首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 453 毫秒
1.
赵阳  朱延明  柏锡  纪巍  吴婧  唐立郦  才华 《作物学报》2014,40(3):431-438
从野生大豆盐碱胁迫基因表达谱中筛选并克隆到GsCBRLK基因, 与人工合成的高甲硫氨酸含量SCMRP基因构建成双价植物表达载体, 将其转入苜蓿, 获得超量表达的转基因苜蓿, 并进行耐碱性分析。结果显示, 经过100、150 mmol L–1 NaHCO3处理14 d后, 转基因株系生长状态良好, 而非转基因对照株系萎蔫、失绿、甚至死亡;转基因株系的丙二醛含量和相对质膜透性显著低于非转基因株系(P<0.05), 而SOD酶活性显著高于非转基因对照(P<0.05), 说明超量表达GsCBRLK基因增强了苜蓿的耐碱能力;各转基因株系的甲硫氨酸含量均比对照植株高, 表明SCMRP基因的导入提高了苜蓿叶片甲硫氨酸的含量。  相似文献   

2.
谷胱甘肽S-转移酶对植物抵御逆境胁迫和解除细胞毒素起着重要作用。本研究从野大豆盐碱胁迫基因表达谱中筛选并克隆得到GsGST19基因,将其转化苜蓿,获得超量表达的转基因苜蓿,并对转基因苜蓿进行耐盐碱性分析。结果显示在正常培养条件下,转基因苜蓿株系19-4和19-9的GST酶活性分别是非转基因株系的1.52倍和1.49倍。在100 mmol L–1 NaHCO3处理14 d后转基因株系生长状态良好,而非转基因对照株系明显萎蔫、失绿、甚至死亡;转基因株系的丙二醛含量和相对质膜透性显著低于非转基因株系(P<0.05),而叶绿素含量和根系活力显著高于非转基因对照(P<0.05),说明超量表达GsGST19基因增强了苜蓿的耐盐碱能力。  相似文献   

3.
WRKY蛋白属于锌指型转录调控因子,能够参与植物多种逆境响应。本研究利用前期野生大豆盐碱胁迫RNA-seq测序数据,从构建的碱胁迫基因调控网络中筛选并克隆到GsWRKY15基因。分析GsWRKY15在碱胁迫下野生大豆根中的表达模式,发现该基因受碱胁迫诱导显著上调表达,且在胁迫后1 h表达量最高。分析GsWRKY15基因在野生大豆各组织中的表达特异性,发现该基因在各组织中均有表达,花中表达量最高。采用根癌农杆菌侵染苜蓿子叶节方法,将GsWRKY15转化肇东苜蓿,获得39株抗性植株。通过PCR、Southern blot和RT-PCR方法分析抗性植株,获得了超量表达GsWRKY15基因的转基因株系并对其进行了耐碱性分析。在150 mmol L–1 Na HCO3处理2周后转基因苜蓿生长状态良好,而非转基因苜蓿出现萎蔫、变黄,甚至死亡;非转基因苜蓿的相对质膜透性和丙二醛含量显著高于转基因苜蓿,而叶绿素含量显著低于转基因苜蓿;同时分析碱胁迫下转基因植株中胁迫相关基因的表达模式,发现H+-Ppase、NADP-ME、KIN1、RD29A基因的表达量高于非转基因苜蓿。结果表明GsWRKY15基因的超量表达能够显著增强苜蓿的耐碱能力。  相似文献   

4.
转AtDREB2A基因苜蓿的耐碱性分析   总被引:3,自引:1,他引:2  
对已获得的转基因苜蓿进行了RT-PCR检测,确定AtDREB2A基因已在转基因苜蓿中超量表达。并研究了转AtDREB2A基因苜蓿在碱胁迫(100mmol/L,pH8.5)下表型和生理生化指标的变化。结果表明,转AtDREB2A基因苜蓿的相对质膜透性及丙二醛含量显著低于野生型株系,株高、叶绿素及根系活力明显高于野生型株系,说明AtDREB2A基因的超量表达提高了转基因苜蓿的耐碱能力。  相似文献   

