首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 273 毫秒
1.
碱性亮氨酸拉链(basic leucine zipper, bZIP)蛋白是真核生物所特有的一类转录因子,对于植物在逆境下的基因表达调控具有重要作用。为丰富对玉米bZIP转录因子功能的认识,本研究以从玉米中克隆到的一个A亚族bZIP转录因子编码基因ZmbZIP81为对象展开。ZmbZIP81基因位于玉米第6染色体,编码区全长2492 bp,由4个外显子和3个内含子组成,编码蛋白含254个氨基酸。研究表明ZmbZIP81基因表达受外源ABA、NaCl和干旱胁迫诱导。过表达该基因的拟南芥植物表现出ABA不敏感和NaCl胁迫抗性增强的表型,推测ZmbZIP81可能作为ABA信号途径的负调控因子参与植物抗逆基因表达调控网络。  相似文献   

2.
为鉴定烟草中bZIP转录因子并验证其部分基因在非生物胁迫诱导中的响应机制,本研究基于最新的烟草基因组测序结果对bZIP基因家族进行了全基因组鉴定及生物信息学分析,并在ABA处理下对其A亚族的18个基因进行了转录水平检测。结果表明,利用基于隐马尔可夫模型的Hmmer软件和Pfam的在线蛋白结构预测,在烟草全基因中总共鉴定得到105个包含bZIP保守结构域的基因,其蛋白序列长度分布为112~973,蛋白分子量分布为12 913.63~104 640.38 Da,保守结构域序列长度在35~59,等电点分布在4.91~9.79,都属于亲水蛋白。对获得的全部烟草bzip家族序列构建系统进化树,以拟南芥的71个bZIP序列为对照,将其划分为10个亚族,即A~I和S。通过MEME在线软件预测出烟草bZIP基因家族有20个模体结构,其中motif 1普遍存在于103个蛋白之中,每一个亚族中模体的种类和数目都是相似的,说明了亚族分组的可靠性。通过对普通烟草在ABA处理下bZIP基因家族中的A亚族基因的转录水平表达模式分析表明,18个基因受到诱导表达,表达量均出现上调,但最大值出现的时间不同,说明bZIP A亚族基因应对ABA处理时具有一定的共性,但是具体的响应模式不同。  相似文献   

3.
为明确小桐子bZIP转录因子家族的结构特征以及其在植物响应生物与非生物胁迫中的作用,利用生物信息学方法,从全基因组水平鉴定小桐子bZIP转录因子家族,并对其基因结构、进化关系、染色体定位、共线性关系及组织与低温表达特性进行分析。结果表明,共鉴定到51个小桐子bZIP基因,系统进化树分析将其分为10个亚族(A-I及S)。基因定位显示,51个小桐子bZIP基因不均匀地分布于11条染色体,其中2号与4号染色体鉴定到基因的串联复制。基因结构分析表明,小桐子bZIP基因包含1~13个外显子,其中,S亚族基因包含1~2个外显子,而G亚族基因包含12~13个外显子。bZIP转录因子主要定位在细胞核,氨基酸数目为113~768个,等电点4.70~10.30。启动子顺式作用元件鉴定发现3~27个响应激素如赤霉素、脱落酸、乙烯及生长素与非生物胁迫如低温、高温及创伤等调控元件。转录组表达分析显示,小桐子bZIP基因具有器官表达特异性,26个bZIP基因在叶片、根及种子中均有表达,其他基因仅在特定器官中表达。同时,鉴定到14个小桐子bZIP基因在低温条件下上调表达。在叶片中,qRT-PCR试验显示JcbZIP3与JcbZIP14表达量在低温处理24 h时上调达到显著水平,与小桐子抗冷性的形成及低温信号转导过程直接相关。研究结果为小桐子bZIP基因的克隆与调控机制研究奠定了基础。  相似文献   

