability was greater for GC (K=21.7), CB (K=15.2) and PB (K=13.6) than for the control (K=10.5) and R (K=11.8). In the 0–20 cm layer, CB also stabilized soil aggregates (K=14.0–15.0); but PB did not. Structural stability was more strongly related to total organic carbon (R2=0.64, P <0.001) than to microbial biomass carbon (R2=0.54, P<0.001). A bluegrass cover enhanced structural stability in the 0–5 cm and 0–20 cm layers (K=14.2), probably because of intense root development and rhizodeposition enhancing microbially produced metabolites, such as carbohydrates. Establishing grass cover or applying bark mulch are effective agricultural practices that improve soil aggregate stability and thus should reduce soil erosion. The vegetative growth of the vines was greater on the soils amended with bark mulches and less on the grass covered soils compared with the control soil; however, no difference in wine quality was observed among the different treatments.  相似文献   

17.
To improve phosphorus (P) fertilization and environmental assessments, a better understanding of release kinetics of solid-phase P to soil solution is needed. In this study, Fe (hydr)oxide-coated filter papers (Fh papers), isotopic exchange kinetics (IEK) and chemical extractions were used to assess the sizes of fast and slowly desorbing P pools in the soils of six long-term Swedish field experiments. The P desorption data from the Fh-paper extraction of soil (20 days of continual P removal) were fitted with the Lookman two-compartment desorption model, which estimates the pools of fast (Q1) and slowly (Q2) desorbing P, and their desorption rates k1 and k2. The amounts of isotope-exchangeable P (E) were calculated (E1min to E>3 months) and compared with Q1 and Q2. The strongest relationship was found between E1 min and Q1 (r2 = .87, p < .01). There was also an inverse relationship between the IEK parameter n (the rate of exchange) and k1 (r2 = .52, p < .01) and k2 (r2 = .52, p < .01), suggesting that a soil with a high value of n desorbs less P per time unit. The relationships between these results show that they deliver similar information, but both methods are hard to implement in routine analysis. However, Olsen-extractable P was similar in magnitude to Q1 (P-Olsen = 1.1 × Q1 + 2.3, r2 = .96), n and k1 were related to P-Olsen/P-CaCl2, while k2 was related to P-oxalate/P-Olsen. Therefore, these extractions can be used to estimate the sizes and desorption rates of the different P pools, which could be important for assessments of plant availability and leaching.  相似文献   

18.
Protected cultivation, mainly represented by plastic-film mulching, has greatly improved crop production worldwide since the 1950s. However, despite its widespread use in tropical USA, Europe and China, its use in sub-Saharan Africa is not widespread. A field experiment was conducted using cocoyam (Colocasia esculenta L. Schott) to evaluate the effects of two tillage systems (tilled and no-till) and plastic-film mulch (black and clear plastic-film mulch) on soil properties and cocoyam growth and yield in 2003 and 2004 planting seasons on a Typic paleudult in southeastern Nigeria. The experiment comprised six treatments and was laid out in the field using randomized complete block design replicated three times. Results showed that 70–80% of the corms emerged 7–8 days (21 days after planting [DAP]) earlier in both tilled and no-till plastic-film mulched plots when compared to the unmulched plots. At later stages of crop development, the plants in the tilled black plastic-film mulched plots were taller by 61–67% than those in the unmulched no-till plots, which had the lowest plant height (27–30 cm). At 98 DAP, there were no significant treatment differences in leaf area index (LAI) between tilled and no-till mulched plots with LAI of 15.5–19.8. However, LAI was reduced in both unmulched plots by 35–54% when compared to the mulched plots. On the average soil temperature was higher in plastic-film mulched plots than that under plots without mulch by about 2 °C. Results show significantly lower soil bulk density (between 1.10 and 1.26 Mg m−3) in both tilled clear and black plastic-film mulched plots when compared to the corresponding no-till clear or black plastic-film mulched plots (1.40–1.45 Mg m−3). For the two seasons studied volumetric water content (VWC) in tilled black plastic-film mulched plots were significantly higher than VWC in other mulched plots by between 10 and 38% in 2003 and between 17 and 30% in 2004. At harvest (270 DAP) the highest corm yield was obtained in tilled black plastic mulched plots (29.1 Mg ha−1). This was higher (P = 0.05) than yields obtained in no-till, no mulch plots by 72%. Yields were also higher in tilled black plastic mulched plots when compared to tilled clear plastic mulched plots, no-till black plastic mulched plots and no-till clear plastic mulched plots by 29, 47 and 59%, respectively. These findings suggest that plastic mulched plots provide a better soil environment for cocoyam than unmulched plots and that tilled mulched plots especially tilled black plastic mulched plots provide superior edaphic environment for cocoyam when compared to other treatments used.  相似文献   