5.
由于盐胁迫严重限制了苜蓿的产量,研究构建了沙打旺(Astragalus adsurgens Pall)解螺旋酶基因AH1的植物表达载体p Cambia-AH1,并利用农杆菌介导法将目的基因转化到紫花苜蓿(Medicago sativa L.)中,旨在获得抗盐胁迫能力强的转基因植株。半定量RT-PCR检测和Northern杂交表明AH1基因在5个转基因株系中稳定表达。在盐胁迫条件下,与野生型对照植株相比,AH1转基因株系对中度盐胁迫(200 mmol/L Na Cl)具有较强的耐受性。而且,在中度盐胁迫条件下(200 mmol/L Na Cl),转基因植株累积了大量的游离脯氨酸和可溶糖。研究表明AH1基因可以改善植物盐渗透调节能力,从而导致了AH1转基因植株的抗盐胁迫能力的提高。  相似文献   

6.
Hrip1是从极细链格孢(Alternaria tenuissima)代谢物中分离的一种蛋白激发子。将蛋白激发子基因Hrip1转化到拟南芥,对5个T1代转基因拟南芥株系进行分子检测, 证明Hrip1基因能够在拟南芥中转录和表达。转基因植株对盐和干旱胁迫的抗性显著增强, 75 mmol L−1 NaCl和50 mmol L−1甘露醇渗透胁迫2 d, 转基因植株种子平均相对发芽率为32.1%和77.9%, 分别比野生型的增加3.72倍和5.61倍; 150 mmol L−1 NaCl和50 mmol L−1甘露醇处理拟南芥幼苗7 d后, 转基因植株平均相对根长为81.79%和93.25%, 分别是野生型的1.53倍和1.34倍。3周龄的转基因植株在250 mmol L−1 NaCl条件下胁迫20 d, 平均存活率为67%, 显著高于野生型(42%)(P<0.05); 干旱胁迫25 d后, 复水5 d转基因植株平均存活率为72%, 而野生型仅为44%。检测结果显示转基因植株叶片的抗氧化酶活性明显高于野生型, 用200 mmol L−1 NaCl和200 mmol L−1甘露醇处理24 h后, POD活性分别比野生型植株提高1.56倍和1.85倍, CAT活性分别比野生型植株提高1.64和1.86倍。说明蛋白激发子Hrip1基因在拟南芥中的表达能够改善和提高植株的耐盐抗旱能力。  相似文献   

7.
转PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应   总被引:2,自引:0,他引:2  
为探索普通菜豆脯氨酸合成酶基因P5CS1在植物渗透胁迫中的作用,本研究应用农杆菌介导法,将PvP5CS1基因转入拟南芥,获得6株阳性转基因株系;通过检测转基因植株与野生型植株在干旱和盐胁迫下种子发芽率,幼苗脯氨酸含量、株系电导率、相对根长和成株死亡率,分析了PvP5CS1基因的表达对改善拟南芥抗渗透胁迫的效应。结果表明,在150 mmol L-1 NaCl和150 mmol L-1甘露醇渗透胁迫下,转基因植株平均相对发芽率分别是野生型的1.6倍和1.62倍;150、250 mmol L-1甘露醇和150 mmol L-1 NaCl处理下,转基因拟南芥植株平均脯氨酸含量分别是野生型的2.68、1.30和1.30倍;平均相对电导率分别是野生型植株的85%、77%和85%;平均相对根长分别是野生型植株的1.2、1.3和1.2倍;300 mmol L-1 NaCl处理下,转基因植株的平均死亡率为42%,显著低于野生型(90%)(P<0.05);干旱胁迫下,转基因植株的平均死亡率为56%,显著低于野生型(70%)(P<0.05),说明PvP5CS1基因在拟南芥中的表达明显改善了转基因植株的抗旱性和耐盐性。  相似文献   

8.
转LEA基因烟草的NaHCO3抗性分析   总被引:3,自引:0,他引:3  
本研究以转LEA基因烟草7个株系及非转基因对照烟草组培苗为材料,用不同浓度的NaHCO3处理,通过调查转基因烟草和对照烟草的相对电导率、POD活性、SOD活性、碱害指数、生根率等指标的变化,对LEA基因功能在NaHCO3的抗性方面进行初步探索性的研究。结果表明,在非碱胁迫条件下,各转基因株系与对照烟草的相对电导率差异不明显,各株系的相对电导率随着NaHCO3浓度的增加均呈上升趋势,但各转基因株系均小于对照烟草,当NaHCO3浓度在30mmol/L和40mmol/L时,转基因株系之间及转基因株系与对照间的差异达到了显著水平;在给予NaHCO3胁迫后,将各转基因株系各个处理POD活性、SOD活性取平均值后与对照烟草做比较,可以看出,对照烟草的POD活性、SOD活性变化较小,而转基因株系活性上升较为明显,且均在NaHCO3浓度为30mmol/L处达到活性最大值;在不同浓度NaHCO3胁迫下转基因烟草的受害程度明显小于对照;在相同浓度的NaHCO3胁迫下,转基因烟草生根较对照烟草早2 ̄3d,当NaHCO3浓度为30mmol/L时,转基因烟草碱害指数达到50%左右,且保持有10% ̄30%左右生根率,而对照烟草受害程度较大,已经不能生根。综合以上分析结果表明,转基因烟草NaHCO3的耐受临界浓度为30mmol/L。在NaHCO3胁迫下,转基因烟草的碱害程度、膜损伤较对照烟草小,POD、SOD活性及生根率均高于对照烟草,说明LEA基因的导入提高了烟草的NaHCO3抗性。  相似文献   