4.
NAC转录因子在植物发育和逆境应答中具有重要的作用。本研究从玉米中克隆了一个NAC基因ZmNACx。该基因开放阅读框长900 bp,编码299个氨基酸,预测分子量约为33.539 k D,等电点为8.18。推测的氨基酸序列中含有1个高度保守的NAM结构域。亚细胞定位预测ZmNACx蛋白定位于细胞核。进化树分析发现,ZmNACx和Os NAC1分为一个分支。组织特异性表达模式分析表明在检测的所有组织中ZmNACx都有表达,在根中表达量最高,在叶中表达量最低。ZmNACx基因的表达受干旱诱导,说明玉米ZmNACx基因可能参与玉米对干旱胁迫的应答。  相似文献   

5.
扁桃AcCBF2基因的克隆及其在逆境胁迫下的表达分析   总被引:1,自引:0,他引:1  
本研究根据扁桃生物信息学数据库,采用PCR的方法从扁桃(Amygdalus communis L.)中克隆了一个CBF转录因子基因,命名AcCBF2,基因开放阅读框(open reading frame,ORF)为717 bp,编码238个氨基酸,预测其分子量26.59 kD,等电点为5.29。氨基酸多重序列比对显示,AcCBF2基因编码的氨基酸与其它植物冷胁迫相关的CBF氨基酸序列具有高度同源性,含有一个AP2功能结构域和2个特征基序;系统发育树分析显示,AcCBF2基因属于DREB家族中的A-1亚族,荧光定量显示,AcCBF2基因只对低温和干旱胁迫有响应,对盐胁迫和ABA(脱落酸)没有明显响应。在低温胁迫下,表达量上调;而在干旱胁迫下,表达量先上调后下调。初步预测AcCBF2基因可能对扁桃非生物胁迫有重要的调控作用。  相似文献   

6.
HD-Zip家族基因在植物生长发育和逆境胁迫中起重要作用。为了研究MeHDZ14基因在非生物胁迫(尤其是干旱)应答中的作用,选用对干旱信号反应灵敏、相对耐旱的木薯品种"SC124"作为实验材料,利用RT-PCR克隆了MeHDZ14基因。生物信息学分析发现,MeHDZ14基因编码的蛋白具有典型的HD-Zip保守结构域。将该基因编码的蛋白与GFP融合,亚细胞MeHDZ14:GFP重组蛋白定位于细胞核。同时,酵母Y187中的转录自激活试验结果也表明,MeHDZ14蛋白具有明显转录自激活功能。推断MeHDZ14是一个典型的HD-Zip I转录因子。MeHDZ14启动子区具有多个ABA响应元件ABRE(ABA response element)。基因差异表达分析结果表明,MeHDZ14基因在叶片和根中的表达受干旱胁迫的诱导,并对外源ABA具有明显的响应。因此,认为MeHDZ14基因通过ABA依赖信号传导途径参与调控木薯干旱响应。此外,还发现MeHDZ14基因的编码区虽然存在数个SNP,但表现出高度保守性,且在不同木薯品种中的表达对干旱胁迫均有明显的响应,为进一步研究该基因的功能奠定了基础。  相似文献   

7.
茶树bZIP转录因子基因CsbZIP1的克隆与表达定位   总被引:1,自引:1,他引:0  
碱性亮氨酸拉链蛋白(bZIP)作为真核生物中分布最广、最保守的一类转录因子,参与多种生物学过程,尤其在植物抵御各种逆境胁迫中有重要作用。采用RACE和RT-PCR技术克隆到茶树bZIP转录因子基因全长cDNA序列,命名为CsbZIP1(GenBank登录号为JX050148.1)。该基因cDNA全长1515 bp,包含813 bp的完整开放阅读框(ORF),编码270个氨基酸,预测分子量29.484 kD;含有bZIP家族典型的BRLZ结构域碱性结构域和亮氨酸拉链,属于B-zip1家族;系统发育树分析显示CsbZIP1属于bZIP转录因子F亚家族;亚细胞定位结果表明CsbZIP1主要定位于细胞核;qRT-PCR分析表明,4℃低温和NaCl盐胁迫处理均能诱导CsbZIP1的表达,表达量变化趋势都是随着胁迫时间先逐渐升高,到24 h时降低,ABA胁迫处理24 h抑制CsbZIP1的表达。推测CsbZIP1与茶树低温、盐等逆境胁迫密切相关。  相似文献   

