首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
E. GROSSBARD 《Weed Research》1971,11(4):263-275
The effect of repeated annual applications over 7-8 years of MCPA, triallate, simazine and linuron to field plots on the evolution of CO2 and mineralization of nitrogen in soil samples incubated in the laboratory is described. The plots were either cropped and treated with standard doses, or uncropped and sprayed with doses 3-4 times above the level used in agricultural practice. While the applications of MCPA and tri-allate did not exert any inhibitory effects in soils from the uncropped plots those of simazine and linuron led to a lowering in CO2 output in several instances and in mineral N on infrequent occasions. These effects are assumed to be the result of a difference in the content of easily-degradable organic matter between the treated plots and the controls. A direct anti-microbial action of the two herbicides is not very probable because in laboratory experiments with simazine up to 512 ppm the output of CO2 and the mineralization of N was not affected while linuron at 500 ppm gave only a minor depression in CO2 evolution. Effects on soil fertility are unknown but seem unlikely in view of the small extent and infrequency of the reductions observed. On the cropped plots the MCPA and tri-allate treatment showed no effects. With linuron and simazine a significant lowering in respiration and mineralization of N occurred on single occasions only, during a 5-year period.  相似文献   

2.
The rates of degradation of simazine and linuron were measured in soil from plots not treated previously with these herbicides. Degradation of both compounds followed first-order kinetics and soil temperature and soil moisture content had a marked effect on the rate of loss. With linuron, half-lives increased from 36 to 106 days with a reduction in temperature from 30° to 5°C at 4% soil moisture, and from 29 to 83 days at 12% soil moisture. Similar temperature changes increased the half-life of simazine from 29 to 209 days and from 16 to 125 days at soil moisture contents of 4 and 12% respectively. A computer program which has been developed for simulation of herbicide persistence was used in conjunction with the laboratory data and the relevant meteorological records for the years 1964 to 1968 in order to test the model against previously published field persistence data for the two herbicides. The results with simazine showed a close correspondence between observed and predicted residue levels but those for linuron, particularly in uncropped plots, were satisfactory for limited periods only.  相似文献   

3.
The following herbicides were applied annually from 1963 to experimental plots of appropriate crops grown in monoculture: MCPA 1.7 kg ha?1, triallate 1.7 kg ha?1, simazine 1.7 kg ha?1 and linuron 0.84 kg ha?1 (applied twice per year). Before the eighth treatment in 1970, nutrient status, pH and growth in greenhouse tests of a range of plants were similar in soils from treated and control plots. There were no significant differences in yield when several test crops were grown in the field plots in 1977. In a similar experiment which ran for 6 years, the same herbicides were applied twice per year at twice the above rates on each occasion (three times a year at 1.7 kg ha?1 in the case of linuron) to uncropped plots. Three years after the last treatment, there were no differences in extractable nutrients, pH, soil structure and crop yield on treated or control plots. These results support the conclusion from the main monitoring of the experiments reported elsewhere that annual treatments with these herbicides have had no adverse affect on the soil.  相似文献   

4.
Annual applications of the herbicides atrazine, simazine, linuron and diuron at 45 kg/ha were made to the same plots for 9 consecutive years from 1963 to 1971 in a peach (Prunus persica (L.) Batsch.) orchard located on sandy loam soil near Harrow, Ontario. Soil samples from these plots were collected in late October for the last 3 years (1969–1971) and trees were cut down in December, 1969. Herbicide residues were determined by bioassays based on the fresh and dry weight of oats (Avena sativa L.) and in one year results were confirmed by chemical analysis. Significant accumulation of herbicides was not observed. The maximum residue levels measured in October over the 3 years of sampling were 7′3 kg/ha for diuron, 3–8 kg/ha for linuron, 1–6 kg/ha for simazine and 04 kg/ha for atrazine in the top 15 cm of the soil profile. Simazine and atrazine showed a rapid decrease in amount after treatment but diuron and linuron were degraded more slowly. Measurable residues of all herbicides were confined to the upper 15 cm of the soil profile and the majority of herbicide remained in the 0–5-cm soil layer. Oats were planted in the orchard plots from 1972 to 1974 to follow the disappearance of the herbicides. All herbicides caused highly significant yield decreases in 1972, atrazine causing the least (38%) and diuron the greatest (86%) reductions. Diuron reduced the yield of oats in 1973 and caused a highly significant decrease in the weight of young oat plants in 1974.  相似文献   

