首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
塑料大棚番茄渗灌多孔管埋深的研究   总被引:7,自引:0,他引:7  
渗灌管的埋深是渗灌的重要技术参数之一。本试验以6kPa和40kPa分别作为保护地渗灌的灌水上限和灌水下限,以土壤水分张力计读数控制灌水起始点,研究了不同的多孔管埋深(分别为20、30、40cm)对保护地土壤水分状况和温度状况等土壤环境条件以及番茄生长发育状况、产量、外观品质和水分利用率的影响。研究结果表明,与埋深20cm和40cm相比,渗灌多孔管埋深为30cm时,番茄生长的根区土壤水分含量适中,土壤温度在白天上升较快,土壤肥力状况较好,番茄干物质积累较多,生长发育较好,有利于提高番茄产量、外观品质和分利用率,有利于田间耕作管理。这一技术参数最适宜于塑料大棚番茄栽培应用,相应的灌水周期为8d左右,每次灌水量为225m^3/hm^2。  相似文献   

2.
保护地渗灌管的埋深对土壤水盐动态及番茄生长的影响   总被引:16,自引:1,他引:16  
王淑红  张玉龙  虞娜  颜文 《中国农业科学》2003,36(12):1508-1514
 研究了保护地渗灌管不同深度对土壤水盐动态、番茄生长发育及产量的影响。结果表明 ,渗灌管的埋深越浅 ,灌水周期越短 ,盐分积累越多 ;渗灌管埋深 3 0cm、管下铺设防渗槽时 ,有利于抑制盐分积累 ,番茄生长旺盛 ,株高、茎粗、果径等指标表现最佳 ,同时产量和水分利用率也最高  相似文献   

3.
保护地番茄栽培渗灌技术的研究   总被引:16,自引:2,他引:16  
大棚番茄栽培渗灌试验表明,保护地采用渗灌技术增产、节水效果明显。将土壤水吸力6kPa和40kPa作为控制灌水的上下限,从番茄的株高、茎粗、生物量、根系数量及其土层分布、产量、品质以及灌水量和灌水次数等方面对渗灌管埋深及防渗槽有无等技术进行评价,得出的结论为:渗灌管埋深30cm,下设防渗槽处理效果最佳;渗灌管埋深30cm,无防渗槽处理次之;有防渗槽、渗灌管埋深20cm和40cm处理效果最差。  相似文献   

4.
【目的】研究不同作物渗灌土壤水分状况与产量效应,为渗灌推广应用提供技术参考。【方法】基于正交试验设计,以渗灌玉米产量为敏感性分析指标,研究渗灌灌溉下播种深度、渗灌埋深、灌水频次和灌水定额对玉米产量影响的敏感性,观测不同处理下土壤水分状况。【结果】渗灌与膜下滴灌土壤水分分布有所不同。渗灌耕作层土壤含水率低,中下层土壤含水率渐增;膜下滴灌耕作层土壤含水率较高,中层土壤有所下降,下层含水率增高。4 200 m3/hm2渗灌定额玉米产量达9 905.56 kg/hm2。渗灌玉米平均产量9 485.10 kg/hm2,比膜下滴灌高出12.7%。【结论】对渗灌玉米产量影响最为显著的是播种深度,其次为灌水频次、渗灌埋深,影响最小的是灌水定额。播种深度20 cm,渗灌埋深30 cm,灌水定额600 m3/hm2,灌水频次7次为渗灌玉米高产最优参数组合。  相似文献   