8.
碱性亮氨酸拉链(basic leucine zipper, bZIP)是一种广泛存在于植物中的保守转录因子,其家族成员数目是植物中最丰富的转录因子家族之一。为了解马铃薯StbZIP基因家族的相关信息,本研究通过生物信息学的方法,在二倍体马铃薯‘DM’全基因组中鉴定64个马铃薯StbZIP家族成员,命名为StbZIP1~StbZIP64。通过分析发现,马铃薯StbZIP家族成员不均匀地分布在12条染色体上。生物信息学分析表明,家族成员蛋白长度为132~822 aa,分子量介于15.40~88.18 kD之间,等电点4.74~10.30。系统发育树分析显示,该基因家族可分为11个亚群,其基因主要分布在第1、4和10号染色体上。基因结构和保守基序分析发现,各亚族成员间具有相似的保守基序和进化的保守性。表达模式分析发现,11个亚族内部呈现出响应不同非生物胁迫的表达模式,其中有8个亚族基因都在ABA胁迫24 h时表达量发生显著升高。这些结果为阐明StbZIP基因家族的进化和进一步研究StbZIP基因的功能提供了理论指导。  相似文献   

9.
《分子植物育种》2021,19(15):4887-4895
b ZIP (Basic region/leucine zipper motif)蛋白是真核生物中普遍存在的一类转录因子,对植物应答胁迫具有重要作用。为了鉴定bZIP家族转录因子基因是否参与小麦盐胁迫响应的调控过程,获得更多与盐胁迫相关的b ZIP转录因子,本研究以‘科农199’(KN199)为实验材料,利用Illumina HiSeq平台进行150 bp双端测序,从转录组水平检测了bZIP家族转录因子基因在小麦盐胁迫条件下的差异表达情况。结果显示,每个处理的生物学重复之间的相关系数都在0.97以上,说明本实验中样品重复性较好,在处理不同时间点样品间的差异非常显著。根据中国春(Chinese spring, CS)参考基因组筛选到的156个小麦bZIP家族转录因子中,有14个bZIP转录因子位于5B染色体上;经盐处理1 h后,鉴定出14 544个差异表达基因(DEGs),包括49个b ZIP转录因子基因;在处理6 h后,鉴定出25 546个DEGs,包括59个bZIP转录因子基因,并且b ZIP转录因子基因在两组样品之间有35个共同的DEGs,其中有25个基因上调表达,10个基因下调表达。小麦响应盐胁迫b ZIP转录因子基因进行聚类分析结果与基因表达差异的结果一致。研究发现不论是总的DEGs还是差异表达的bZIP转录因子基因的数目,均随着处理时间的延长而增加,推测这些基因可能参与调控小麦盐胁迫反应。  相似文献   

10.
WRKY是植物特有的转录因子基因, 在植物对外界胁迫响应及生长发育的过程中发挥重要作用。本研究克隆了一个新的小麦WRKY转录因子基因TaWRKY44, 获得其全长cDNA, 其中开放阅读框长度为897 bp, 编码298个氨基酸。半定量RT-PCR的结果表明, TaWRKY44在叶片中表达水平较高, 并且受干旱和低温胁迫诱导表达。转基因功能分析结果表明, TaWRKY44的拟南芥超表达株系叶片变小, 叶柄缩短, 并且叶片细胞也明显小于野生型。另外, 转基因系对ABA、干旱和盐等胁迫处理的敏感性也高于野生型, 说明该基因可能作为一个转录抑制子参与逆境胁迫信号转导过程。  相似文献   

11.
转录因子是植物响应逆境胁迫的重要调节因子,在其整个生长发育过程中发挥着重要的作用。HD-ZIP家族蛋白是植物中特有的一大类转录因子,包含4个亚家族(HD-ZIP I^IV),其中HD-ZIP I亚家族成员主要参与干旱、渗透压等极端环境和ABA及乙烯等激素处理的响应过程。本文采用隐马可夫模型(HMM)在玉米参考基因组中鉴定到17个HD-ZIP I亚家族成员,这些基因不均匀分布于玉米6条染色体上,与水稻的亲缘关系要近于拟南芥。玉米HDZIP I亚家族基因在玉米7种组织中表现出多种表达模式,具有明显的组织表达特异性。另外, HD-ZIP I亚家族基因对高盐、淹水及冷害等不同的逆境胁迫处理呈现出不同的响应模式及响应程度差异。5种不同激素处理后,玉米HD-ZIP I亚家族基因也表现出复杂的响应模式。这些结果为进一步解析玉米HD-ZIP I亚家族基因的生物学功能和作用机理提供了一定的参考价值。  相似文献   