5.
In four field experiments begun in 1963, each of four herbicides was applied to plots planted wilh the same crop each year. The annual treatments were: MCPA at 17 kg/ha to barley (Hordeum sativa Jess) and wheat (Triticum aestivum L.) at growth stage 15. tri-allate at 17 kg/ha pre-emergcnce to barley and wheat, simazine at l7kg/ha pre-emergence to maize (Zea mays L.) and linuron in two applications of 084 kg/ha pre- and post-emergence to carrots (Daucus carota L.). MCPA did not affect growth or yield of either barley or wheat. In general tri-allate also did not aftect the crops although wheat yield was depressed in 1978, wheat 1000 grain weight was reduced in 1972 and barley germination percentage was increased in 1973. Simazine did not influence the height, yield or appearance of maize. Linuron normally produced no effect on carrot yield, density and size. However, in 2 years when the post-emergence application was late, density but not yield was lower than in control plots. There was no accumulation of residues of any of these compounds in the soil. Rates of loss were similar to those predicted on ihe basis of laboratory experiments. In a fifth experiment these herbicides were applied twice per year (3 times in the case of linuron) at double the rales above on each occasion to bare plots. These applications ceased in 1968 (1969 for MCPA) but residues were monitored until 1972 except in the case of MCPA. Disappearance rates were similar to those in the cropped plots and residues were largely confined to the top 10 cm. The plots treated with MCPA had developed an enhanced ability lo degrade il prior to 1968. This persisted for 5 years after the final application.  相似文献   

6.
Enhanced degradation of some soil-applied herbicides   总被引:5,自引:0,他引:5  
In a field experiment involving repeated herbicide application, persistence of simazine was not affected by up to three previous doses of the herbicide. With propyzamide, there was a trend to more rapid rates of degradation with increasing number of previous treatments. Persistence of linuron and alachlor was affected only slightly by prior applications. In a laboratory incubation with soil from the field that had received four doses of the appropriate herbicide over a 12–month period, there was again no effect from simazine pretreatments on rates of loss. However, propyzamide, linuron and alachlor all degraded more rapidly in the previously treated than in similar untreated soil samples. Propyzamide, linuron, alachlor and napropamide degradation rates were all enhanced by a single pretreatment of soil in laboratory incubations, whereas degradation rates of isoproturon, metazachlor, atrazine and simazine were the same in pretreated and control soil samples.  相似文献   

7.
Summary. The residues remaining in the soil from repeated annual application of simazine at 2–8, 5–6, and 22–4 kg/ha to uncropped plots on a loam soil were measured by chemical or bioassay methods at various intervals after treatment.
The total simazine residue present 12 months after the last of three treatments with 2–8 kg/ha and 8 months after the last of five treatments with 5–6 kg/ha was less than 10% of the annual dose. This rapid decomposition is considered consistent with the soil and climatic conditions. In contrast a much larger residue (a mean value of 1·7 kg/ha) was found on plots sampled 21/2 years after the last of two annual applications of simazine at 22·4 kg/ha and the reduction in the amount of residue during the next 12 months was only of the order of 25%.
In all treatments the highest concentration of simazine was found in the surface layers of the soil but measurable residues were detected to 60 cm depth, 31/2 years after the last 22·4 kg/ha application.
There was considerable variation in the total residues recovered between replicate plots and between different positions on the same plots in all treatments regardless of the depth of the sample. The possible causes of this variation are discussed.
Persistance et pénétration de fortes doses de simazine dans un sol non cultivé  相似文献   