5.
在探讨渗灌不同灌水控制下限对土壤氮素形态及其数量剖面分布的影响基础上,评价灌水指标,合理调控土壤水分状况.分层采集连续7年用渗灌灌溉的保护地0~60cm层次土壤样品,测定有机质、全氮及无机态氮和有机态氮含量.结果表明:10,16,25,40,63kPa5个处理0~60cm剖面土壤有机质含量在12.83~17.18g·kg-1范围内变化,其含量随土层深度增加呈现迅速下降趋势,在0~10cm土层,40kPa处理和63kPa处理土壤有机质含量明显低于其他3个处理;30~40cm土层.10kPa处理土壤有机质含量明显低于其他处理.土壤全氮含量的变化范围为1.22~1.70g·kg-1,其含量剖面分布呈上高下低特点,10~30cm土层,63kPa处理土壤全氮含量明显高于其他4个处理.硝态氮、铵态氮分别在10.00~161.59mg·kg-1和6.07~13.94mg·kg-1范围内变化,0~20cm土层,各处理硝态氮含量差异较为明显,以25kPa处理最大,63kPa处理最小.有机态氮含量的变化范围为1201.74~1602.53mg·kg-1,其含量随土层深度增加而下降,在0~30cm土层,63kPa处理土壤有机氮含量明显高于其他处理.保护地渗灌栽培番茄,当渗灌管埋深为30cm时,综合考虑节水、保证作物产量和防止土壤有机物质减少、氮素过量积累等因素,将灌水控制下限土壤水吸力值选定在16~25kPa范围内是适宜的.  相似文献   

6.
<正>渗灌是灌溉水在一定灌水压力下通过埋在地下土层中的渗灌管渗出,凭借土壤毛细管作用给作物根层供水的一种先进的灌水方法,近年来在美国、法国、意大利、日本和以色列等国家被广泛应用于温室、果园及城乡绿化等灌溉中,引起了很多学者及科研单位的关注。一、保护地渗灌的技术优势1.灌水质量高,节水效果显著渗灌是通过埋在地下的渗灌管给作物根系直接供水,灌水均匀,供水稳定,通过控制灌水量,也可以有效地降低深层渗漏,灌水质量高,能有效地解决作物的水分需求,减少水分的无效消耗。灌水后,土壤表层仍能保持干燥,水分棵间蒸发减少,利用率提高。试  相似文献   

7.
通过田间灌溉试验,研究了在根渗灌条件下土壤中的水分扩散规律,主要包括灌水过程中土壤水分的入渗过程和灌水结束后土壤水分再分布过程,即土壤水湿润锋的运移及湿润区内的土壤含水率分布状况,初步确定根渗灌管间距布置为1.7m,埋管深度50cm,根渗灌系统在粘壤土和粘土的灌溉周期为10d.  相似文献   

8.
用保护地田间小区试验的方法,研究节点渗灌与普通渗灌及不同氮肥用量对黄瓜产量及氮肥利用率的影响,以期为保护地生产选择灌溉方法和确定适宜氮肥用量提供依据。试验采用裂区设计,灌溉方法为主区,氮肥用量为副区;普通渗灌、节点渗灌的计划湿润层深度、灌水控制上限和下限等灌水参数相同,氮肥用量(N素)设0,75,225,375,525 kg.hm-2共5个水平。用方差分析、回归分析方法比较各处理间黄瓜产量、氮肥利用率差异显著性,用土壤含水量剖面观测结果分析了产生这一差异的原因。结果表明:无论是普通渗灌、还是节点渗灌,黄瓜产量随氮肥用量增加均呈先增加、再下降的变化趋势,且均以375kg.hm-2施氮处理最高,分别为82878.06kg.hm-2和104664.77kg.hm-2;但在相同氮肥用量条件下,节点渗灌处理的黄瓜产量、氮肥利用率均显著高于普通渗灌。节点渗灌处理的黄瓜氮肥利用率和氮肥农学效率分别较普通渗灌处理提高4.82%和60.98%。这是由于以不同灌溉方法灌水其土壤含水量剖面不同,黄瓜生长的水肥耦合效应不同,灌水后节点渗灌水分主要分布于15~25cm土层,而普通渗灌主要分布于25~35cm土层。保护地蔬菜栽培选用节点...  相似文献   

9.
渗灌是一种新型的节水灌溉技术,目前尚无适合棚室蔬菜栽培的渗灌方式,特别是渗灌管的合理埋设深度和渗灌管管间距离。本试验以黄瓜为试材,采用渗灌管的埋设深度和渗灌管管间距离的不同渗灌处理,研究其对黄瓜生长及产量的影响。结果表明:渗灌管埋深35cm、管间距60cm的处理方式,对本地区塑料大棚黄瓜栽培及促进产量形成有利。  相似文献   