9.
乙烯响应因子(ERF)是植物特有的一类转录因子,在响应非生物胁迫中具有重要作用。本研究通过生物信息学发现,野生大豆耐盐碱ERF转录因子GsERF6与水稻ERF同源蛋白的氨基酸序列相似性很高,均包含1个高度保守的AP2结构域。为探究GsERF6基因在水稻耐盐碱应答中的作用,通过遗传转化、PCR和半定量RT-PCR鉴定,获得了2个纯合的GsERF6过表达转基因水稻株系。表型鉴定表明, 200 mmol L–1 NaHCO3处理下GsERF6转基因水稻的存活率、相对含水量、超氧化物歧化酶、过氧化物酶、过氧化氢酶活性、可溶性糖和脯氨酸含量均显著高于对照,活性氧积累则反之。实时荧光定量PCR分析表明, 40 mmol L–1 NaHCO3处理6 h后渗透调节基因OsP5CS2和OsLEA14在GsERF6转基因水稻中的表达量显著高于对照。本研究表明,水稻中GsERF6的过表达可通过提高ROS清除水平、渗透调节能力及胁迫应答基因的表达来提高其耐盐碱性。  相似文献   

10.
棉花叶肉原生质体分离及目标基因瞬时表达体系的建立   总被引:2,自引:0,他引:2  
以棉花幼嫩子叶为外植体材料,分析影响棉花叶肉原生质体分离及目标基因转化的主要因素,以棉花叶肉原生质体为受体,建立稳定、高效的目标基因瞬时表达与鉴定体系。技术体系包括,选择自然生长12 d的棉花幼嫩子叶为外植体材料,混合1.5%纤维素酶、0.4%离析酶、0.5 mol L–1甘露醇、20 mmol L–1 KCl、20 mmol L–1 MES、0.1 mol L–1 CaCl2和1.0 g L–1 BSA等酶液,在28℃黑暗条件下振荡酶解8 h,可游离出浓度达1.0×106 m L–1以上的纯净棉花叶肉原生质体。利用该方法将棉花锌指蛋白基因GhZFP2整合到pJIT166-GFP质粒载体,构建了GhZFP2:GFP融合载体,采用40% PEG(4000)介导转化,获得高转化率的棉花叶肉原生质体。对目标基因瞬时表达产物检测表明,GhZFP2蛋白清晰定位在细胞核上。  相似文献   

11.
转BADH基因玉米植株的获得及其耐盐性分析   总被引:2,自引:0,他引:2  
采用超声波辅助花粉介导植物转基因方法, 将甜菜碱醛脱氢酶(BADH)基因导入玉米自交系郑58, 获得了耐盐性强的转基因玉米植株。经卡那霉素抗性初筛、PCR扩增、Southern blot杂交分析, 证明BADH基因已导入转化植株并整合到其基因组中。用不同浓度的NaCl溶液对T2代转基因玉米植株与对照进行盐胁迫处理, 结果表明, 转BADH基因玉米植株表现出一定的抗逆性, 生长状况明显优于对照; 根据非转化苗对NaCl的反应以及生长状况, 确定250 mmol L-1 NaCl溶液为玉米幼苗耐盐性筛选的适宜浓度; 依据此临界浓度下形态指标和生理生化指标的测定结果, 与对照相比, 转基因植株的株高提高10.94%~25.7%, 鲜重增加8.62%~18.2%, 干重增加9%~18.18%, 相对电导率降低37.21%~58.14%, 叶绿素含量增加15.89%~90.65%, 超氧化物歧化酶(SOD)活性提高64.92%~148.29%, 丙二醛(MDA)含量减少26.97%~48.05%。综上所述, 转入甜菜碱醛脱氢酶(BADH)基因提高了玉米的耐盐性。这是首例将BADH基因导入优良玉米自交系郑58的报道。超声波辅助花粉介导法是一种经济、高效、实用和无基因型依赖性的植物基因转化方法。  相似文献   