8.
The spatial variability in the mineralisation rate of linuron [N-(3,4-dichlorophenyl)-N'-methoxy-N'-methylurea] was studied within a previously treated Danish agricultural field by sampling soils from eleven different plots randomly distributed across an area of 20 x 20 m. The soils were characterised with respect to different abiotic and biotic properties including moisture content, organic matter content, pH, nutrient content, bacterial biomass, potential for mineralisation of MCPA [(4-chloro-2-methylphenoxy)acetic acid] and linuron. Five soils had a potential for mineralisation of linuron, with 5-15% of the added [ring-U-14C]linuron metabolised to 14CO2 within 60 days at 10 degrees C, while no extensive mineralisation of linuron was observed in the six remaining soils within this period. A TLC analysis of the methanol-extractable residues showed no development of 14C-labelled metabolites from linuron in any of the samples. Multivariate analysis was conducted to elucidate relationships between the intrinsic properties of single soil samples and initial rate of linuron mineralisation. The analysis indicated that important soil parameters in determining the spatial heterogeneity included the C(total)/N(total) ratio, pH and the water-extractable potassium contents, with the first of these highly negatively correlated and the last two highly positively correlated to the initial linuron mineralisation rate. This study shows that enhanced biodegradation of linuron may develop with successive field treatments, but that considerable in-field spatial heterogeneity in the degradation rate still exists. Combined with a parallel enrichment study focused on the underlying microbial processes, the present results suggest that intrinsic soil properties affect the linuron-metabolising bacterial population and thereby determine the spatial variability in the linuron mineralisation activity.  相似文献   

9.
In Italy suitable standard scenarios for pesticide risk assessment based on computer models are lacking. In this paper we examine the use of the VARLEACH model to assess the potential danger of ground‐water pollution by six herbicides (alachlor, atrazine, cyanazine, linuron, simazine and terbuthylazine) which are used to protect irrigated (maize) and non‐irrigated (sorghum) crops in the Po Plain, one of the most important agricultural lands in Italy. Two extreme scenarios are taken: real worst case (sandy soil) and real best case (clay loam soil). The simulation suggests that cyanazine, linuron and terbuthylazine can be safely used in clay loam soil in both non‐irrigated and irrigated crops, while alachlor, atrazine and simazine can be safely used only in non‐irrigated crops. On the other hand, the application of all the herbicides tested should be avoided in sandy soil, with the exception of linuron in non‐irrigated crops. © 2000 Society of Chemical Industry  相似文献   

10.
Summary. A bioassay was used to study, adsorption of prometryne, simazine, linuron and pyrazon by fibrous peat, sphagnum moss, muck soil and bentonite as 1 % mixtures with quartz sand. Of these bentonite caused least reduction in bioactivity, and sphagnum moss reduced it only slightly more. Fibrous peat and muck soil were the most adsorptive. Prometryne, simazine and pyrazon were more highly adsorbed by fibrous peat than by muck soil, while for linuron the opposite occurred. Fibrous peat was approximately three, seven, thirteen and three times more adsorptive than bentonite for pyrazon, linuron, prometryne and simazine, respectively, while for muck soil the corresponding values were two, fourteen, seven and two. Studies with prometryne and five different soils indicated that percentage organic matter, cation-exchange capacity and specific surface area were all highly correlated with adsorption.  相似文献   

11.
Simazine, linuron and propyzamide were incubated in 18 different soils at 25°C and field capacity soil moisture content. The degradation of each herbicide followed first-order kinetics. The half-life of simazine varied from 20 to 44 days, that of linuron from 22 to 86 days and that of propyzamide from 10 to 32 days. The rate of linuron degradation was highly significantly correlated with soil organic matter content, clay content, soil respiration and the extent of herbicide adsorption by the soil. The rate of simazine degradation was significantly and negatively correlated with soil pH, but the rate of propyzamide degradation was not related with any of the soil factors examined.  相似文献   

12.
Examples from the literature and from the authors’own laboratory demonstrate that herbicides can exert adverse effects on the soil micro-flora, depending on concentration, though often at higher rates than the herbicidal dose. Examples refer to changes in microbial growth (asulam, linuron, paraquat) and equilibrium (metoxuron), respiration and nitrification in samples from field experiments (linuron, simazine) and laboratory experiments (bentazone, glyphosate, barban, etc.), enzyme activities (urease, phosphatase; barban, chlorpropham, linuron) and the decay of sprayed vegetation (glyphosate, paraquat).  相似文献   