12.
为了明确淀粉合成途径中的关键酶的功能和调控机制,本文综述了玉米淀粉的结构、淀粉合成途径以及调控淀粉合成转录因子(DOF、NAC、MYB、bZIP、MADS-BOX和AP2/EREB等家族)的表达和功能机制。研究表明大部分转录因子能在玉米胚乳中表达,少数也能在叶片中表达;这些转录因子可以通过与淀粉合成酶编码基因和关键调控基因的启动子结合从而影响其表达来调控淀粉的合成。此外,蔗糖/ABA、蔗糖/IAA也可以和转录因子协同调控淀粉的合成。本文能够加深对玉米淀粉合成调控的理解,也为玉米品质改良提供重要的理论依据。  相似文献   

13.
bZIP蛋白是植物中特有的一类转录因子,包含亮氨酸拉链结构域和碱性结构域两部分。在种子贮藏基因表达、光形态发生及器官建成以及植物对ABA、光、厌氧生活和发育信号的反应中,bZIP蛋白家族对调节基因的表达都起到重要的作用。对已鉴定出的78个拟南芥bZIP基因(包括-like)中72个bZIP基因(不包括-like和假设蛋白),利用系统发育树分为8个组,以期进一步探讨进化组中的生物特征和功能。  相似文献   

14.
碱性亮氨酸拉链(basic leucine zipper, bZIP)是真核生物中数量最多并且最具多样性的转录因子之一,参与植物生长发育及响应生物和非生物胁迫。本研究利用亚洲棉(Gossypium arboreum)全基因组数据库,通过生物信息学分析分布在13条染色体上的159个bZIPs家族基因的全序列。系统进化、基因结构和保守基序分析表明这些基因分成13个亚家族。其中,A亚家族有3个GaFD基因GaFD1、GaFD2和GaFD3,通过实时荧光定量PCR分析3个GaFDs基因在不同组织中的表达,结果表明GaFD1和GaFD2在SAM中的表达量最高,GaFD3在茎中表达量最高。研究表明棉花基因组中具有数量众多的bZIP家族成员,不同基因结构及FD基因不同的表达特征表明bZIP基因在棉花生长发育中可能具有不同的功能,这些结果为进一步解析棉花bZIP家族基因的功能和作用机理积累了有价值的资料。  相似文献   

15.
谷子PP2C基因家族的特性   总被引:3,自引:1,他引:2  
PP2Cs (2C type protein phosphatases)是一种单体丝氨酸/苏氨酸蛋白磷酸酶,在真核生物中,PP2Cs在脱落酸(ABA)、茉莉酸(JA)、水杨酸(SA)等激素信号传导途径中起着重要的调控作用。本研究通过序列比对,从谷子基因组中筛选出80个PP2C候选基因,聚类分析将其分为12个亚族(A、B、C、D、E1、E2、F1、F2、G、H、I、J)。与拟南芥PP2C基因家族比对表明,A~I为2个物种共有的亚族,J亚族只存在于谷子基因组中,L亚族只存在于拟南芥中。将谷子A亚族的10个成员命名为SiPP2CA1-10。基因表达谱分析表明,A亚族基因不同程度受ABA、干旱、高盐、低温和低氮诱导表达,其中,SiPP2CA6、SiPP2CA8在5种处理下诱导表达量都高。对10个A亚族成员的启动子分析发现,在这些基因的启动子序列中含有多种参与逆境胁迫应答的顺式作用元件,其中,SiPP2CA5、SiPP2CA6、SiPP2CA7、SiPP2CA8的启动子中含有参与低氮胁迫响应的元件。进一步研究发现,SiPP2CA8主要在根部表达,且在低氮胁迫下一直有较高的表达水平。亚细胞定位结果显示SiPP2CA8定位在细胞膜、细胞质、细胞核中;双分子荧光互补试验(BiFC)结果表明,SiPP2CA8与一个ABA受体类似蛋白SiRCAR3(基因号Si018317m.g)在细胞膜、细胞质及细胞核上互作,表明SiPP2CA8在谷子中可能参与ABA信号传导过程。  相似文献   