10.
渗灌对保护地土壤脲酶和过氧化氢酶活性的影响   总被引:7,自引:0,他引:7  
通过保护地番茄栽培试验,研究渗灌及不同灌水控制下限101、62、54、0和63 kPa处理对0~10、10~20、20~30、30~40和40~60cm 5个土层脲酶和过氧化氢酶活性的影响。结果表明:渗灌及其灌水控制下限能显著影响土壤中脲酶和过氧化氢酶的活性。渗灌灌水能促进脲酶活性的提高,灌水控制下限较高时,灌水处理后各土层脲酶活性较高,有利于为作物的生长提供充足的氮素营养。过氧化氢酶活性的变化与灌水和土壤水分状态密切相关,灌水控制下限较低时,灌水处理后各土层过氧化氢酶活性较高,频繁少量的灌水能促进各土层过氧化氢酶活性的不断提高。  相似文献   

11.
不同灌溉方式下设施土壤硝态氮的积累特征及其环境影响   总被引:6,自引:0,他引:6  
以不同灌溉方式下设施土壤及番茄为研究对象,采用田间试验与室内分析相结合的方法,对连年采用沟灌、滴灌和渗灌灌溉方式的设施土壤硝态氮、全盐含量、pH及番茄果实硝酸盐含量、水分生产效率进行了研究。结果表明:三种灌溉方式土壤硝态氮、全盐含量均呈现出明显的表聚现象,0~20 cm土层范围内,滴灌处理硝态氮含量和全盐含量明显低于沟灌和渗灌处理;不同灌溉方式土壤的pH值均随着土层加深而升高,在0~30 cm土层范围,土壤pH值滴灌高于沟灌,沟灌高于渗灌。沟灌和渗灌番茄果实硝酸盐含量显著高于滴灌,沟灌和渗灌番茄果实硝酸盐含量差异不显著;渗灌和滴灌水分生产效率明显高于沟灌。土壤硝态氮含量与土壤pH值呈极显著负相关,与全盐含量呈极显著正相关。总之,设施土壤硝态氮积累与土壤全盐含量、pH值、番茄果实硝酸盐含量关系密切;与沟灌和渗灌相比,滴灌更有利于抑制土壤退化。  相似文献   

12.
【目的】研究插入式地下滴灌对盐碱土壤入渗与水盐分布的影响。【方法】采用室内土柱试验,以阿拉尔灌区春季返盐的盐碱土土壤为研究对象,比较分析不同滴头流量与滴头埋深,对土壤湿润峰运移和湿润体内部水分及盐分的影响规律。【结果】相同入渗时间和滴头流量条件下,地下滴灌比地表滴灌湿润峰深度、湿润面积、湿润体内土壤平均含水量和脱盐深度增加。与CK处理相比较,T1处理土壤湿润峰深度和土壤湿润面积分别增加20.89%和18.01%;T2处理土壤湿润峰深度和土壤湿润面积分别增加45.78%和19.06%。T1和T2处理土壤湿润体内含水量平均值分别增加2.48%和1.37%。土壤脱盐深度由10 cm增加至25 cm。增加滴头埋深和流量,能够增加土壤持水效率,T1~T4处理0~25 cm土层土壤持水效率分别为2.56%、3.82%、9.81%和13.35%。滴头流量较小,随滴头埋深增加,土壤盐分表聚。T2处理0~5 cm土层深度土壤积盐率为67.98%。若增加...  相似文献   

13.
果树地下滴灌灌水技术田间试验研究   总被引:9,自引:0,他引:9       下载免费PDF全文
采用正交试验方法,探讨了不同埋深、孔径、孔距、防堵套长度的简易地下滴灌在定压供水条件下渗水量、管道水压分布和土壤水分入渗规律。结果表明,滴水管的出水量随时间呈幂函数下降,单孔出水量随孔径和孔距的增大而显著增大;地下滴灌的灌水均匀度随孔径的增大、孔距的减小而降低;地下滴灌的土壤入渗宽度随孔径的增大、孔距的减小、埋深的减小而增大,入渗深度则相反;对渭北旱塬地区,现行的果树简易地下滴灌的管道埋深、孔径、孔距应分别为40cm,0.9mm,60~80cm。  相似文献   