13.
Wettable powder formulations of simazine, metribuzin and linuron and a suspension concentrate of simazine were sprayed on to soil particles which were either at a water content equivalent to pF 2·5 or air dry. Air dry samples were then wetted to pF 2·5 immediately or after 24 h. Soil solutions were removed using a pressure membrane apparatus at intervals up to 96 h after wetting. In each case the concentration in soil solutions expressed after 96 h following application to wet soil, or dry soil wetted immediately, were close to those predicted on the basis of Freundlich adsorption isotherm data obtained in slurry equilibrium conditions. There were, however, some differences after shorter periods. Concentrations were always lower in solutions obtained from air dry soil that was not wetted for 24 h. After 96 h simazine and metribuzin concentrations were about 50% of those obtained following application to wet soil, while that of linuron was about 25%. Differences of this size may be large enough to affect mass transfer phenomena and phytotoxicity. It seems likely that suspension of these herbicides sprayed in formulations on to wet soil dissolved in soil water at least as fast as would be predicted theoretically.  相似文献   

14.
Adsorption of simazine (2-chloro-4,6-bisethyl-amino-1,3,5-triazine) was 2.2–4 times greater than that of terbacil (5-chloro-6-methyl-3-t-butyl-uracil) in the same soils and adsorption of both herbicides was 2–4 times greater in the topsoils than subsoils. Adsorption was inversely correlated with herbicide movement in a thick-layer chromatography system. One year after application of 3 kg/ha to field plots, simazine residues were highest near the soil surface, whereas terbacil residues increased with soil depth in the sandy and sandy loam soils. Total residues recovered from the upper 25 cm of soils was 5% or less of the simazine originally applied, and 10% or less of the applied terbacil. In an oat seedling bio-assay, the GR50 values were generally 1.5–3 times higher for simazine than for terbacil in the same soils.  相似文献   

15.
The effects on plant growth of applying trifluralin or nitralin combination with simazine, atrazine, prometryne and linuron to the upper 5-cm root region of vetch (Vicia sativa L.), pea (Pisum sativum L.) and soybean (Glycine max) were investigated. Foliar injury due to herbicides of the second group was markedly reduced in each species by simultaneous treatment with trifluralin or nitralin both of which inhibited lateral root growth without affecting aerial plant growth or tap root extension growth. This inhibition of lateral root growth in roots treated with trifluralin or nitralin was associated with reduced uptake and subsequent transport to the foliage of 14C-labelled simazine in vetch and pea and 14C-labelled atrazine in soybean. This probably accounted for the reduction in simazine and atrazine phytotoxicity. In the presence of trifluralin or nitralin comparatively higher amounts of radioactivity were retained in the roots of pea and soybean and this reduced the amount of 14C available for transport to the foliage. This was not evident in vetch.  相似文献   

16.
In a field experiment on an organic soil, a pre-emergence application of paraquat at 2–24 kg a.i. (active ingredient)/ha was made to a plot on which onions and lettuce were grown; and similar broadcast applications of linuron, both with and without carbofuran, at two field rates, to plots on which carrots were grown. Paraquat generally increased the bacterial and actinomycetal populations while linuron inhibited the same but enhanced the numbers of fungal propagules, although it decreased the proportion of soil penicillia in the population. The overall effect of linuron was not changed by the admixture of carbofuran. However, the changes in microbial populations by either herbicides were not substantial enough to make gross or lasting differences in levels of available N and P, and in the CO2 evolution rate.  相似文献   

17.
Through the use of a number of bioconversion experiments we demonstrated that P450 proteins (CYP1A9 and CYP1C1) from Japanese eel (Anguilla japonica) metabolized a number of herbicides and the drug phenacetin. We performed bioconversion experiments in which substrates were added directly to incubation medium. The resulting metabolites were extracted and analyzed by high-performance liquid chromatography. Proteins CYP1A9 and CYP1C1 metabolized 50 nmol of the drug phenacetin to yield 12.1 and 1.1 nmol of product (acetaminophen), respectively. Further incubation of CYP1A9 with 50 nmol of the herbicides chlorotoluron, diuron, linuron, simazine, or atrazine yielded 16.5, 18.5, 7.3, 1.6, or 0.8 nmol of product, respectively. CYP1C1 also metabolized linuron, diuron, and simazine yield 5.4, 4.6, or 0.7 nmol of product, respectively. Next, polyclonal antibody was isolated by immunizing with two conjugated-peptides (amino acid residues 272–290 and 294–310) of CYP1A9. This antibody did not recognize human CYP1A2 or CYP1C1. Western blotting using the antibody revealed one band in the livers of Japanese eel and tilapia (Oreochromis niloticus). Theses results suggest that CYP1A9 and CYP1C1 metabolize herbicides, and that CYP1A9 is an useful biomarker of contamination when detected with this antibody.  相似文献   