16.
转GmAREB基因提高拟南芥的干旱、氧化胁迫耐性   总被引:1,自引:0,他引:1  
以耐盐性较强的大豆(Glycine max L.)品种铁丰8号为试验材料,克隆到1个A亚族bZIP类转录因子基因,命名为GmAREB (Glycine max ABA responsive element binding protein)。该基因由1 317个核苷酸组成,编码439个氨基酸残基,包括4个保守的磷酸化位点区域(C1、C2、C3和C4)、1个核定位信号区(KVVE)和1个bZIP转录因子保守域。聚类分析显示GmAREB蛋白与拟南芥ABF2、水稻OsTRAB1具有较高的同源性,并存在较近的亲缘关系。采用凝胶阻滞实验方法证明GmAREB蛋白与ABRE顺式元件具有体外结合特异性。功能分析结果表明, 在干旱胁迫条件下, GmAREB转基因拟南芥的存活率(50%)显著高于野生型(5%);气孔统计分析显示转基因植株的气孔开度(0.8 μm)明显比对照开度小(2.6 μm)。氧化胁迫结果显示GmAREB转基因拟南芥在甲基紫精溶液中叶绿素含量比野生型高(7.3 mg g–1 FW)。转基因拟南芥RT-PCR分析表明,GmAREB基因过表达能够增强下游胁迫相关基因ABI1、ABI2的表达,抑制气孔开闭相关基因KAT1、KAT2的表达。综上所述,GmAREB基因过表达有效调控了转基因拟南芥下游靶基因表达,加速了气孔关闭,减少了水分蒸发和叶绿素降解,从而提高了转基因拟南芥对干旱、氧化胁迫耐性。  相似文献   

17.
质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)是水通道蛋白主要亚家族成员之一,在植物生长发育过程中具有重要调节功能。前期研究表明,玉米ZmPIP1;1基因表达受到渗透和盐胁迫的强烈诱导,但其在玉米中的生物学功能尚不明确。本研究通过玉米遗传转化获得了ZmPIP1;1超表达转基因株系,干旱胁迫实验揭示了ZmPIP1;1超表达转基因株系较野生型具有较低的水分散失率及较强的干旱胁迫耐性。转录组测序结果表明参与ABA生物合成及其信号通路相关基因的表达水平发生了显著变化。在田间正常生长条件下,ZmPIP1;1超表达转基因植株与野生型在生长发育过程中没有明显差异,但转基因玉米株系具有较高的光合效率,粒宽和百粒重增加,玉米单果穗的产量提高。此外,通过荧光双分子互补实验观察到ZmPIP1;1和ZmPIP2;6蛋白在玉米叶肉细胞原生质体的细胞质膜和叶绿体膜上存在互作,并且可能导致了ZmPIP蛋白的重定位。该研究为ZmPIP1;1分子机制的解析奠定了重要基础,为玉米高光效分子设计育种开辟了新的途径。  相似文献   

18.
条锈菌诱导的小麦bZIP转录因子基因的克隆及表达分析   总被引:1,自引:0,他引:1  
张毅  夏宁  张岗  郭军  黄丽丽  康振生 《作物学报》2010,36(7):1221-1225
采用电子克隆和RT-PCR方法,从条锈菌诱导的小麦品种水源11的cDNA中分离到一个编码bZIP转录因子基因的cDNA序列,暂被命名为TabZIP。TabZIP包含一个完整的1 071 bp的开放阅读框,编码356个氨基酸,具有典型的bZIP保守结构域;与水稻、玉米、拟南芥等植物bZIP蛋白的氨基酸序列相似性较高;TabZIP基因在小麦根中的表达量丰富,而在茎和叶中表达量很小;在小麦与条锈菌非亲和组合中,TabZIP基因高水平表达,而在亲和组合中没有明显的变化;防卫相关激素乙烯、茉莉酸也可诱导该基因的快速上调表达,表明TabZIP可能通过乙烯、茉莉酸信号途径介导小麦对条锈病的防御反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号