19.
In Tigray (Northern Ethiopia), soil moisture has been identified as the most limiting factor in agricultural production; on the other hand, loss of rain water through runoff as well as the induced soil loss has been determined as a critical problem in the region in the last two to three decades. To alleviate the above paradox, the government has mobilized communities and resources for the construction of physical soil and water conservation structures (stone bunds, terraces) in almost all land uses. However, yield improvement was mainly concentrated within the vicinity of the structures and runoff continued to overtop the structures, as no measures for in situ soil conservation were taken. The terwah system, consisting of traditional ploughing followed by making every 1.5–2 m contour furrows, and permanent raised beds with contour furrows at 60–70 cm interval treatments, were considered and evaluated as practices that could increase the efficiency of in situ water utilization and soil conservation. An experiment was started in Gum Selasa, which is one of the drought prone areas in Tigray, whereby runoff volume and sediment load were measured after every rain event. Permanent raised beds with contour furrows at 60–70 cm interval significantly (P < 0.05) reduced runoff volume, runoff coefficient and soil loss as compared to traditional ploughing: 255, 381 and 653 m3 ha−1 runoff was recorded from permanent bed, terwah and traditional ploughing, respectively during the whole cropping season. The above runoff induced 4.7 t ha−1 soil loss from permanent bed, 7.6 t ha−1 from terwah and 19.5 t ha−1 from traditional ploughing. Overall, contour furrows and permanent raised beds can be part of the ongoing intensification process which includes physical soil and water conservation, slope reforestation, irrigation development and agro forestry in crop lands. Moreover, the use of permanent raised beds if combined with crop mulching and crop diversification is an important component for the development of sustainable conservation agriculture practices in the region.  相似文献   

20.
The objectives of this study were to evaluate the contribution of arbuscular mycorrhizal (AM) fungal hyphae to 15N uptake from vineyard cover crop litter (Medicago polymorpha), and to examine the soil microbial community under the influence of mycorrhizal roots and extraradical hyphae. Mycorrhizal grapevines (Vitis vinifera) were grown in specially designed containers, within which a polyvinyl chloride (PVC) mesh core was inserted. Different sizes of mesh allowed mycorrhizal roots (mycorrhizosphere treatment) or extraradical hyphae (hyphosphere treatment) to access dual labeled 15N and 13C cover crop litter that was placed inside the cores after 4 months of grapevine growth. Mesh cores in the bulk soil treatment, which served as a negative control, had the same mesh size as the hyphosphere treatment, but frequent rotation prevented extraradical hyphae from accessing the litter. Grapevines and soils were harvested 0, 7, 14, and 28 days after addition of the cover crop litter and examined for the presence of 15N. Soil microbial biomass and the soil microbial community inside the mesh cores were examined using phospholipid fatty acid analysis. 15N concentrations in grapevines in the hyphosphere treatment were twice that of grapevines in the bulk soil treatment, suggesting that extraradical hyphae extending from mycorrhizal grapevine roots may have a role in nutrient utilization from decomposing vineyard cover crops in the field. Nonetheless, grapevines in the mycorrhizosphere treatment had the highest 15N concentrations, thus highlighting the importance of a healthy grapevine root system in nutrient uptake. We detected similar peaks in soil microbial biomass in the mycorrhizosphere and hyphosphere treatments after addition of the litter, despite significantly lower microbial biomass in the hyphosphere treatment initially. Our results suggest that although grapevine roots play a dominant role in the uptake of nutrients from a decomposing cover crop, AM hyphae may have a more important role in maintaining soil microbial communities associated with nutrient cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号