18.
BACKGROUND: Enhanced atrazine degradation has been observed in agricultural soils from around the globe. Soils exhibiting enhanced atrazine degradation may be cross-adapted with other s-triazine herbicides, thereby reducing their control of sensitive weed species. The aims of this study were (1) to determine the field persistence of simazine in atrazine-adapted and non-adapted soils, (2) to compare mineralization of ring-labeled (14)C-simazine and (14)C-atrazine between atrazine-adapted and non-adapted soils and (3) to evaluate prickly sida control with simazine in atrazine-adapted and non-adapted soils.RESULTS: Pooled over two pre-emergent (PRE) application dates, simazine field persistence was 1.4-fold lower in atrazine-adapted than in non-adapted soils. For both simazine and atrazine, the mineralization lag phase was 4.3-fold shorter and the mineralization rate constant was 3.5-fold higher in atrazine-adapted than in non-adapted soils. Collectively, the persistence and mineralization data confirm cross-adaptation between these s-triazine herbicides. In non-adapted soils, simazine PRE at the 15 March and 17 April planting dates reduced prickly sida density at least 5.4-fold compared with the no simazine PRE treatment. Conversely, in atrazine-adapted soils, prickly sida densities were not statistically different between simazine PRE and no simazine PRE at either planting date, thereby indicating reduced simazine efficacy in atrazine-adapted soils.CONCLUSIONS: Results demonstrate the potential for cross-adaptation among s-triazine herbicides and the subsequent reduction in the control of otherwise sensitive weed species. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

19.
Leakage of electrolytes was the criterion used to study the effects of several herbicides on cell membrane permeability in Lemna minor L. Dinoseb. sodium azide, linuron, prometryne and simazine were the most active in increasing cell membrane permeability, followed by oxyfluorfen, amitrole, and 2,4—D. Glyphosate and dalapon were the least active. In all cases, the longer the period elapsed after treatment (i.e. 96 h) the lower was the concentration needed to alter cell membrane permeability. Light was necessary for oxyfluorfen activity. With glyphosate, dalapon and oxyfluorfen, visible injury symptoms were noted after 48–96 h, but no further significant increase in cell membrane permeability occurred as a result.  相似文献   

20.
Ten herbicides, bromacil, chlorthal-dimethyl, diphenamid, diuron, fluometuron, neburon, prometryne, pyrazon, simazine and trifluralin at two doses were repeatedly sprayed, in autumn and in spring, for 4 consecutive years on non-cultivated, sprinkler-irrigated field plots. Herbicidal effect was assessed at 1–2 month intervals on the natural weed population and after each observation a paraquat + diquat spray destroyed emerged weeds. The response of various weed species to herbicides varied markedly but a herbicide-induced shift in the composition of weed population did not occur, presumably because of the paraquat treatment. The overall phytotoxicity to weeds present was, in decreasing order: diuron, bromacil, simazine, trifluralin, prometryne, neburon, fluometuron, pyrazon, diphenamid, chlorthal-dimethyl. Persistence of herbicides was in decreasing order: diuron = bromacil, simazine, neburon (at higher rate), fluometuron, trifluralin, prometryne. Control produced by pyrazon improved with the number of applications, but that of diphenamid and chlorthal-dimethyl remained weak and short. After repeated applications, the activity of these herbicides increased or remained at similar level, but in no case decreased. Soil samples were taken 5 months after each application and bioassayed. Phytotoxic residues were detected beneath the disturbed top-soil from bromacil, diuron, fluometuron and simazine after the first application, and from neburon after the second application; residues from trifluralin were found in the top soil only after the fifth application. After the seventh spraying, residues of bromacil were found in the 45–60-cm soil layer. Ammonia content in soil samples taken from treated plots after the fourth, sixth and seventh application was generally similar to the untreated control. In these samples, nitrate content appeared to be correlated negatively with remaining weed number; the control thus contained less nitrate than efficient herbicidal treatments. Soil samples taken after the seventh application of bromacil, diuron, fluometuron, neburon and simazine, which contained appreciable residual concentrations, did not show significant differences from control, in an in vitro nitrification test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号