12.
13.
含异位表达花生AhNCED1基因的拟南芥提高耐渗透胁迫能力   总被引:2,自引:0,他引:2  
AhNCED1是干旱胁迫下调控花生ABA生物合成的关键基因。以pCAMBIA1301为基本双元表达载体,分别构建CaMV35S启动子和拟南芥AtNCED3基因启动子(AtNCED3p)驱动花生AhNCED1基因的2个植物双元表达载体p35S::ORF和pAtNCED3p::ORF,通过根癌农杆菌介导法将上述两个表达载体分别转化野生型和129B08/nced3突变体拟南芥,经潮霉素筛选和PCR鉴定分别获得35S::ORF-WT和A3p::ORF-B08转基因植株,RT-PCR证实花生AhNCED1基因已在转基因植株中稳定表达,并对野生型、129B08/nced3突变体和转基因拟南芥进行外源ABA敏感性和耐渗透胁迫能力分析。结果表明,129B08/nced3突变体对外源ABA的敏感性下降,而花生AhNCED1基因在拟南芥中的异位表达提高了对外源ABA的敏感性。在山梨醇胁迫下,129B08/nced3突变体种子的相对萌发率明显低于野生型的,而A3p::ORF-B08转基因拟南芥种子的相对萌发率与野生型的相当,显著高于129B08/nced3突变体的,且300mmolL–1山梨醇胁迫下,35S::ORF-WT转基因拟南芥种子的相对萌发率明显高于野生型的。在300mmolL–1山梨醇胁迫下,129B08/nced3突变体幼苗叶片高度黄化,根的形成和幼苗生长受到严重抑制,而A3p::ORF-B08转基因突变体与野生型相似,叶片仅轻度黄化,幼苗生长势良好;35S::ORF-WT转基因植株幼苗生长未受明显影响。这些结果说明,拟南芥129B08/nced3突变体对山梨醇诱导的非离子渗透胁迫有超敏性,异位表达花生AhNCED1基因能恢复该突变体对山梨醇的超敏性,提高拟南芥的耐渗透胁迫能力。  相似文献   

14.
利用RT-PCR技术从甘蓝型油菜耐淹品系WR-4中克隆获得Bn ADH3基因,其完整开放阅读框为1137 bp。该基因编码379个氨基酸,与甘蓝Bo ADH3基因和拟南芥At ADH3基因高度同源,同源性分别达到96%和91%。利用定量RT-PCR检测Bn ADH3基因在油菜耐淹系WR-4和不耐淹系WR-24中的表达表明,在淹水处理下该基因表达受到一定的诱导,淹水处理6 h后表达开始上调,说明Bn ADH3基因在油菜耐淹机制中发挥作用;将其转化到模式生物拟南芥中,采用幼苗淹水3 d后去水处理,测定表明转基因株系叶片和根系中乙醇脱氢酶活性均高于野生型;生长4周和6周的拟南芥植株淹水3 d后的表型显示,Bn ADH3的表达可增强拟南芥对淹水胁迫的耐性,处理的T2代转基因幼苗大部分恢复,但野生型幼苗枯死;调查表明,淹水5 d后野生型植株的存活率为26.7%,转基因株系ADH33和ADH44的存活率分别为80.0%和66.7%。  相似文献   

15.
Salt-affected soils are generally classified into two main categories: saline and sodic (alkaline). Developing and using soybean (Glycine max (L.) Merr) cultivars with high salt tolerance is an effective way of maintaining sustainable production in areas where soybean growth is threatened by salt stress. Early classical genetics studies revealed that saline tolerance was conditioned by a single dominant gene. Recently, a series of studies consistently revealed a major quantitative trait locus (QTL) for saline tolerance located on linkage group N (chromosome 3) around the SSR markers Satt255 and Sat_091; other minor QTLs were also reported. In the case of sodic tolerance, most studies focused on iron deficiency caused by a high soil pH, and several QTLs associated with iron deficiency were identified. A wild soybean (Glycine soja Sieb. & Zucc.) accession with high sodic tolerance was recently identified, and a significant QTL for sodic tolerance was detected on linkage group D2 (chromosome 17). These studies demonstrated that saline and sodic tolerances were controlled by different genes in soybean. DNA markers closely associated with these QTLs can be used for marker-assisted selection to pyramid tolerance genes in soybean for both saline and sodic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号