14.
The objective of this study was to investigate the contents and distribution of dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at 0-100 cm soil depth under three irrigation treatments, viz., subsurface, drip and furrow irrigation in the greenhouse soil. The soil samples were collected at different depths (0-100 cm), and the contents of soil total organic carbon (TOC), DOC and MBC were analysed. The experiment was conducted for 10 yr, during which period the application of fertilizers and crop management practices were kept identical. The results showed that the contents of TOC, DOC and MBC were significantly affected by different irrigation regimes, decreased with the increase of soil depth. TOC at 0-10 and 80-100 cm soil depths followed the order of furrow irrigation 〉 subsurface irrigation 〉 drip irrigation, whereas at the depth of 10-80 cm followed the order of subsurface irrigation 〉 furrow irrigation 〉 drip irrigation. DOC and MBC contents at 0-100 cm soil depths followed the order of furrow irrigation 〉 drip irrigation 〉 subsurface irrigation, and drip irrigation 〉 furrow irrigation 〉 subsurface irrigation, respectively. The ratios of DOC and MBC to TOC accounted for 4.98-12.87% and 1.48-2.82%, respectively, which were the highest in the drip irrigation treatment, followed were in the furrow irrigation treatment, and the lowest in subsurface irrigation treatment. There were significant positive correlations among the contents of DOC, MBC and TOC in all irrigation treatments. The furrow irrigation facilitated the accumulation of TOC and DOC, while drip irrigation increased the MBC. The content of TOC and the ratios of DOC to TOC were the lowest in subsurface irrigation treatment.  相似文献   

15.
磁化水在盐渍化土壤中的入渗和淋洗效应   总被引:12,自引:1,他引:11  
【目的】土壤盐渍化是影响干旱区绿洲农业生产的主要障碍因素,磁化水灌溉改良土壤可以追溯到20世纪60年代。在室内土柱模拟及田间膜下滴灌条件下对比研究不同磁处理水灌溉对土壤水分入渗及淋盐作用的影响,旨在提出一种高效降低土壤盐分的新技术。【方法】采用室内土柱模拟和田间小区滴灌相结合的试验方法,土柱模拟试验磁感应强度设4个处理:分别为0、100、300和500 mT,采用由上向下入渗,入渗至整个土柱2/3处停水、取样,研究不同磁感应强度处理的水对土壤入渗、土壤剖面含水量及盐分运移的影响,小区试验分别为普通水滴灌(CK)、磁化水滴灌(T),磁感应强度为300 mT,试验在测坑内完成,测坑面积6.67 m2,研究滴灌条件下磁化水灌溉对土壤水分渗漏及盐分分布的规律。【结果】土柱试验结果表明,磁化水可加快土壤水分入渗,与对照组相比,300 mT磁处理水可显著提高土壤湿润锋运移速度。在入渗时间为360 min时,0 mT和300 mT的湿润锋深度分别为17.0和18.5 cm;磁化水可加速土壤盐分向下运动,入渗结束后0 mT和300 mT处理在土层28 cm处的电导率值分别为10.9和12.7 mS•cm-1,Cl-含量分别是17.95和25.04 g•kg-1,Na+含量分别是4.61和5.55 g•kg-1,300 mT处理较对照(0 mT)分别增加了16.5%、39.5%和20.4 %。小区试验结果表明磁化水灌溉可显著提高土壤水分渗漏量,CK、300 mT处理(T)第一次承接的土壤渗漏液重量分别为18.8和21.9 kg,磁化水处理较对照处理增加16.5%。灌水结束后,0-100 cm土层的土壤脱盐率总体表现为磁化水处理大于对照处理,但各层脱盐率有所差别。对照和处理土壤表层0-20 cm脱盐率分别为13.8 %和23.2 %,深层土壤80-100 cm脱盐率为11.6%和29.8%。【结论】磁化水灌溉可加速土壤水分的向下运动,加快土壤盐分向下运移,表明磁化水灌溉有利于将更多的盐分淋洗出土体,300 mT磁处理效果最佳。磁化水滴灌为改良盐渍化土壤提供了一种操作简便快速、低投入与高效的方法,为在新疆大面积盐渍化土壤上应用提供了理论依据和技术支撑。  相似文献   

16.
以田间实测数据为基础,研究免冬春灌棉田膜下滴灌土壤盐分变化规律。通过对284 mm、339 mm、369 mm和399 mm4个灌溉定额下棉田土壤盐分变化进行分析得到:免冬春灌使棉田土壤盐分主要积累在0~30cm之间;随着灌溉定额的增加,滴头下土壤盐分淡化区深度逐渐增加,积盐区深度下移;各处理土壤盐分积累深度分别为20cm、30cm、60cm和70 cm,滴头下竖向随灌溉定额的增加淋洗效果越明显;滴头、行间、膜间土壤盐分含量依次增加;在棉花生育期内284 mm灌溉定额土壤处于积盐状态,339 mm、369 mm和399 mm灌溉定额土壤处于脱盐状态;结合洗盐深度和棉花根系主要活动范围,初步确定一年免冬春灌棉花灌溉定额为369 mm以上。该结果可为干旱区棉田少、免冬春灌棉花膜下滴灌水盐调控技术提供参考。  相似文献   

17.
 【目的】研究沟灌、渗灌、滴灌3种灌溉模式下,保护地土壤可溶性有机碳和微生物量碳在剖面中的分布特征。【方法】灌溉模式设沟灌、渗灌、滴灌3种,进行长达10年的长期定位灌溉试验。对长期定位灌溉试验保护地分层采集土壤样品,测定土壤总有机碳、可溶性有机碳、微生物量碳含量,分析其剖面分布特征。【结果】土壤总有机碳、可溶性有机碳和微生物碳含量均呈表层土壤最高、随土层深度增加而降低的分布趋势;但灌溉模式间差异明显,土壤总有机碳含量在0—10 cm、80—100 cm土层为沟灌>渗灌>滴灌,10—80 cm土层为渗灌>沟灌>滴灌;在0—100 cm剖面各层,可溶性有机碳含量均为沟灌>滴灌>渗灌,微生物量碳为滴灌>沟灌>渗灌。可溶性有机碳、微生物量碳占总有机碳的比率分别在4.98%—12.87%和1.48%—2.82%之间,其占总有机碳的比率均为滴灌>沟灌>渗灌。土壤可溶性有机碳、微生物量碳与土壤总有机碳含量呈显著的正相关关系。【结论】沟灌有利于土壤总有机碳、水溶性有机碳的积累,滴灌有利于微生物生物量碳的增加;渗灌相比较而言最不利于土壤有机质积累,不仅总有机碳含量低且水溶性含量占总有机碳的比例小。  相似文献   

18.
地下滴灌条件下土壤水分运动研究   总被引:3,自引:0,他引:3  
[目的]研究地下滴灌条件下土壤水分的运动规律。[方法]利用TDR测定土壤含水率,连续观测得到地下滴灌灌水过程中湿润锋的运移动态、灌水完毕时及24h后的土壤含水率分布情况。[结果]随着时间的延长,湿润锋的进展速度逐渐减小。灌水完毕时含水率等值线的整体分布近似为椭圆形,与壤土水分分布的一般特征相吻合。由于蒸发因素的存在,接近地表部分的土壤含水率为9.2%,小于土壤初始含水率,停止灌溉24h后,除土壤内部的含水率重新分布之外,土壤湿润体的形状和范围也有了较大的改变,水分达到了地表下70cm处,但湿润体在水平方向的运移却不很明显。[结论]该研究初步了解了地下滴灌条件下土壤水分入渗的特征。  相似文献   

19.
【目的】研究加气渗灌模式下土壤水盐运移规律,为新疆南疆地区节水灌溉方式和盐碱地改良方法提供借鉴。【方法】采用室内土箱试验,设置处理为标准加气量,灌前加气(T1),灌水中间段加气(T2);1.5倍标准加气量灌前加气(T3),灌水中间段加气(T4)的两因素两水平完全试验,并设置不加气处理CK为对照组,灌水量统一设置为13 L。灌水结束后静置24 h,取样分析水分在土壤中的入渗速率和湿润体内水分及盐分分布。【结果】加气处理较不加气处理灌水结束时间更早。T1,T2,T3,T4处理灌水时间较CK处理分别缩短8.70%,28.99%,31.88%和43.48%,加气处理较CK处理土壤中水分入渗速率更快。加气量增加,入渗速率也随之增加。在距渗灌管水平距离0 cm,一维纵深20~30 cm处土壤平均质量含水率分别为16.2%,13.31%,14.61%,13.07%,13.21%。在距渗灌管水平距离15 cm,一维纵深10~35...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号